Identification of Single Nucleotide Polymorphisms in Myxovirus Resistance-1 (MxA) Gene Promoter (C/A at nt -123) Correlated With the Response of Hepatitis C Patients to Interferon

OLFAT G. SHAKER, M.D*;, SAMAR ALI Marzouk M.D*; AMR A. ZAHRA, M.D**; HASSAN SALEM ELSAYED, M.Sc.** and MAISA Said EL – RAZKY M.D.***

The Departments of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Cairo University* and Fayoum University** and the Department of Tropical Medicine, Faculty of Medicine, Cairo University***

Abstract

AIM: To investigate the association between the single nucleotide polymorphisms (SNPs) in -123 loci of myxovirus resistance-1 (MxA) gene promoter region and the treatment response to IFN-α.

METHODS: Genotypes of -123(C/A) locus of the MxA promoter region was examined by the polymerase chain reaction in hundred Egyptian patients with chronic hepatitis C and sixty healthy controls.

RESULTS: The A-alleles of MxA-123 locus may be associated with the response to interferon. The frequency of C/A genotype was significantly higher in the responder group of patients (49.20%) than in the non-responder group (29.70%)

CONCLUSION: The results of the current work implied that heterozygosity for –123 polymorphisms of the MxA gene may be important host factors that influence the response to IFN-α therapy in patients with chronic HCV infection.

KEY WORDS: Myxovirus resistance-1(MxA), Single nucleotide polymorphisms(SNPs), Chronic hepatitis C and IFN-α.
The hepatitis C virus (HCV) infection is presently a major public health problem, with approximately 170 million people worldwide persistently infected with this virus [1]. Egypt has the highest prevalence of antibodies to HCV in the world, estimated nationally at 14.7% [2]. That prevalence is higher in the Nile Delta than elsewhere in the country [3].

Treatment of chronic hepatitis C is a combination of pegylated interferon alpha and the antiviral drug ribavirin for a period of 24 or 48 weeks depending on genotype [4].

Mx proteins are key mediators of the interferon (IFN) 2-induced antiviral response in vertebrates and hence of great biological interest and medical importance [5]. The SNPs of the MxA gene is one of the important host factors that independently influence the response to IFN in patients with chronic HCV infection, especially those with a low viral load [6].

The aim of the present work was to investigate the association between the single nucleotide polymorphisms (SNPs) in -88 locus of
myxovirus resistance-1 (MxA) gene promoter region and the treatment response to pegylated interferon in HCV-infected Egyptian patients.

MxA protein Polymorphisms was significantly associated with susceptibility to enterovirus 71 infection [7], prostate cancer [8], Alzheimer disease [9], the outcomes of HBV infection [10], severe acute respiratory syndromes[11], sub-acute sclerosing pan-encephalitis [12], and that the SNP of the MxA gene is one of the important host factors that independently influences the response to IFN in patients with chronic HCV infection, especially those with a low viral load [6].

Subjects and Methods

Ethics statement: All human studies have been reviewed by ethics committee in faculty of medicine,cairo university which approved this research.

This study was conducted on 160 Egyptian subjects in adult age group (20-54 years); they were classified into two groups:

Group (I): Included 100 HCV chronically infected Egyptian patients; 38 females and 62 males. Patients were treated with peg-interferon (PEG-IFN) alpha 2b 1.5 μg /kg weekly and ribavirin (800-1000mg /day) for one year (48 weeks). According to their response to treatment patients were classified into two subgroups:
1-Responders (n= 63): who had normalization of aminotransferases (ALT and AST) levels and clearance of the virus denoted by negative HCV-RNA by PCR after 6 months of receiving treatment and remain negative after completion of the treatment course for 72 weeks.

2- Non-Responders (n= 37): who received treatment for 6 months and failed to clear the virus and give positive HCV-RNA by real time PCR.

Group (II): Included 60 healthy donors volunteered for the study and served as controls. They were 33 females and 27 males.

Patients Selection: All patients attended the liver unit of Tropical Medicine Department, at Kasr El-Aini Hospital, Cairo University Outpatient's Clinic as naive patients to receive combined treatment of Interferon and Ribavirin. All subjects were recruited in the period from August 2011 to February 2013. Patients were screened for their eligibility to participate in the study. Eligible patients signed an informed consent. Medical history and possible routes of acquiring HCV infection were taken. They had clinical examination and ultrasonography before treatment, then six months until the end of study. Pretreatment and post-
treatment histopathological examination of percutaneous needle liver biopsy.

Patients Inclusion Criteria: Chronically infected HCV patients aged 20 to 54 years old. Serological, virological and histological diagnosis of chronic HCV. Elevated ALT level above the upper limit of normal within 6 months prior to entry to the study. Patients had not been previously treated with interferon based therapy.

Patients Exclusion Criteria: Decompensated liver disease. Patients with hepatitis B surface antigen (HBsAg) seropositive or infected with the human immunodeficiency virus (HIV). Hemoglobin <13 g/dL for men and <12 g/dL for women, white blood cell count of <3,000/mm3, neutrophil count of <1500/mm3, or platelet count of < 100,000/mm3. Presence of ANA titre > 1/160. TSH out of normal range. Active schistosomiasis. Serum creatinine above upper normal limit. Poorly controlled diabetes mellitus, hypertension, or psychiatric diseases.

Blood sample collection and storage: Five ml peripheral blood sample were withdrawn from each patient by venipuncture in 2 divided dry sterile 2 vacotainer tubes. Two mL were taken on EDTA tube and stored at -800C to be used for DNA extraction and detection of polymorphism MxA gene. The other three mL were taken in plain tube and left for 10
minutes to clot and then centrifuged at 2000 Xg for 5 minutes. The serum was then separated to be used in:

(a) All serological markers for HCV, Interleukins, HBV and standard laboratory tests.(b) Viral RNA quantitation by real time PCR.

I- Standard laboratory tests:

1-Liver Function Tests: Including prothrombin time and concentration, serum bilirubin (direct and total), serum albumin, aspartate transaminase (AST), alanine transaminase (ALT), alpha pheto protein (AFP), complete blood picture (CBC) and alkaline phosphatase (ALK).

2- Anti-HCV, HBsAg, and Anti-HBc.

3- HCV-RNA titer: by real time PCR before and after treatment.

4- Thyroid function tests: T3, T4 and TSH using Immulite.

5- Autoantibodies: ANA was done by Immunofluorescence kits.

6- Random blood glucose level: using glucose oxidase kits.

II- Molecular Biology Tests: MxA (position -88) genotypes was determined using a polymerase chain reaction (PCR)-restriction fragmentlength polymorphism (RFLP) assay.
DNA Extraction: DNA was extracted from whole blood using DNA extraction kit and stored at -80°C in aliquots until required. This was done using Qia-amplification extraction kit (Qiagene, USA).

B) Quantitation and assessment of DNA purity: DNA samples were subjected to DNA quantitation and purity assessment using the NanoDrop® (ND)-1000 spectrophotometer (Nano-Drop Technologies, Inc. Wilmington, USA).

PCR amplification and detection of MxA gene polymorphism:

Detection of polymorphisms in MxA gene was carried out using PCR amplification using Taq polymerase enzyme and T-Gradient thermal cycler (Biometra, Germany). Identification of the 2 alleles at each polymorphic site was performed by incubating the PCR product with a restriction enzyme, followed by electrophoresis on agarose gels.

(1) **Primer sequences:** Table (1): The sequence of primers used for amplification of MxA gene

<table>
<thead>
<tr>
<th>Primers</th>
<th>Oligonucleotide sequence</th>
<th>product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MxA (-88 & -123)</td>
<td>F-5ACACACCCCGTTTCCAACCTTGGAGGAGCAG-3</td>
<td>599bp</td>
</tr>
<tr>
<td></td>
<td>R-5-TGCGCAGTGCTGGAGTAGCGGCTCCGCTCT-3</td>
<td></td>
</tr>
</tbody>
</table>

(2) **PCR amplification:** PCR mixture (total volume 50μl).5 μl of 10X reaction buffer with MgCl2 (Amersham Pharmacia Biotech, Piscataway,
0.5 μM of each primer (forward and reverse). 0.2 mM/L dNTPs (Perkin-Elmer Corporation, Foster City, CA, USA) . 2 units Taq DNA polymerase (Amersham Pharmacia Biotech, Piscataway, NJ, USA) . 0.05 ug genomic DNA template.

Cycling Conditions: Denaturation at 95°C for 10 min. PCR reaction was carried out for 35 cycles under the following conditions: Denaturation at 95°C for 10 sec. Annealing at 65°C for 10 sec. Extension at 72°C for 60 sec. Then final extension cycle of 72°C for 7 minutes was done. Identification of the 2 alleles at each polymorphic site was performed by incubating the PCR product with a restriction enzyme, followed by electrophoresis on 3% agarose gels. Samples were prepared for loading by adding 2μl loading buffer to 10μl of the PCR reaction mixture. The PCR marker was also loaded into one of the wells.

Performing the Electrophoresis: The power supply was programmed to give 60 volts for about 20 minutes. The gel was taken for viewing on ultra-violet trans-illuminator.

Gel electrophoresis for MxA-123: Similar to the previous steps, but 2% agarose gel was prepared by adding 1g agarose to 50ml of the 1X TBE buffer.
Detection of MxA-123 Polymorphism:

For detection of the MxA-123 polymorphism, the bands generated on the gel were seen. In homozygous wild genotype (CC) one band at 599 bp appeared, in homozygous mutant genotype (TT) 2 bands at 464bp &135bp, while in heterozygous genotype (CT) 3 bands at 599bp, 464bp&135bp appeared.

Statistical methods:

Comparison of quantitative variables was done using kruskal-wallia and mann-whitney test for unpaired samples and Wilcoxon signed ranks test for paired samples. For comparing categorical data, Chi square (χ2) test was performed. Exact test was used instead when the expected frequency is less than 5. Genotype and allele frequencies were compared between the disease and the control groups using chi-square tests. Odds ratio (OR) with 95% confidence intervals was calculated. Spearman rank correlation coefficients were estimated to assess potential relationships between variables of interest. Stepwise multivariate logistic regression analysis for detection of multiple factors that could affect and so predict the response of chronic hepatitis C patients to interferon treatment was done. A probability value (P value) less than 0.05 was considered
Results

The current study was conducted on one hundred and sixty Egyptian subjects in adult age group with average age (19-54 years), they were classified into two groups

Group (I): Included 100 HCV chronically infected Egyptian patients; they were 62 males and 38 females with average age (20-54 year), all are genotype 4a and patients were treated with PEG-IFN alpha 2b 1.5 µg/kg weekly and ribavirin (800-1000mg/day) for six months. According to response to treatment, patients were classified into two subgroups: responders and non responders.

1-Responders: Who had normalization of aminotransferases (ALT and AST) levels and clearance of the virus denoted by negative HCV-RNA by PCR after 6 months of receiving treatment and remain negative after completion of the treatment course for 72 weeks. They were 63 patients [23 (36.5%) females and 40 (63.5%) males], aged 38.40 ± 8.783 (mean ± SD) years.

2- Non responders: who received treatment for 6 months and failed to clear the virus and give positive HCV-RNA by PCR. They were statistically significant. All statistical calculations were done using SPSS version 16.
37 patients [15 (40.5%) females and 22 (59.5%) males], aged 39.35 ± 7.462 (mean ± SD) years.

Group (II): Included sixty healthy donors (age and sex matched) volunteered for the study and served as controls.

In the present study we estimate the serum levels of myxovirus resistance-1 (MxA) protein and detect the polymorphisms of its gene at point -88 G/T in all studied groups.

<table>
<thead>
<tr>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>CC</td>
<td>CA</td>
<td>AA</td>
<td></td>
</tr>
</tbody>
</table>

Figure (1): Agarose gel electrophoresis of MxA (-123) after restriction by PstI

Lane M: Ladder (200 bp)
Lanes 1&2: Homozygous wild CC genotype showed one band at (599 bp)
Lane 3: Heterozygous CA genotype showed 3 bands at (599, 464 &153 bp)
Lane 4: Homozygous mutant AA genotype showed 2 bands at (464, 153 bp)
Table (2): Distribution of HCV study participants according to treatment response

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non responders</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Responders</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table (3): Biochemical characteristic of hepatitis C patients among studied groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>HCV patients n=100</th>
<th>Controls n=60</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>38.75 ± 8.29</td>
<td>35.62 ± 7.73</td>
<td>> 0.05</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>84.51 ± 54.37</td>
<td>27.62 ± 3.63</td>
<td>0.000*</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>102.13 ± 72.39</td>
<td>28.65 ± 4.52</td>
<td>0.000*</td>
</tr>
<tr>
<td>T-bilirubin (mg/dl)</td>
<td>1.25 ± 0.66</td>
<td>0.73 ± 0.19</td>
<td>0.000*</td>
</tr>
<tr>
<td>D-bilirubin (mg/dl)</td>
<td>0.39 ± 0.27</td>
<td>0.14 ± 0.05</td>
<td>0.000*</td>
</tr>
<tr>
<td>ALK (U/L)</td>
<td>115.26 ± 42.38</td>
<td>43.57 ± 7.31</td>
<td>0.000*</td>
</tr>
<tr>
<td>ALB (g/dl)</td>
<td>3.63 ± 0.50</td>
<td>3.84 ± 0.21</td>
<td>0.003*</td>
</tr>
<tr>
<td>AFP (ng/ml)</td>
<td>15.07 ± 12.81</td>
<td>5.92 ± 2.06</td>
<td>0.000*</td>
</tr>
<tr>
<td>PT (seconds)</td>
<td>12.67 ± 1.59</td>
<td>11.22 ± 0.59</td>
<td>0.000*</td>
</tr>
<tr>
<td>MxA (ng/ml)</td>
<td>8.26 ± 3.92</td>
<td>70.13 ± 26.41</td>
<td>0.000*</td>
</tr>
</tbody>
</table>

Values were expressed as mean ± SD, P < 0.05 was considered significant *
(Table 3) The age of HCV patients & controls showed no statistically significant difference from each other (P value > 0.05). But, the level of ALT, AST, T-bilirubin, D-bilirubin, ALK, AFP, PT in HCV patients were significantly higher than control group. Also, the level of albumin, MxA protein in HCV patients were significantly lower than controls.

Table (4): Genotype and allele frequencies for SNP (-123 C/A) in MxA gene in hepatitis C patients and controls

<table>
<thead>
<tr>
<th>MxA (-123)</th>
<th>HCV patients (100)</th>
<th>Controls (60)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Genotypes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>52 (52%)</td>
<td>42 (70%)</td>
<td>0.06</td>
</tr>
<tr>
<td>CA</td>
<td>42 (42%)</td>
<td>17 (28.3%)</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>6 (6%)</td>
<td>1 (1.7%)</td>
<td></td>
</tr>
<tr>
<td>(Alleles)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>146 (73%)</td>
<td>101 (84.2%)</td>
<td>0.02</td>
</tr>
<tr>
<td>A</td>
<td>54 (27%)</td>
<td>19 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>(Genotypes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC (wild)</td>
<td>52(52%)</td>
<td>42 (70%)</td>
<td>0.03</td>
</tr>
<tr>
<td>CA+AA (mutant)</td>
<td>48(48%)</td>
<td>18(30%)</td>
<td></td>
</tr>
</tbody>
</table>

P <0.05 was considered significant

(Table 4) shows the genotype distribution of MxA gene among the chronic HCV patients and controls. There was a non Significant
difference observed between hepatitis C patients and controls as regard the distribution of SNP (-123) alleles (A/A, C/A and C/C) (P =0.06) and the allele frequencies between the two groups showed statistical significant difference as regard (A allele: 54 (27%), 19(15.8%), C allele: 146(73%), 101(84.2%) respectively (p =0.02).

Table (5): Genotype and allele distribution of SNP (-123 C/A) of MxA gene among responders and non-responders

<table>
<thead>
<tr>
<th>MxA (-123)</th>
<th>Responders (63)</th>
<th>Non-responders (37)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>27 (42.9%)</td>
<td>25 (67.6%)</td>
<td>0.052</td>
</tr>
<tr>
<td>CA</td>
<td>31 (49.2%)</td>
<td>11 (29.7%)</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>5 (7.9%)</td>
<td>1 (2.7%)</td>
<td></td>
</tr>
<tr>
<td>Alleles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>85 (76.5%)</td>
<td>61 (82.4%)</td>
<td>0.02*</td>
</tr>
<tr>
<td>A</td>
<td>41 (32.5%)</td>
<td>13 (17.6%)</td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC (wild)</td>
<td>27 (42.9%)</td>
<td>25 (67.6%)</td>
<td>0.017*</td>
</tr>
<tr>
<td>CA+AA (mutant)</td>
<td>36 (57.1%)</td>
<td>12 (32.4%)</td>
<td></td>
</tr>
</tbody>
</table>

p <0.05 was considered significant
(Table 5 and Figure 2) shows the genotypes distribution and allele frequencies of SNP (-123) in MXA gene in responders and non-responders to interferon therapy of chronic hepatitis C patients.

The genotypes distribution between the responders and non-responders showed a non-significant difference observed in the distribution of (A/A, C/A and C/C) (p =0.052), but significant statistical distribution between responders and non-responders between mutant genotypes (A/A, C/A) as well as wild genotype (C/C) (p =0.017) was found. The allele frequencies between the two groups showed statistical significant difference (C allele: 85(76.5%), 61(82.4%) and A allele: 41(32.5%), 13(17.6%) respectively (p= 0.02).

![Figure (2): Genotype distribution of MxA (-123 C/A) gene among responders and non-responders](image-url)
According to World Health Organization data, 3% of the human population (approximately 170 million people) is infected with HCV and the prevalence of chronic HCV is 0.1-26% and varies in different regions [13]. Egypt is among the countries with the highest prevalence of hepatitis C virus (range 6%-15%) [14].

The standard of care (SOC) for HCV infection consists in the combination of pegylated interferon (PEG-IFN) plus ribavirin. Several viral and host factors have been implicated in response to therapy including age, sex, ethnicity, steatosis, obesity, insulin resistance, HCV RNA levels and viral genotypes. Numerous studies have also indicated that specific single nucleotide polymorphisms (SNPs) of certain host genes are probably involved [15].

The current study aims to investigate the association MxA polymorphism at positions –123 with the response to IFN-α therapy in HCV-infected Egyptian patients; and also searched for potential interactions of different factors associated with response to treatment with IFN-α.
The present study showed that the pretreatment laboratory data including the mean serum levels of ALT, AST, total and direct bilirubin, ALP, AFP and PT were significantly higher in the group of HCV patients as compared to the control group, while the mean serum level of albumin was significantly lower. Abbas et al. (2009) [16] have shown similar results to the present work, in which the mean serum levels of ALT and AST were significantly higher in the HCV patients than in the healthy controls.

The interferon system is a crucial component of the innate immune response to infectious agents [17]; its biological activity is mediated by the induction of intracellular antiviral proteins, such as the myxoresistence A (MxA) protein, 2′–5′ oligoadenylate synthetase-1 (OAS-1) and the double stranded RNA (dsRNA)-dependent protein kinase (PKR). Moreover, the MxA protein is assumed to be the most specific surrogate parameter for IFN action [6].

Some reports have shown that increasing the MxA protein or mRNA levels were related to response to IFN-α therapy. However, the levels of the MxA protein or mRNA during IFN-α therapy differ between individuals. One cause of these differences may be associated with genomic factors [6].
The current study aims to investigate the association MxA polymorphisms at position \(-123\), with the response to IFN-\(\alpha\) therapy in HCV-infected Egyptian patients; and also searched for potential interactions of different factors associated with response to treatment with IFN-\(\alpha\).

Regarding MxA SNP at position \(-123\), our study showed that inheritance of the heterozygous C/A genotype was significantly associated with sustained response to IFN-\(\alpha\) therapy. Moreover, the mutant A allele was significantly more frequent in sustained responders than in non-responders.

There are limited data regarding this SNP site, which is still under research of several authors. The results of the current study were also in accordance with the work of Hijikata et al. (2001) [18], who found that the frequency of the C/A heterozygotes at position \(-123\) was higher in sustained responders when compared with non-responders (60\% vs. 35\%). However, this difference was not statistically significant.

Moreover, Huang et al. (2008) [19], showed no statistical significance in IFN-\(\alpha\) therapeutic effectiveness among the patients with different genotypes in the MxA promoter \(-123\).
Regarding to position –123, the frequency of the C/A genotype was significantly higher in the responder group of patients (49.2%) than in the non-responder group (29.7%). Furthermore, the frequency of the A allele was significantly higher in the responder group of patients (32.5%) than in the non-responder group (17.6%).

However, the controversial findings may be the result of different patient populations, numbers of patients, ethnic variations [20] and different HCV genotypes. In addition, considering the HCV infection is a complex and heterogenous disease, research results may be inconsistent [21].

Conclusion: Data from the current study concluded that heterozygosity for –123 polymorphisms of the MxA gene may be important predictors of sustained response to IFN-α therapy.

Acknowledgement

None of the authors have any potential financial conflict of interest related to this manuscript. All human studies have been reviewed by the appropriate ethics committees.

9. Ma S, Huang W, Tang N and Lam L (2012): MxA polymorphisms are associated with risk and age-at-onset in

الملخص العربي

الالتهاب الكبدى الوبائى بفيروس سي يمثل تهديدا رئيسيا للصحة العامه على الصعيد العالمي حيث يقدر عدد المصابين والمعرضين لخطر تليف وسرطان الكبد بنحو 170 مليون شخص في جميع انحاء العالم.

يعتبر مکسو فیرس بروتين احد البروتينات المضادة للفیروسات ذات الحامض النووي الرببي عن طريق منع انتقالها الى داخل النواة.

شملت الدراسه الحالية 160 فرد من الجنسين تم تقسيمهم الى مجموعتين، المجموعة الأولى تتكون من 100 فرد مصاب بالالتهاب الكبدى الوبائى سي والاخرى تتكون من 60 فرد سليم.

تم اخذ عينات دم لاستخراج الحمض النووي الچينى وتحليله بواسطة التفاعلات المتسلسلة للبوليميژ وانزيمات الاقطاع الداخلية و ذلك لتحديد انماط المکسو فیرس بین عدد النقاط - 123. أظهرت النتائج ان النوع الجينى C/A مختلفه الالانل عند النقطه - 123 أكثر في المصابين للعلاج بالانترفیرون مقارنه بغير المصابين و كذلك تردد الاليل A ارتبط بشكل كبير مع استجابه متواصله لعلاج الانترفیرون.

تبين من الدراسه الحالية ان الاختلاف الزيجوتى عند النقطه-123 للمکسوفیرس قد يكون تنبه للاستجابه بالعلاج بالانترفیرون ومع ذلك فهي تفسر جزء من القابلیه الوراثیه للاستجابه للعلاج. الكلمات الدالة: الالتهاب الكبدى الوبائى. مکسو فیرس-الانترفیرون.