
Abstract:

Abstract:
Abstract:

This work is the first attempt to throw some light on the ostracodes from the recent marine environment in the Safaga bay along the Red Sea coast, Egypt. Thirty surface bottom sediment samples were collected from the study area, and treated for their Ostracoda content. Identification, taxonomy, occurrence, ecology, and zoogeographic aspects were carried out on the ostracode assemblages. Twenty-three ostracode species belonging to 21 genera, and 13 families are recorded. Three biofacies were determined covering the area under study. A shallow, warm, slightly alkaline, hypersaline, oxidizing marine environment was determined for the living medium of the present ostracode assemblages. Beside the main Indian fauna, some Mediterranean and cosmopolitan faunal elements were recorded.

KEY WORDS Ostracodes – Recent marine sediments – Safaga bay- Red Sea-Egypt.
Abstract:


Abstract:
Abstract:

The Lower Eocene Drunka Formation exposed along the western margin of the Nile Basin between Assiut-Minia stretches is a thick carbonate platform consisting of two units. The Lower one measures about 34 m in thickness and comprises four emergence carbonate cycles (each ranges in thickness from 4 m to 10.75 m). Each cycle commences with thin lime mudstone and/or algal skeletal wackestone, capped with thick oolitic-peloidal grainstone. These cycles represent non-gradual cycles that signify no regular balance between subsidence and sedimentation rates. These cycles indicate high frequency sea level fluctuation and/or signify short time sea level oscillation, accompanied with high production of carbonates. The upper unit measures about 99.75 m in thickness, and also comprises emergence carbonate cycles. These cycles begin with thick lime mudstone, followed by algal wackestone/packstone capped by thin bed of nummulitic algal packstone or peloidal grainstone (0.5 m to 5 m thick). These cycles represent gradual cycles that denote regular vertical increase in sea level concurrent with increase in sedimentation rate. They resemble low frequency sea level fluctuation with high rate of subsidence outpacing the increase in sea level. The drowning of carbonate platform is evidenced by: 1). Increase in thickness of emergence carbonate cycles upward especially in the upper unit. 2). The increase of thickness in the lower parts of cycles (lime mudstone and wackestone) at the expense of cycle cap (packstone and grainstone). 3). The decreases of skeletal particles that provide fine-grained carbonate e.g. benthonic foraminifera and algae in the upper unit. Nineteen microfacies associations are recorded and distributed as: lime mudstone, Bioclastic wackestone, Echinoidal wackestone, Nummulitic wackestone, Dasycladacean algae wackestone, Peloidal wackestone, Orbitolites wackestone, Miliolidae wackestone, Bioclastic packstone, Codiacean algae packstone, Peloidal packstone, Echinoidal packstone, Dasycladacean algae packstone, Orbitolites bioclastic packstone, Miliolidae packstone, Peloidal grainstone, Siliceous oolitic grainstone and Codiacean algae. According to lithologic characters, geometry, stratigraphic position, sedimentary structures, facies associations, fossil content and cyclic sequences, the environmental

Abstract:

Abstract:

Abstract:

Abstract:

Abstract:

Abstract: