Fayoum University
Faculty of Engineering
Department of Civil Engineering

CE 402: Part A
Shallow Foundation Design
Lecture No. (2): Wall Footing

Dr.: Youssef Gomaa Youssef
Wall Footing
Design of Wall Footing

- Plain concrete footing (P.C.)

\[\text{Area} = B \times 1.00 = \frac{P_{F.L}}{q_a} \rightarrow \text{Get: } B \]

Assume thickness of P.C., \(t = (0.25 \text{ to } 0.50) \)

\[\text{Dim. of P.C.} = B \times t \]
Design of Wall Footing

- Reinforced concrete footing (R.C.)

\[X = (0.80 \rightarrow 1.00) \times t \]
\[B_1 = B - 2X \]

\[p_n = \frac{P_{G.s}}{B_1} \]
\[M_l = p_n \left[\frac{(B_1 - b_b)/2}{2} \right]^2 \]
\[d = C \sqrt{\frac{M}{b \times F_{cu}}} \]
\[t = d + \text{cover} \]

Steel cover = 5.0 to 7.0 cm

\[\text{Dim. of R.C.} = B_l \times t_l \]
Design of Wall Footing

• **Shear Stress:**

\[Q_s = p_n \times \left(\frac{B_1 - b_b}{2} - d \right) \]

\[q_s = \frac{Q_s}{b \times d} \leq q_{su} \]

\[q_{su} = 0.75 \sqrt{\frac{f_{cu}}{\gamma_c}} \]

If \(q_s > q_{su} \), **Increase** \(d \)

Notes:

• No shear RFT in Footing.

• For no footing beam, critical locates at distance \(d \) from wall face.

\(Q_s \): shear force at critical sec. (II).

\(q_s \): shear stress.

\(q_{su} \): ultimate shear strength.
No Punching stress check
why?
Is there a check for punching of columns in solid slab? why?
Design of Wall Footing

- **Footing Reinforcement:**

 Which is required?
 Top or bottom RFT
 why?

 \[A_s = \frac{M_l}{f_y \cdot d \cdot j} \]

 Notes:
 - Minimum number of bars per meter is five.
 - Minimum diameter for main RFT is 12mm.
 - Minimum diameter for secondary RFT is 10mm.
 - Number of bars may be taken 5 to 8.
 - Diameter of bars may be selected from 12 to 18mm.
Example(1):

A 0.30 m thick masonry wall exerts 20t/m’ at ground surface and is to be supported on a strip footing. The foundation level is 1.50m below ground surface. The soil below the base has a gross allowable bearing capacity of 1.0 kg/cm². It is required to give a complete design and neat sketches for the strip footing.

\[
\begin{align*}
 b_w &= 0.30m. \\
 p_{G.S} &= 20t/m' \\
 q_a &= 1.0kg/cm^2 = 10t/m^2. \\
 f_{cu} &= 250kg/cm^2. \\
 f_y &= 3600kg/cm^2.
\end{align*}
\]
Design of Wall Footing

- Plain concrete footing (P.C.)

\[\text{Area} = B \times 1.00 = \frac{1.15 \times 20}{10} = 2.30 \text{m} \]

\[B = 2.30 \text{m} \]

Assume thickness of P.C., \(t = 0.30 \text{m} \)

Dim. of P.C. = 2.30 \times 0.30
Design of Wall Footing

- Reinforced concrete footing (R.C.)

\[X = (0.80 \rightarrow 1.00) \times t = 0.30m \]

\[B_1 = B - 2X = 2.30 - 2 \times 0.30 = 1.60m \]

\[p_n = \frac{P_{G.S}}{B_1} = \frac{20 \times 1.50}{1.60} = 18.75t/m^2 \]

\[M_I = p_n \left(\frac{(B_1 - b_b)/2}{2} \right)^2 \]

\[M_I = 18.75 \times \frac{(1.60 - 0.30)/2}{2} = 3.96 mt/m' \]

\[d = C \sqrt{\frac{M}{b * F_{cu}}} = 5.0 \sqrt{\frac{3.96 \times 10^5}{100 \times 250}} = 20cm \]

\[t = d + \text{cover} = 20 + 5.0 = 25cm \]

\[\text{Dim. of R.C.} = 1.60 \times 0.30m \]
Design of Wall Footing

- **Shear Stress:**

 \[Q_s = p_n \left(\frac{B_1-b_w}{2} - d \right) \]

 \[Q_s = 18.75 \left(\frac{1.60 - 0.30}{2} - 0.25 \right) = 7.50 \text{t/m}^3 \]

 \[q_s = \frac{Q_s}{b \times d} = \frac{7.50 \times 1000}{25 \times 100} = 3 \text{kg/cm}^2 \]

 \[q_{su} = 0.75 \sqrt{\frac{f_{cu}}{\gamma_c}} = 0.75 \sqrt{\frac{250}{1.5}} = 9.68 \text{kg/cm}^2 \]

 \[q_s \leq q_{su} \text{ safe shear.} \]

\(Q_s \): shear force at critical sec. (II).

\(q_s \): shear stress.

\(q_{su} \): ultimate shear strength.
Design of Wall Footing

• Footing Reinforcement:

\[A_s = \frac{M_I}{f_y \cdot d \cdot j} = \frac{3.96 \times 10^5}{3600 \times 25 \times 0.695} = 6.33 \text{cm}^2 \]

- \(A_s \) (main) = 6φ12mm/m’
- \(A_s \) (sec.) = 5φ10mm/m’