## Fayoum University



## Faculty of Engineering

**Civil Department – Geotechnical Engineering** 

## Rock Mechanics Sheet No. 1

<u>Q1. Descriptive and objective type.</u>

- 1-1 What is Mohr-Coulomb's strength theory? Sketch typical drawing for this criteria?
- 1-2 Describe direct shear box test?
- 1-3 Describe the triaxial shear test?
- 1-4 Describe unconfined (uniaxial) compression test?

1-5 Derive the relationship between the inclination of the plane of failure and the angle of shearing resistance.

1-6 Derive expression for the normal and shear stresses on the plane of failure in terms of the principal stresses.

## Q2. Numerical

2-1 the principal stresses at a point in a material are 80 KN/m<sup>2</sup> and 40 KN/m<sup>2</sup>. Determine the normal stress, shear stress and resultant of stresses on a plane inclined at  $30^{0}$  to the major principal plane.

2-2 a series of direct shear tests was conducted on a rock samples, each test was carried out till the sample failed. The following results were obtained.

| Sample No. | Normal stress kN/m <sup>2</sup> | Shear stresses kN/m <sup>2</sup> |
|------------|---------------------------------|----------------------------------|
| 1          | 100                             | 100                              |
| 2          | 300                             | 300                              |
| 3          | 500                             | 500                              |

Based on the previous results, determine the shear strength parameters?

2-3 the following results were obtained from a series of triaxial test on rock samples. Draw these results then find the shear strength parameters for this rock.

| Sample No. | Confining pressure kN/m <sup>2</sup> | Deviator stress at failure kN/m <sup>2</sup> |
|------------|--------------------------------------|----------------------------------------------|
| 1          | 100                                  | 600                                          |
| 2          | 200                                  | 750                                          |
| 3          | 300                                  | 870                                          |

2-4 in an unconfined (uniaxial) compression test , the following data were collected ( sample height = 7.6cm , sample diameter = 3.8cm )

| Load | ( kg)   | 0    | 2     | 6     | 10    | 14    | 16    | 11    | 9     |
|------|---------|------|-------|-------|-------|-------|-------|-------|-------|
| Dial | reading | 2.00 | 1.987 | 1.966 | 1.947 | 1.920 | 1.889 | 1.700 | 1.650 |
| (cm) |         | 0    |       |       |       |       |       |       |       |

Find the uniaxial compressive strength for the tested specimen.

2-5 the following results were obtained form shear box tests on a specimen of clayey silt

| Normal stress (t/m <sup>2</sup> ) | 21.4 | 32.1 | 42.8 |
|-----------------------------------|------|------|------|
| Shear stress (t/m <sup>2</sup> )  | 11.8 | 14.6 | 17.3 |

Find the cohesion and the angle of shearing resistance.

With My Best Wishes Dr. Mohammed Hussien ----- Fayoum in 11-2014