

Thermodynamics (2)

Faculty of Engineering Mechanical Engineering Dept.

Lecture (3) on

Availability (Exergy) and Irreversibility

By

Dr. Emad M. Saad

Mechanical Engineering Dept. Faculty of Engineering Fayoum University

2015 - 2016

8-1 • EXERGY: WORK POTENTIAL OF ENERGY

It would be very desirable to have a property to enable us to determine the useful work potential of a given amount of energy at some specified Unavailable state. This property is exergy, which is also energy called the availability or available energy. ENTROP Total energy Exergy

Example 1: Exergy Transfer from a Furnace

Consider a large furnace that can transfer heat at a temperature of 2000 R at a steady rate of 3000 Btu/s. Determine the rate of exergy flow associated with this heat transfer. Assume an environment temperature of 77°F.

The thermal efficiency of this reversible heat engine is

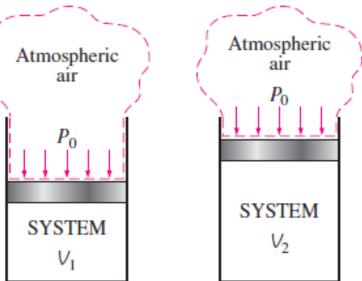
$$\eta_{\text{th,max}} = \eta_{\text{th,rev}} = 1 - \frac{T_L}{T_H} = 1 - \frac{T_0}{T_H} = 1 - \frac{537 \text{ R}}{2000 \text{ R}} = 0.732 \text{ (or } 73.2\%)$$

$$\dot{W}_{\text{max}} = \dot{W}_{\text{rev}} = \eta_{\text{th,rev}} \dot{Q}_{\text{in}} = (0.732)(3000 \text{ Btu/s}) = 2196 \text{ Btu/s}$$

Notice that 26.8% of the heat transferred from the furnace is not available for doing work. The portion of energy that cannot be converted to work is called unavailable energy

8-2 • REVERSIBLE WORK AND IRREVERSIBILITY

Surroundings work


This work, which cannot be recovered and utilized for any useful purpose, is equal to the atmospheric pressure Po times the volume change of the system,

$$W_{\rm surr} = P_0(V_2 - V_1)$$

Useful work

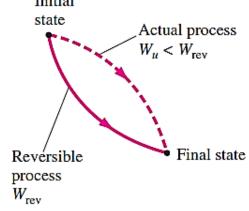
The difference between the actual work W and the surroundings work Wsurr is called the useful work Wu:

$$W_u = W - W_{\text{surr}} = W - P_0(V_2 - V_1)$$

8-2 • REVERSIBLE WORK AND IRREVERSIBILITY

Reversible work

Wrev is defined as the maximum amount of useful work that can be produced (or the minimum work that needs to be supplied) as a system undergoes a process between the specified initial and final states.


Any difference between the reversible work W_{rev} and the useful work W_u is due to the irreversibilities present during the process, and this difference is called **irreversibility** I. It is expressed as Initial

$$I = W_{\text{rev,out}} - W_{u,\text{out}}$$
 or $I = W_{u,\text{in}} - W_{\text{rev,in}}$

The irreversibility is equivalent to the exergy destroyed,

$$W_{\rm rev} \geq W_u$$
 for work-producing devices

$$W_{\rm rev} \leq W_u$$
 for work-consuming devices.

$$I = W_{rev} - W_u$$

Example 2: The Rate of Irreversibility of a Heat Engine

A heat engine receives heat from a source at 1200 K at a rate of 500 kJ/s and rejects the waste heat to a medium at 300 K (Fig. 8–11). The power output of the heat engine is 180 kW. Determine the reversible power and the irreversibility rate for this process.

$$\dot{W}_{\text{rev}} = \eta_{\text{th,rev}} \, \dot{Q}_{\text{in}} = \left(1 - \frac{T_{\text{sink}}}{T_{\text{source}}}\right) \dot{Q}_{\text{in}} = \left(1 - \frac{300 \text{ K}}{1200 \text{ K}}\right) (500 \text{ kW}) = 375 \text{ kW}$$

$$\dot{I} = \dot{W}_{\text{rev,out}} - \dot{W}_{u,\text{out}} = 375 - 180 = 195 \text{ kW}$$

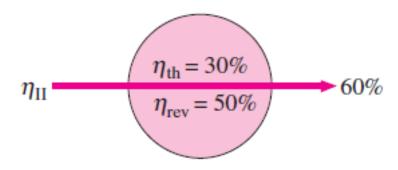
Notice that 26.8% of the heat transferred from the furnace is not available for doing work. The portion of energy that cannot be converted to work is called unavailable energy

8–3 • SECOND-LAW EFFICIENCY, η_{11}

Second-law efficiency η_{II} as the ratio of the actual thermal efficiency to the maximum possible (reversible) thermal efficiency under the same conditions

$$\eta_{\rm II} = \frac{\eta_{\rm th}}{\eta_{\rm th,rev}}$$
 (heat engines)

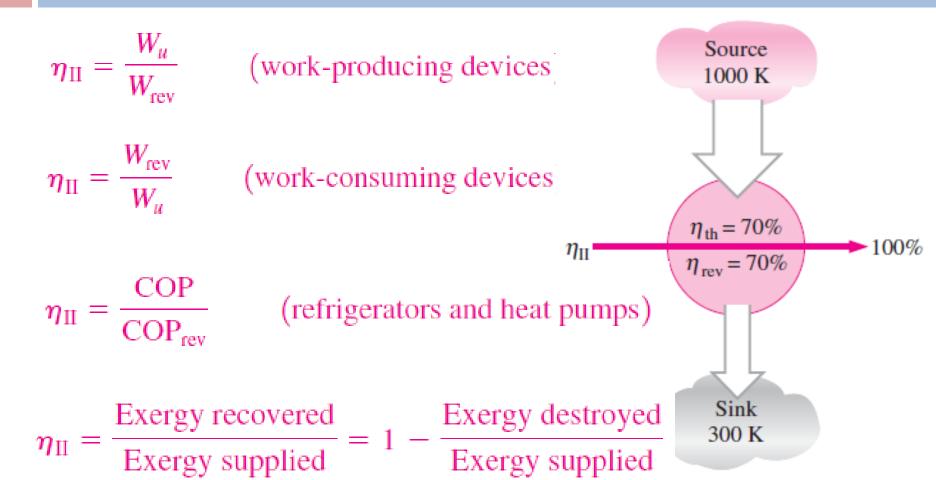
Second-law efficiency is a measure of the performance of a device relative to its performance under reversible conditions.



8–3 • SECOND-LAW EFFICIENCY, $\eta_{||}$

$$\eta_{\text{rev,A}} = \left(1 - \frac{T_L}{T_H}\right)_A = 1 - \frac{300 \text{ K}}{600 \text{ K}} = 50\%$$

$$\eta_{\text{rev,B}} = \left(1 - \frac{T_L}{T_H}\right)_B = 1 - \frac{300 \text{ K}}{1000 \text{ K}} = 70\%$$


$$\eta_{\text{II},A} = \frac{0.30}{0.50} = 0.60$$
 and $\eta_{\text{II},B} = \frac{0.30}{0.70} = 0.43$

8–3 • SECOND-LAW EFFICIENCY, $\eta_{||}$

