

Hydraulic & Pneumatic Circuits

Faculty of Engineering Mechanical power Engineering Dept.

Lecture (8)

on

Design of Hydraulic Systems

By

Dr. Emad M. Saad

Industrial Engineering Dept. Faculty of Engineering Fayoum University

2014 - 2015

Design Principles

- 3
- Principle 1. Liquids have no shape of their own and flow to acquire the shape of their container
- Principle 2. Liquids can be considered incompressible at pressures used in hydraulic systems
- Principle 3. Liquids transmit pressure equally in all directions.
- Principle 4. The flow rate of oil from a non-positive pump depends on the speed of the pump and on the system pressure.
- Principle 5. The flow rate of oil from a positive displacement pump varies proportionally with pump speed but is virtually independent of system pressure.
- Principle 6. Any flow of liquid through a pipe or orifice is accompanied by a reduction in liquid pressure.

Design Considerations

- Safety of Operation
 - □ Pressure and Temperature ratings
 - □ Interlocks for sequential operations
 - Emergency shutdown features
 - Power failure locks
 - Operation speed
 - Environment conditions

Design Considerations

Meet functional requirements Meet required performance specification Life expectancy same as machine Facilitate good maintenance practice Compatibility with electrical and mechanical components Withstand operational hazards

Design Considerations

- Efficiency of Operation
 - Keep system Simple, Safe and Functional
 Access to parts need repair or adjustment
 Design to keep min operational cost
 Design to prevent and remove contamination.

Design Procedures

Design Procedures

Complete These Steps for each Independent Hydraulic System

What are the specification of the job?

- \succ Load to be Lifted 1000 Kg.
- Load Travel Distance (Stroke Length) 50 cm
- ➤ Time Required to Reach Distance 10 cm/sec.

What Size of Cylinder Needed?

- > Which Side Load to be Lifted (Piston or Rod side)
- \succ Select the working Pressure (50 to 80 bar approx.)
- \succ Calculate the Area of cylinder A= F / P
- \succ Select Standard Bore and Rod size

\odot Cylinder Selection Reasoning

- Large Diameter Cylinder
 - Operates at Low Pressure
 - Require Bigger pump for Speed
- > Smaller Diameter Cylinder
 - Operates at High Pressure
 - Small Bigger pump give Speed
- > Cylinder Selected = 10 cm Bore

- \odot What Capacity Pump is Needed?
- Maximum Cylinder Speed Required
- Flow Rate =(Cyl. Area x Stroke / Time)
- > Next Standard Pump selected.
- Cubic Centimeter per revolution
- \odot What Capacity of Electric Motor Needed?
- Calculate Power Required to Run Pump
- Power KW =(LPM x Pressure) / 600
- Motor Speed = (LPM / CC Per Rev. of pump)
- Consider the Efficiency of Pump
- Shaft Size, Type of Electric Source.

o Return line filter

✓ Allowing free Heat Dissipation

SIMPLE PRESS CIRCUIT

• What Size of reservoir Should be used?

Deciding the Length and width Based on

✓ Availability Space

○ Filler Breather

• Suction Strainer,

Basically 4 to 5 times of Pump Capacity. (L × B × H)

✓ Mounting Accessories (Example -Manifold, Filter, Field piping etc.)

14

- These are all Selected 2 to 3 times of Pump Capacity.
- Lecture (8) Hydraulic and Pneumatic Circuits 4th year Mech. power Engineering Dept.

\circ Valve Selection

- > Relief Valve
 - ✓ Pressure Range

Flow Handling capacity (1.5 times of Pump flow)

- \circ Direction Control Valve
 - Based On Function

Flow Handling capacity (Max. Speed of Cylinder)

Lecture (8) – Hydraulic and Pneumatic Circuits – 4th year – Mech. power Engineering Dept.

SIMPLE PRESS CIRCUIT

\odot Pilot operated Check Valve

- Based On Following Function
 - Holding the Cylinder at intermittent stop
 - ✓ Power Failure condition (Ensuring safety)
 - ✓ To avoid the leakages Through DCV,
- Counter Balance Valve
 - Based On Following Function
 - To avoid sudden acceleration of load towards Gravity.

• Tubing Size (I.D) Selection

- Suction Line
 - \checkmark Velocity = 0.5 to 1 m/sec.
- Pressure Line
 - \checkmark Velocity = 3.0 to 5 m/sec.
- **>** Return Line
 - \checkmark Velocity = 1.0 to 2 m/sec.
- \succ Area = Q / V
- > Area = ((pi) x d²) / 4 m^2

> d =
$$\sqrt{(4 \times \text{Area}) / (\text{pi})}$$
 m

> Wall thickness selected based line pressure

\odot Tube Wall Thickness (t) Selection

Table U9 --- Design Pressure Formula

For thin wall tubes (D/T \ge 10) the following formula may be Used: P = 2ST/D

\circ Tube Wall Thickness (t) Selection

Material and Type	Allowable Design Stress fo Design Factor of 4 at 72°F	Tube Specification
Steel C-1010	12,500 PSI	SAE J356, J524, J525
Steel C-1021	15,000 PSI	SAE J2435, J2467
Steel, High Strength Low Alloy (HSLA)	18,000 PSI	SAE J2613, J2614
Stainless Steel 304 & 316	18,800 PSI	ASTM A213, A249, A269
Alloy Steel C-4130	18,800 PSI	ASTM A519
Copper, K or Y	6,000 PSI	SAE J528, ASTM B75
Aluminum 6061-T6	10,500 PSI	ASTM B210
Monel, 400	17,500 PSI	ASTM B165

\odot Tube Wall Thickness (t) Selection

Maximum	Recommended Flow Diameter in Millimeters				
Flow Rate LPM*	Pressure	Return Lines	Suction Lines		
	Lines				
1	1.670	2.640	4.180		
2	2.362	3.734	5.911		
з	2.893	4.573	7.240		
4	3.340	5.280	8.360		
5	3.734	5.903	9.347		
6	4.091	6.467	10.239		
7	4.418	6.985	11.059		
8	4.723	7.467	11.823		
9	5.010	7.920	12.540		
10	5.281	8.348	13.218		
12	5.785	9.145	14.480		
14	6.249	9.878	15.640		
16	6.680	10.560	16.720		
18	7.085	11.201	17.734		
20	7.468	11.806	18.694		
22	7.833	12.383	19,606		
24	8.181	12.933	20.478		
26	8.515	13.461	21.314		
28	8.837	13.970	22.118		
30	9.147	14.460	22.895		
32	9.447	14.934	23.646		
34	9.738	15.394	24.373		
36	10.020	15.840	25.080		
38	10.295	16.274	25.767		
40	10.562	16.697	26.437		
45	11.203	17.710	28.040		
50	11.809	18.668	29.557		

BASED ON FLOW RATE

BASED ON DESIGN PRESSURE

Metric Tubes					
and the second			Design Pressure (Bar)		
Tube O.D. (mm)	Wall Thick. (mm)	Tube I.D. (mm)	Steel Low-Carbon St. 37-4	Stainless Steel 1.4571	
4	0.5	3.0	313	256	
4	0.75	2.5	409	366	
4	1.0	2.0	522	465	
5	0.8	3.5	376	301	
5	1.0	3.0	432	386	
6	0.75	4.5	333	256	
6	1.0	4.0	389	330	
6	1.5	3.0	549	465	
6	2.0	2.0	692	585	
6	2.25	1.5	757	639	
8	1.0	6.0	333	256	
8	1.5	5.0	431	366	
8	2.0	4.0	549	465	
8	2.5	3.0	658	556	
10	1.0	8.0	282	209	
10	1.5	7.0	373	301	
10	2.0	6.0	478	386	
10	2.5	5.0	576	465	
10	3.0	4.0	666	539	
12	1.0	10.0	235	177	
12	1.5	9.0	353	256	
12	2.0	8.0	409	330	
12	2.5	7.0	495	400	
12	3.0	6.0	576	465	
12	3.5	5.0	651	527	
14	1.0	12.0	201	153	
14	1.5	11.0	302	223	
14	20	10.0	403	289	

