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Chapter: 2       Wave Motion 

- Propagation of a Disturbance  Sinusoidal Waves 

- The Speed of Waves on String 

- Reflection and transmission. 

- Rate of Energy Transfer by Sinusoidal Waves on 

Strings 

- The Linear Wave Equation 
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Wave Motion 
Objectives of part 1:  
The student will be able to: 

• Define the propagation wave and the sinusoidal  wave. 

• Define the wavelength, frequency and the phase difference. 

• Demonstrate the speed of wave on the string. 

• Define the reflection & transmission waves. 

• Define the kinetic and the potential energies. 

• Define the total energy on the string 

• Determine the rat of the energy transfer. 

• The liner equation of the wave. 
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Introduction: 

 Two main types being “ mechanical waves”  and 

electromagnetic waves.  

  

• Mechanical  waves, require some  physical  medium  is  

being  disturbed in our pebble and beach ball example, 

elements of water are disturbed.  

   

• Electromagnetic  waves  do  not  require  a  medium  to  

propagate:  

   some  examples  of electromagnetic waves are visible 

light, radio waves, television signals,  and x-rays. 

 Here, in this part of the course , we study only mechanical 

waves. 

All waves carry energy, but the amount of energy transmitted 

through a medium and the mechanism responsible for that 

transport of energy differ from case to case.  
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1 - Propagation of a disturbance: 

  

All mechanical waves require: 

(1) Some source of disturbance,  

(2) A medium that can be disturbed, and  

(3) Some physical mechanism through which elements of 

the medium can influence each other.   
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, 

 

                                                                                         

• Figure:1 illustrates this point for one particular element, 

labeled P. Note that no part of the rope ever moves in the 

direction of the propagation. A traveling wave or pulse that 

causes the elements of the disturbed medium to move 

perpendicular to the direction of propagation is called a 

transverse wave.  
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Figure -2 The left end of the spring is pushed briefly to the right and then 

pulled briefly to the left.  

This movement creates a sudden compression of a region of the coils. The 

compressed region travels along the spring. The compressed region is 

followed by a region where the coils are extended. 

Notice that the direction of the displacement of the coils is parallel to 

the direction of propagation of the compressed region. A traveling 

wave or pulse that causes the elements of the medium to move parallel to 

the direction of propagation is called longitudinal wave. 
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The  disturbance  in  a  sound  wave  are an example of 

longitudinal waves  of series  of  high-pressure  and  low-

pressure regions that travel through air.  

 

The motion of water elements on the surface of deep water 

in which a wave is propagating is a combination of 

transverse and longitudinal displacements, each element is 

displaced both horizontally and vertically from its equilibrium 

position. 
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Figure -3a represents the shape and position of the pulse at 

time t = 0. The shape of the pulse can be represented by 

some mathematical function which we will write as 

                       y (x,0)=  f (x).  

 The speed of the pulse is v,  the pulse has traveled to the 

right  a distance vt at the time t 
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 (Fig. -3b). We assume that the shape of the pulse 

does not change with time.  

* Thus, at time t, the shape of the pulse is the same 

as it was at time t = 0 

11 FCI 



vtx 
)(),( vtxytxy 

Fig 4 an element of the string at x  at this time has the same 

y  position as an element located at ( 

:   

 had at time t = 0 

If  the  pulse  travels  to  the  left,  the  transverse  positions  of  elements  of  

the string are described by 

)(),( vtxftxy 
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If  the  pulse  travels  to  the  left,  the  transverse  

positions  of  elements  of  the string are 

described by 
)(),( vtxftxy 

The function y, called the wave function, depends on the two 

variables x and t. For this reason, it is often written y(x, t), 

which is read “y as a function of x and t.” 



Ex: Consider the sinusoidal wave, which shows the position of the wave at 

t = 0. Because the wave is sinusoidal, we expect the wave function at  this 

instant to   be expressed as y(x, 0) = A sin ax, 

Where A  is the amplitude and a is a constant must  be determined from 

initial conditions:.  

 At  x = 0, we see that y(0, 0) = A sin a(0) = 0,  consistent with Fig. -4a. The 

next value of x for which  y  is zero is  x = λ/2. Thus, 
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2
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
aAy

a(λ/2) = π, or a = 2π/λ. Thus, the function describing the positions of the 

elements of the medium through which the sinusoidal wave is traveling 

can be written as 

)
2

sin()0,( xAxy




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If the wave moves to the right with a speed v, then the wave function at 

some later time t is 

 

The relation between  wave speed, wavelength, and period are related by 

the expression 

 

In general we have 

 

We defined two other quantities, the angular wave number k (usually 

called simply the wave number) and the angular frequency  
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2 - Sinusoidal Waves: 

 

The wave represented by this curve is 

called a sinusoidal wave because the 

curve is the same as that of the 

function sin plotted against t. On a 

rope, a sinusoidal wave could be 

established by shaking the end of the 

rope up and down in simple harmonic 

motion.( Fig )  

. 
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Definitions: 

Wavelength: The distance from one crest to the next is called 

the wavelength “λ”. More generally, the wavelength is the 

minimum distance between any two identical points (such as 

the crests) on adjacent waves. 

Frequency: of a periodic wave is the number of crests (or 

troughs, or any other point on the wave) that pass a given point 

in a unit time interval. The frequency of a sinusoidal wave is 

related to the period by the expression  

The unit for frequency is second-1, or hertz (Hz). 

 

 

T
f 1
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3- Sinusoidal Waves on Strings 

If the wave at t = 0 is as described in Figure, and then the wave 

function can be written as   
)sin( tkxAy 

 Note that although each element oscillates in the y direction, 

the wave travels in the x direction with a speed v. Of course, 

this is the definition of a transverse  wave. 
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One method for producing 

a sinusoidal wave on a 

string. The left end of the 

string is connected to a 

blade that is set into 

oscillation. Every element 

of the string, such as that 

at point P, oscillates with 

simple harmonic motion in 

the vertical direction. http://phet.colorado.edu/en/simulation/wave-on-a-

string 
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The maximum values of the transverse speed and 

transverse acceleration are  

simply the absolute values of the coefficients of the 

cosine and sine functions:   

          vy, max = ωA  ,                       ay, max = ω2A 

)sin( tkxAy 
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Sinusoidal Waves 
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Equation of motion of a simple harmonic oscillation is a sine function. 

Thus the wave 

form can be 

rewritten 

By definition, the speed of 

wave in terms of wave length 

and period T is  


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 xAy
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Defining, angular 
wave number k and 

angular frequency w,  
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The function describing the position of 

particles, located at x, of the medium 

through which the sinusoidal wave is 

traveling can be written at  t=0 

T
v




Wave Length 

The wave form of the wave traveling at the 

speed v in +x at any given time t becomes 
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General 

wave form  
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Objectives of part 2:  

The student will be able to 

 

Demonstrate the speed of wave on the string. 

Define the reflection & transmission waves. 

The liner equation of the wave. 

 

Define the kinetic and the potential energies. 

Define the total energy on the string 

Determine the rat of the energy transfer. 
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Speed of Waves on Strings 
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Which law does this hypothesis 

based on? 

Based on the hypothesis we have 

laid out above, we can construct a 

hypothetical formula for the speed 

of wave  

Newton’s second law of 

motion 



T
v  T: Tension on the string 

m: Unit mass per length 

Is the above expression dimensionally sound? 

T=[MLT-2], m=[ML-1] 

 

(T/m)1/2=[L2T-2]1/2=[LT-1] 
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Speed of Waves on Strings 
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Let’s consider a pulse moving to right and look at it 

in the frame that moves along with the the pulse. 

Since in the reference frame moves with the pulse, 
the segment is moving to the left with the speed v, 

and the centripetal acceleration of the segment is  

What is the mass of the segment when 
the line density of the string is m? 

Using the radial 

force component 

Now what do the force components 
look in this motion when q is small? 
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Therefore the speed of the pulse is 
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FCI 



The speed of a traveling wave 

•A fixed point on a wave has a constant 

value of the phase, i.e. 

constantkx t 

0 or
dx dx

k v
dt dt k


    

Or 

v f
k T

 
  
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The speed of a traveling wave 

•For a wave traveling in the opposite direction, we 

simply set time to run backwards, i.e. replace t 

with -t. 

constantkx t 

0 or
dx dx

k v
dt dt k


     

 ( , ) sinmy x t y kx t 

•So, general sinusoidal solution is: 

 ( , ) sinmy x t y kx t 

•In fact, any function of the form 

is a solution. 
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Reflection of a traveling wave on rigid wall 

-  If a wave encounters a “denser”, new medium, or a rigid wall, it gets 

reflected.   

-  In this case the reflected pulse is inverted upon reflection 
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Reflection of a traveling wave on a loose end 

-  If a wave encounters a “less dense” medium or an end it also gets 

reflected.   

-  In this case the reflected pulse is not inverted upon reflection.  
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Transmission: Light string  heavier string 

The transmitted pulse is not inverted.   

The reflected pulse is inverted.  
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Transmission: Heavy string  light sting 

The transmitted pulse is not inverted.   

The reflected pulse is not inverted.  
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Reflection and Transmission 
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A pulse or a wave undergoes various changes when the 

medium it travels changes. 

Depending on how rigid the support is, two radically different 

reflection patterns can be observed.  

1. The support is rigidly fixed: The reflected pulse will be inverted 

to the original due to the force exerted on to the string by the 

support  in reaction to the force on the support due to the pulse on 

the string. 

2. The support is freely moving: The reflected pulse will maintain 

the original shape but moving in the reverse direction. 
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32 

If the boundary is intermediate between the above two 

extremes, part of the pulse reflects, and the other undergoes 

transmission, passing through the boundary and 

propagating in the new medium. 

When a wave pulse travels from medium A to B: 

• vA> vB (or mA<mB), the pulse is inverted upon reflection. 

• vA< vB(or mA>mB), the pulse is not inverted upon reflection. 
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Rate of Energy Transfer by Sinusoidal Waves on Strings 
Waves traveling through medium carries energy. 

When an external source performs work on the string, the energy 

enters into the string and propagates through the medium as wave. 

What is the potential energy of one wave length of a traveling wave?  

x,m 
Elastic potential energy of a particle in a simple harmonic motion  

2

2

1
kyU 

Since 2=k/m  2

2

1
ymU   The energy ∆U of the segment ∆ m is  

22

2

1

2

1
yxymU   
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Rate of Energy Transfer by Sinusoidal Waves on Strings 

As x0, the energy U becomes  dxydU 2

2

1  

Using the wave function, the energy is   dxtkxAdU    22 sin
2

1

For the wave at t=0, the potential 

energy in one wave length, , is  
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Recall K = /
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Rate of Energy Transfer by Sinusoidal Waves 
How does the kinetic energy of each segment of the string in the wave look? 

Since the vertical speed of the particle is  

As x0, the energy K becomes   dxtkxAdK    22 cos
2

1

For the wave at t=0, the kinetic 

energy in one wave length, , is  
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Recall  K = 

 tkxAvy   cos

The kinetic energy, K, of 

the segment m is  tkxAxmvK y   2222 cos
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Just like harmonic oscillation, the total 

mechanical energy in one wave length, , is  
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Rate of Energy Transfer by Sinusoidal Waves 

vA
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As the wave moves along the string, the amount of energy 

passes by a given point changes during one period.  So the 

power, the rate of energy transfer becomes  

P of any sinusoidal wave is proportion to the square of 

angular frequency, the square of amplitude, density of 

medium, and wave speed. 
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The Linear Wave Equation 
 If the wave function has the form 

        

This is the linear wave equation as it applies to waves on a string. 
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