
 1 

Hermite-Gaussian-Like Eigenvectors of the Discrete Fourier Transform 
Matrix Based on the Direct Utilization of the Orthogonal Projection 

Matrices on its Eigenspaces1 
 

Magdy Tawfik Hanna2, Nabila Philip Attalla Seif3 and Waleed Abd El Maguid Ahmed4 
 
 

Abstract 
 
 A new version is proposed for the Gram-Schmidt algorithm, the orthogonal procrustes 
algorithm and the sequential orthogonal procrustes algorithm for generating Hermite-
Gaussian-like orthonormal eigenvectors for the discrete Fourier transform matrix F. This 
version is based on the direct utilization of the orthogonal projection matrices on the 
eigenspaces of matrix F rather than the singular value decomposition of those matrices for the 
purpose of generating initial orthonormal eigenvectors. The proposed version of the 
algorithms has the merit of achieving a significant reduction in the computation time. 
 
Index Terms: Discrete fractional Fourier transform, Hermite-Gaussian-like orthonormal 
eigenvectors, orthogonal procrustes algorithm, sequential orthogonal procrustes algorithm, 
Gram-Schmidt algorithm, projection matrices. 

 

I. INTRODUCTION 

 The development of the discrete fractional Fourier transform (DFRFT) necessitates the 

generation of orthonormal eigenvectors of the discrete Fourier transform (DFT) matrix F in 

order to satisfy the basic requirements of unitarity and index additivity that any legitimate 

definition of the DFRFT should possess. Since the multiplicities of the eigenvalues of the 

unitary matrix F – derived by McClellan and Parks [1] – are large, the dimensions of the 

corresponding eigenspaces are high and there is much freedom in the selection of the 

orthonormal eigenvectors of F. This freedom is exploited in achieving the goal of having the 

DFRFT approximate its continuous counterpart by demanding that the orthonormal 

eigenvectors of F be Hermite-Gaussian-like, i.e. be close to samples of the Hermite-Gaussian 

functions which are the eigenfunctions of the continuous fractional Fourier transform. 

Dickinson and Steiglitz proved that matrix F commutes with a real symmetric almost 

tridiagonal matrix S whose eigenvalues have a maximum multiplicity of two and that both 

matrices have a common set of eigenvectors [2]. Pei et al. showed that samples of the 
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Hermite-Gaussian functions, taken in a specific way, form approximate eigenvectors of 

matrix F [3, 4]. They considered the eigenvectors of S as only initial eigenvectors of F and 

obtained final superior eigenvectors in the sense of better approximating samples of the 

Hermite-Gaussian functions [3]. They proposed two techniques; namely the Gram-Schmidt 

algorithm (GSA) and the orthogonal procrustes algorithm (OPA). In the first technique 

(GSA), vectors consisting of samples of the Hermite-Gaussian functions pertaining to one 

eigenvalue of F are projected on the corresponding eigenspace spanned by the initial 

orthonormal eigenvectors and are next orthonormalized by applying the Gram-Schmidt 

procedure. In the second technique (OPA), a unitary matrix Q is derived and premultiplied by 

a matrix whose columns are initial orthonormal eigenvectors pertaining to one eigenspace of 

F so that the resulting matrix will be as close as possible – in the sense of Frobenius norm – to 

the matrix whose columns are samples of the Hermite-Gaussian functions. In both the GSA 

and OPA, the procedure is applied to each eigenspace separately since those eigenspaces are 

mutually orthogonal due to the unitarity of matrix F. In a different development Candan et al. 

discretized the differential equation satisfied by the Hermite-Gaussian functions and showed 

that the solution of the resulting second order difference equation is given by the eigenvectors 

of an almost tridiagonal matrix5 S [5, 6]. They regarded those eigenvectors as Hermite-

Gaussian-like. 

 Recently Hanna, Seif and Ahmed [7] proposed a new technique for generating initial 

orthonormal eigenvectors of F by the singular value decomposition of the orthogonal 

projection matrices on the eigenspaces of F. They also proposed a new technique termed the 

sequential orthogonal procrustes algorithm (SOPA) for generating  final eigenvectors of F 

given initial ones. This technique is based on the sequential derivation of the columns of the 

unitary matrix Q by solving a series of constrained minimization problems in contrast to the 

batch evaluation of that matrix by solving a single minimization problem as in the OPA. 

Hanna et al. proved that for each of the GSA, OPA and SOPA the final eigenvectors are 

invariant under the change of the initial eigenvectors. 

 The main objective of this paper is to show that the final eigenvectors of F can be directly 

generated given the orthogonal projection matrices without having to first find the singular 

value decomposition of those matrices for the sake of getting initial eigenvectors. This idea 

will be shown to be applicable to each of the GSA, OPA and SOPA. 

                                                           
5 Strictly speaking, denoting matrix S  in the work of Dickinson et al. [2] and Pei et al. [3] by 1S  and matrix S  

in the work of Candan et. al. [5] by 2S , the two matrices are related by ISS 412 −= . Therefore 1S  and 2S  
have the same eigenvectors. 
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 Some background material will be given in section II. The modified forms of the GSA, 

OPA and SOPA based on the direct utilization of the orthogonal projection matrices rather 

than the generation of initial eigenvectors will be developed in sections III - V. Some 

simulation results will be presented in section VI demonstrating the reduction in the 

computation time achieved by the proposed version of the algorithms. 

 

II. BACKGROUND MATERIAL AND NOTATION 

 

 The DFT matrix ( )nmfF ,=  of order N is defined by: 

( )( ) NnmW
N

f nm
nm ,,1, ,          1 11

, L== −−  (1) 

where 





−=

N
jW π2exp . Matrix F has the four distinct eigenvalues [1]: 

( ) 4,1 ,          1
L=−= − kj k

kλ . (2) 

 Because matrix F is unitary, it is diagonalizable and its eigenspaces 4,,1 , L=kEk  are 

orthogonal to one another [8]. Explicit expressions have been derived for the four orthogonal 

projection matrices kP  on kE  in [7]. By means of the singular value decomposition of kP , it 

has been possible to obtain orthonormal basis for kE  given by the columns of an krN x  

matrix kV , i.e. 

H
kkk VVP =  (3) 

where6 kr  is the dimension of kE  (which is the multiplicity of kλ ) derived in [1]. (The reader 

is referred to [7] for a proof of the above formula and to Appendix A for some clarification). 

Those eigenvectors are regarded as only initial ones and are used for obtaining final Hermite-

Gaussian-like eigenvectors that will form the columns of an krN x  matrix kÛ . A preliminary 

step toward computing kÛ  is to generate an krN x  matrix kU  whose columns are 

approximate rather than exact eigenvectors corresponding to the exact eigenvalue kλ  by 

taking samples of the Hermite-Gaussian functions [3], [4]. Because of the orthogonality of the 

eigenspaces of F due to its unitarity, each eigenspace will be dealt with separately. In order to 

simplify the notation, the subscript k will be dropped in the remainder of this paper. The 

                                                           
6 The superscripts H, * and T respectively denote the Hermitian transpose, the complex conjugate and the 
transpose operations. 



 4 

krN ×  matrices kkk UUV ˆ,,  will be written as the rN ×  matrices UUV ˆ,,  respectively. The 

space kE  will be denoted by E  and the corresponding orthogonal projection matrix kP  will 

be denoted by P . 

Lemma 1: 

The orthogonal projection matrix P  on any space is invariant under the change of the 

orthonormal basis of that space. 

Proof: See Appendix A. 

 

III. THE GRAM-SCHMIDT ALGORITHM 

 

 Let nu  be a vector of N elements obtained by sampling the Hermite-Gaussian function of 

order n in the manner delineated in [3]. Pei et al. proved that nu  is an approximate 

eigenvector of matrix F of order N [3], [4]. Given an orthonormal basis rmvm ,,1 , L=  of the 

eigenspace E (namely the columns of the matrix V of (A-1) in Appendix A), one projects nu  

on E to get the exact eigenvector nu~  as: 

rnvuvu
r

m
mnmn ,,1   ,   ,~

1

L==∑
=

. (4) 

Here it is suggested to exploit the availability of the projection matrix P on E – as derived in 

[7] – to directly get nu~  from nu  according to: 

rnPuu nn ,,1 ,     ~ L== . (5) 

The above r vector equations can be compactly expressed as one matrix equation: 

PUU =~  (6) 

where 

( )ruuU L1= , (7) 

( )ruuU ~~~
1 L= . (8) 

 Since the exact eigenvectors rnun ,,1 , ~ L=  are not orthogonal, one can apply the Gram-

Schmidt orthonormalization procedure to get a set of orthonormal eigenvectors 

rnun ,,1 , ˆ L=  that can be arranged as the columns of the target matrix Û  defined by: 

( )ruuU ˆˆˆ
1 L= . (9) 
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 One should notice that the modification suggested here is only in obtaining the projected 

vectors rnun ,,1 , ~ L=  using (5) instead of (4). No modification is made in the 

orthonormalization procedure contributed by Gram and Schmidt. Given the projection matrix 

P, it is faster and more straightforward to get nu~  using (5) than to first perform a singular 

value decomposition to get the matrix V according to (3) in preparation for using (4). 

 

IV. THE MODIFIED ORTHOGONAL PROCRUSTES ALGORITHM 

 

 Given the matrix U  of approximate eigenvectors defined by (7) and an rN  x  matrix V  

whose columns are initial exact orthonormal eigenvectors of F, one seeks a matrix Û  of the 

form: 

VQU =ˆ  (10) 

where Q is a unitary matrix of order r derived according to the orthogonal procrustes 

algorithm (OPA) such that the squared Frobenius norm 
2ˆ
F

UU −  is minimized. The 

evaluation of matrix Q according to the OPA was given in [9] for the real case and will be 

expounded upon in Appendix B for the case of a complex vector space. One should mention 

that although in general the OPA does not require the orthonormality of the columns of the 

matrix V, that matrix should have orthonormal columns in order to guarantee the 

orthonormality of the columns of the target matrix Û  according to (10). The OPA can be 

summarized in the following three steps: 

1. Form the square matrix C  of order r: 

 UVC H= . (11) 

2. Find the full size7 singular value decomposition of C : 

 HADBC =  (12) 

 where A and B are unitary matrices and D is a real diagonal matrix of the singular 

values of C, all of order r. 

3. Compute the matrix Q : 

 HABQ = . (13) 

                                                           
7 Explaining the need for using the full size version of the singular value decomposition technique has been one 
of the reasons for the inclusion of Appendix B. The primary reason has been the presentation of a detailed 
derivation of the OPA when the vector space is over the field of complex scalars. 
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 Our objective here is to develop a modified version of the above algorithm that does not 

require the explicit use of the matrix V . From (11) and (12), one obtains: 
HH ADBUV = . (14) 

Premultiplying both sides by V , one obtains: 
HH VADBUVV = . (15) 

Upon defining the rN x  matrix H: 

VAH =  (16) 

and utilizing (3), one can express (15) as: 
HHDBPU = . (17) 

From (10), (13) and (16), one gets: 
HH HBVABU ==ˆ . (18) 

It should be mentioned that the columns of the matrix H of (16) are orthonormal due to the 

unitarity of the matrix A and the orthonormality of the columns of the matrix V. Based on 

(17) and (18), the modified OPA can be described by the following steps: 

1. Form the rN x  matrix G: 

 PUG = . (19) 

2. Find the economy size singular value decomposition of G: 

  HHDBG =  (20) 

 where B is a unitary matrix of order r, H is an rN x  matrix with orthonormal columns 

and D is a diagonal matrix of order r. 

3. Compute the matrix Û : 

 HHBU =ˆ . (21) 

 

V. THE MODIFIED SEQUENTIAL ORTHOGONAL PROCRUSTES ALGORITHM 

 

 In the sequential OPA (SOPA), the columns of the unitary matrix Q appearing in (10) are 

sequentially generated by solving a series of constrained minimization problems. In the s th 

stage the column sq  of Q is derived by minimizing the functional: 

2

2
ˆsss uuJ −=  (22) 

subject to the constraints that sq  is orthogonal to )1(,,1 , −= skqk L  and is of unit norm. The 

solution of this problem is given by [7]: 
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rsx
x

q s
s

s ,,1  ,          1
L==  (23) 

where r
sx C∈  and is given by: 

( )



=−
=

=
−− rsuVCCI

suV
x

s
H

s
H
s

H

s ,,2 ,       
1 ,                                   

11

1

L
 (24) 

and the rs  x )1( −  matrix 1−sC  is defined by: 

















=

−

−
H
s

H

s

q

q
C

1

1

1 M . (25) 

 The SOPA as presented above necessitates the knowledge of some initial orthonormal 

eigenvectors forming the columns of matrix V. Our objective here is to develop a modified 

version of the SOPA that directly utilizes the orthogonal projection matrices of the DFT 

matrix on its eigenspaces so that one can save the preliminary step of having to perform a 

singular value decomposition of those matrices for the sake of finding initial orthonormal 

eigenvectors. One starts by taking the s th column of both sides of (10) to get: 

rsVqu ss ,,1 ,      ˆ L== . (26) 

Upon substituting (23) and exploiting the orthonormality of the columns of V, one gets: 

s
s

s
s

s z
z

Vx
x

u 11ˆ ==  (27) 

where 

rsVxz ss ,,1 ,     L== . (28) 

From (28), (24) and (3), it follows that: 

111 PuuVVz H ==  (29) 

and 

( )
( )( )[ ]

( )    ˆÛ-P

   VV

  

11-s

11
H

11

s
H
s

s
HH

s
H
s

s
H

s
H
ss

uU

uVCVC

uVCCIVz

−

−−

−−

=

−=

−=

      rs ,,2 , L=  (30) 

where 

rsVCU H
ss ,,2 ,      ˆ

11 L=≡ −− . (31) 

By virtue of (25) and (26), the above equation reduces to: 

( ) ( )11111 ˆˆˆ
−−− == sss uuqqVU LL . (32) 
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From (9) and (32), it follows that the target matrix Û  is simply rÛ . 

 Based on (27), (29), (30) and (32), the modified SOPA can be summarized by the 

following steps: 

1) For 1=s : 

a) 11 Puz =  

b) 1
1

1
1ˆ z
z

u =  

c) 1ˆˆ uU = . 

2) For rs ,,2 L= : 

a) ( )    ÛÛ-P H
ss uz =  

b) s
s

s z
z

u 1ˆ =  

c) Augment matrix Û  by the column vector sû . 

 

VI. SIMULATION RESULTS 

 

 Our goal is the assessment of the computational performance of the proposed version of 

the techniques based on the direct utilization of the projection matrices as contrasted to the 

previous version [7] requiring the singular value decomposition of those matrices for the sake 

of finding initial orthonormal eigenvectors of the DFT matrix F. Final Hermite-Gaussian-like 

eigenvectors of the matrix F of orders 210  ,192  ,128  ,64=N  have been computed using 

each of the three algorithms: OPA, GSA and SOPA. For each algorithm both the proposed 

and previous versions are used and the ratio between the computation times of the two 

versions is given in Table 1. Obviously the proposed version has the merit of having a 

reduced computation time. 

 

VII. CONCLUSION 

 

 A new version of each of the GSA, OPA and SOPA – for generating final Hermite 

Gaussian like eigenvectors of the DFT matrix after computing the orthogonal projection 

matrices on its eigenspaces – has been proposed. It is based on the direct utilization of those 

matrices rather than finding their singular value decomposition for the sake of generating 
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initial orthonormal eigenvectors. The proposed version achieves a definite significant 

reduction in the computation time. 

 

APPENDIX A 

(Proof of Lemma 1) 

 

 Let V and W be two rN  x  matrices each with orthonormal columns that can be regarded 

as orthonormal basis of an r-dimensional subspace of the N-dimensional complex space 

( )NrN <  C , i.e. 

( )rvvV L1= , (A-1) 

( )rwwW L1= . (A-2) 

Representing each column of W in terms of the columns of V, one gets: 

rnvw
r

m
mnmn ,,1  ,          

1

L== ∑
=

α . (A-3) 

The above r  vector equations can be compactly expressed as: 

VGW =  (A-4) 

where G  is a square matrix of order r . It follows immediately that: 

( )GVVGWW HHH = . (A-5) 

Consequently the orthonormality of the columns of each of the two matrices V  and W  

implies that: 

IGG H = . (A-6) 

Therefore G is unitary and (A-4) results in: 
HHHH VVVVGGWW == . (A-7) 

By virtue of (3), it follows that the orthogonal projection matrix P can also be expressed as: 
HWWP = . (A-8) 

  (Q.E.D.) 

 

APPENDIX B 

(Derivation of the orthogonal procrustes algorithm in the complex domain) 

 

Statement of the problem: Given arbitrary rxN    complex matrices U and V, find the square 

unitary matrix Q of order r that minimizes: 
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2

Fa VQUJ −=  (B-1) 

where 
F

L  is the Frobenius norm. 

Solution: By virtue of the definition of the Frobenius norm , one gets: 

( ) ( )[ ]
( ) ( ) ( ) ( ). 

2

VQUtrUVQtrVQVQtrUUtr

VQUVQUtrVQU
HHHHHH

H
F

−−+=

−−=−
 (B-2) 

Upon using the properties of the trace of a matrix ( )[ ]Ltr  and the unitarity of Q, one obtains: 

( ) ( ) ( )VVtrVVQQtrVQVQtr HHHHH == , (B-3) 

( ) ( )[ ] ( )[ ]** UVQtrUVQtrVQUtr HHHHH == . (B-4) 

Substituting the above two equations in (B-2), one gets: 

( ) ( ) ( )[ ]UVQtrRealVVtrUUtrVQU HHHH
F

22 −+=− . (B-5) 

Since matrix Q appears only in the last term of the above equation, it follows that minimizing 

aJ  defined by (B-1) is equivalent to maximizing bJ  defined by: 

( )[ ]CQtrRealJ H
b =  (B-6) 

where C is the square matrix of order r defined by: 

UVC H= . (B-7) 

The full size singular value decomposition of C is: 
HADBC =  (B-8) 

where A and B are unitary matrices of order r and D is the real diagonal matrix of the singular 

values: 

{ }rDiagD σσ ,,1 L=  (B-9) 

with 021 ≥≥≥≥ rσσσ L . 

It follows from (B-8) that: 

( ) ( ) ( ) ( )ZDtrADQBtrADBQtrCQtr HHHHH ===  (B-10) 

where Z is a square matrix of order r defined by: 

AQBZ HH= . (B-11) 

The unitarity of A, B and Q implies the unitarity of Z. From (B-6), (B-9) and (B-10) it follows 

that: 

( )∑
=

=
r

k
kkkb zRealJ

1

σ . (B-12) 
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 The unitarity of matrix Z implies that its k th column has a unity Euclidean norm and 

consequently 1≤kkz  with the equality holding iff the k th column is kce  where ke  is the k th 

unit vector and c is a complex scalar that satisfies 1=c . Since ( ) kkkk zzReal ≤  with the 

equality holding iff kkz  is real and positive, it follows that ( ) 1≤kkzReal  with the equality 

holding iff the k th column is ke . Consequently (B-12) results in 

 ∑
=

≤
r

k
kbJ

1

σ  (B-13) 

with the equality holding iff the columns of Z are rkek ,,1 , L= . Therefore the functional bJ  

is maximized when 

IZ = . (B-14) 

From (B-11) and (B-14), one obtains8: 
HH BAQ =  (B-15) 

and consequently the desired matrix Q is given by: 
HABQ = . (B-16) 

  (Q.E.D.) 

 

Table 1: The ratio between the computation times of the proposed and previous versions of 

the algorithms 

 

Algorithm N 

OPA GSA SOPA 

64 0.2619 0.25 0.4818 

128 0.1423 0.1609 0.6743 

192 0.1316 0.1394 0.6209 

210 0.1117 0.1449 0.5959 

 

                                                           
8 This step necessitates that the singular value decomposition used in (B-8) be the full size version rather than an 
economy size version. 
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