Impedance Matching Improvement for a Class of Wideband Antennas

Dr. Galal Nadim

Problem

- Linearly polarized antennas has a very serious limiting factor which is a narrow impedance bandwidth
- Introducing dual (or multiple) resonances in the impedance characteristic of the antenna is a possible suggested solution.
- The basic problem in this class of antennas is the high value of the retun loss within the antenna bandwidth
- In addition, in antennas with an even number of resonances, the impedance matching is worst at the design (operating) frequency
- The use of a usual (classic) quarter-wavelength transformer improves the impedance matching at the middle frequency, but unfortunately decreases the bandwidth

Proposed Solution

- A simple and efficient technique for improving impedance matching within the antenna's bandwidth is needed, these antennas have two resonances.
- A quarter-wavelength transformer to match the antenna to the feed line is also used.
- The proposed solution has been applied to a wideband aperture-coupled microstrip antenna that has a resonate slot.
- This resonate slot has the effect of approximately doubling the antenna's bandwidth, but decreases the impedance matching within the antenna's bandwidth

The return loss of an aperture-coupled microstrip antenna without matching (solid line) and with matching (dashed line)

The patch is responsible for the low frequency resonance, **f1**, and the aperture (the slot) is responsible for the high-frequency resonance, **f2**

The microstrip feed line and its equivalent circuit. Normal TL analysis follows, the quarter-wavelength transformer must be placed a distance l_b away from the load at point $z^*=0$, where the input impedance toward the load at $z^*=l_b$ is real. The distance l_b can be found from Equation $x(l_b)=0$

- The expression used to calculate the characteristic impedance of the quarter-wavelength transformer at $z^* = l_b$ and $f = f_0$ is $z_{0T} = \sqrt{z_0 R_{b0}}$, where R_{b0} is the impedance (real, $Z_{bn} = R_{b0}$, $X_{b0} = 0$) of the feed line at $z^* = l_b$ and $f = f_0$
- Accordingly, the impedance matching at f = fo improves. On the other hand, this leads to a matching degradation at both $f = f_1$ and $f = f_2$.
- We propose to use the following expression to calculate the transformer characteristic impedance:

$$Z_{0T} = \sqrt[4]{Z_0^2 R_{b0} \sqrt{R_{b1} R_{b2}}} \ ,$$

where R_{b1} and R_{b2} are the impedances of the leed line at $z^* = I_b$ at $f \approx f_1$ and $f \approx f_2$, respectively. One may see that in the case where $f_1 = f_2 = f_0$ and $R_{b1} = R_{b2} = R_{b0}$ both expressions are equivalent

The VSWR of the aperture-coupled microstrip antenna without matching (solid line) and with matching (dashed line).

A comparison of the aperture-coupled microstrip antenna's bandwidth with the proposed matching for simulated (dashed line) and measured (solid line) antennas.

A comparison of the values of the antenna's bandwidths with and without matching.

Type of Feed Line	VSWR < 2	<i>VSWR</i> < 1.35	$bw_{1.35}/bw_{2.0}$
Feed line without matching	12.4 %	3.6 %	29 %
Feed line with proposed transformer	10.5 %	8 %	76 %