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ABSTRACT 
Advanced fiber reinforced plastic (FRP) composites 
are increasingly being used in weight sensitive 
structural applications due to their high specific 
stiffness, high specific strength characteristics, and 
resistance in fatigue. Beam analysis plays an 
important role in mechanical and civil structural 
design such as railway, car suspension system, and 
structural foundation. Finding free vibration 
characteristics of laminated composite beams (LCBs) 
is one of the bases for designing and modeling of 
industrial products. Anisotropy of these composites 
allows the designer to tailor the material in order to 
achieve the desired performance requirements. Thus, 
it is of fundamental importance to develop tools that 
allow the designer to obtain optimized designs 
considering the structural requirements, functional 
characteristics and restrictions imposed by the 
production process. Within these requirements, this 
work considers the dynamic behavior of components 
of unidirectional symmetric LCBs. In this study, the 
flexural vibrations of LCBs are analyzed analytically 
using Bernoulli-Navier hypothesis and Timoshenko’s 
first-order shear beam theory. The commercial finite 
element program ANSYS 10.0 is used to perform a 
dynamic modelling to the laminated beams. Mindlin 
eight-node isoparametric layered shell elements 
(SHELL 99) are employed in the modeling for 
describing the bending vibrations of these laminated 
beams. The influence of fiber directions and stacking 
arrangements of laminates on out-of-plane and in-

plane vibrations were investigated. The results 
obtained by the commercial software ANSYS 10.0 
were compared to those from Euler-Bernoulli beam 
theory and Timoshenko’s first-order shear beam 
theory and are presented for the purpose of 
comparison.  
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1. INTRODUCTION 
Fiber-reinforced composite laminates are commonly 
used in the construction of aerospace, civil, marine, 
automotive and other high performance structures 
due to their high specific stiffness and strength, 
excellent fatigue resistance, longer durability as 
compared to metallic structures, and ability to be 
tailored for specific applications. Composite 
materials can be tailored to meet the particular 
requirements of stiffness and strength by altering lay-
up and fiber orientations. The ability to tailor a 
composite material to its job is one of the most 
significant advantages of a composite material over 
an ordinary material. So the research and 
development of composite materials in the design of 
mechanical, aerospace, and civil structures has grown 
tremendously in the past few decades as studied by 
(Jun et al., 2008) and (Subramanian, P., 2006). 



 

It is essential to know the vibration characteristics of 
these structures, which may be subjected to dynamic 
loads in complex environmental conditions. If the 
frequency of the loads variation matches one of the 
resonance frequencies of the structure, large 
translation/torsion deflections and internal stresses 
can occur, which may lead to failure of structure 
components. In order to achieve the right 
combination of material properties and service 
performance, the dynamic behavior is one of the 
main points to be considered. To avoid the typical 
problems caused by vibrations, it is important to 
determine: a) the natural frequencies of the structure 
and b) the modal shapes to reinforce the most 
flexible regions or to locate the right positions where 
weight should be reduced or damping should be 
increased. With respect to these dynamic aspects, the 
composite materials represent an excellent possibility 
to design components with requirements of dynamic 
behavior as mentioned by (Tita et al., 2003). A 
variety of structural components made of composite 
materials such as turbine blades, vehicle axles, 
aircraft wing, and helicopter blade can be 
approximated as laminated composite beams, which 
requires a deeper understanding of the vibration 
characteristics of the composite beams as mentioned 
by (Kapuria and Alam, 2006).  
 
Due to the composite beams widely used in a variety 
of structures as well as their substantial benefits and 
great promise for future application, the dynamic 
behaviors of the laminated composite beams have 
received widespread attention and have been 
investigated extensively by many researchers. A 
number of researchers have been developed 
numerous solution methods to analysis the dynamic 
behaviors of the laminated composite beams (Khdeir 
and Reddy, 1994), (Krishnaswamy et al., 1992), and 
(Matsunaga, H., 2001).  
 
The classical laminated beam theory, developed by 
Euler-Bernoulli, is used only for thin beams because 
this theory has neglected both transverse shear and 
normal strains and it is inaccurate for a moderately 
deep laminated beam with relatively soft transverse 
shear modulus and for highly anisotropic composites. 
The inaccuracy is due to neglecting the transverse 
shear and normal strains in the laminate. In order to 
take into account the effects of low ratio of 
transverse shear modulus to the in-plane modulus, 
the first order shear deformation theory of 
Timoshenko has been developed (Matsunaga, H., 
2001). However, since in the theory the transverse 

shear strain is assumed to be constant in the depth 
direction, a shear correction factor has to be 
incorporated to adjust the transverse shear stiffness 
for studying the dynamic problems of beams 
(Matsunaga, H., 2001). The accuracy of solutions of 
the first order shear deformation theory will be 
strongly dependent on predicting better estimates for 
the shear correction factor (Matsunaga, H., 2001).  

Theoretical analyses of flexural vibration of layered 
beams have been studied by several researchers. 
Miller and Adams (1975) have been studied the 
vibration characteristics of orthotropic clamped-free 
beams without including the effect of the shear 
deformation. Bhimaraddi and Chandrashekhara 
(1991) considered the modeling of laminated beams 
by a systematic reduction of the constitutive relations 
of the three-dimensional anisotropic body and 
concluded that these relations should be adopted 
while modeling especially angle-ply laminated 
composite beams. Matsunaga, H. (2001) analyzed 
natural frequencies and buckling stresses of general 
cross-ply laminated composite beams by taking into 
account the complete effects of transverse shear and 
normal stresses and rotary inertia. Abramovich, H. 
(1992) gave exact solutions, based on the 
Timoshenko type equations, for symmetrically 
laminated composite beams with 10 different 
boundary conditions. The rotary inertia and shear 
deformation effects were investigated for simply 
supported beams with h/b=1 for the axial and out-of 
plane bending vibration cases (Abramovich, H., 
1992). Zapfe and Lesieutre (1997) presented an 
iterative smeared model for the vibration analysis of 
laminated beams. Jun, L. et al. (2008) investigated 
the free vibration and buckling behaviors of axially 
loaded laminated composite beams having arbitrary 
lay-up using the dynamic stiffness method. Qiao 
Pizhong and Zou Guiping (2002) presented an 
analytical study for dynamic behavior of pultruded 
fiber-reinforced plastic (FRP) composite cantilever I-
beams based on a Vlasov-type linear hypothesis. 

A significant amount of research has been conducted 
on the vibration analysis of laminated beams with 
focusing on classical lamination theory, Timoshenko 
first order beam theory, and higher order beam 
theory. Abramovich and Livshits (1994) studied the 
free vibration of non symmetric Cross-ply laminated 
Composite Beams based on Timoshenko type 
equations. The effect of coupled longitudinal and 
transversal displacements, shear deformation and 
rotary inertia are included in the analysis 
(Abramovich and Livshits, 1994). Eisenberger, M. et 



 

 

al. (1995) used the dynamic stiffness analysis and the 
first-order shear deformation theory to study the free 
vibration of laminated beams. Vinson and 
Sierakowski (2004) obtained the exact solution of a 
simply supported composite beam based on the 
classical theory, which neglects the effects of the 
rotary inertia and shearing deformation. Khdeir and 
Reddy (1994) have been studied free vibrations of 
cross-ply laminated beams with arbitrary boundary 
conditions. Krishnaswamy, S. et al. (1992) gave 
analytical solutions for the free vibration problem of 
laminated composite beams. Also, Dynamic 
equations governing the free vibration of laminated 
composite beams are developed using Hamilton's 
principle; the effects of transverse shear and rotary 
inertia are included in the energy formulation 
(Krishnaswamy, S. et al., 1992). Song and Waas 
(1997) have been studied both buckling and free 
vibration analyses of laminated composite beams. 
They Song and Waas (1997) also investigated the 
shear deformation effects. Yildirim, V. (2000) used 
the stiffness method for the solution of the purely in-
plane free vibration problem of symmetric cross-ply 
laminated beams with the rotary inertia, axial and 
transverse shear deformation effects included by the 
first-order shear deformation theory. Banerjee, J. 
(1998) has investigated the free vibration of axially 
laminated composite Timoshenko beams using 
dynamic stiffness matrix method. Yõldõrõm and 
Kõral (2000) studied the out-of-plane free vibration 
problem of symmetric cross-ply laminated beams 
using the transfer matrix method. Also, the effects of 
the rotary inertia and shear deformation are 
investigated under various boundary conditions. 
Kant, T. et al. (1998) developed an analytical 
solution to the dynamic analysis of the laminated 
composite beams using a higher order refined theory. 
This model also fails to satisfy the traction- free 
surface conditions at the top and bottom surfaces of 
the beam but has included the effect of transverse 
normal strain. Rao et al. (2001) proposed a higher-
order mixed theory for determining the natural 
frequencies of a diversity of laminated Simply-
Supported beams. Also they Rao et al. (2001) 
developed an analytical method for evaluating the 
natural frequencies of laminated composite and 
sandwich beams using higher-order mixed theory and 
analyzed various beams of thin and thick sections.   
 
Many authors have given finite element solutions to 
analysis the dynamic of laminated beams. Bassiouni 
et al. (1999) presented a finite element model to 
investigate the natural frequencies and mode shapes 

of the laminated composite beams. The model 
required all lamina had the same lateral displacement 
at a typical cross-section, but allowed each lamina to 
rotate a different amount from the other. The 
transverse shear deformation was included. Tahani, 
M. (2007) developed a new layerwise beam theory 
for generally laminated composite beam and 
compared the analytical solutions for static bending 
and free vibration with the three-dimensional 
elasticity solution of cross-ply laminates in 
cylindrical bending and with three-dimensional finite 
element analysis for angle-ply laminates. 
Chandrashekhara and Bangera (1992) investigated 
the free vibration of angle-ply composite beams by a 
higher-order shear deformation theory using the 
shear flexible FEM. Maiti and Sinha (1994) 
developed a finite element method (FEM) to analyze 
the vibration behavior of laminated composite beams 
and investigated the effects of various parameters. 
Murthy et al. (2005) derived a refined 2-node beam 
element based on higher order shear deformation 
theory for axial-flexural-shear coupled deformation 
in asymmetrically stacked laminated composite 
beams. Ramtekkar et al. (2002) developed a six-node 
plane-stress mixed finite element model by using 
Hamilton’s principle. Natural frequencies of cross-
ply laminated beams were obtained and various 
mode shapes were presented. Teh and Huang (1979) 
presented two finite element models based on a first-
order theory for the free vibration analysis of fixed-
free beams of general orthotropy. Nabi and Ganesan 
(1994) examined bi-axial bending, axial and torsional 
vibrations using the finite element method and the 
first-order shear deformation theory. Harmonic 
response of tapered composite beams was examined 
using the finite element analysis based on the higher 
order shear deformation theory by (Rao and Ganesan, 
1997). Suresh and Malhotra (1998) studied the 
vibration and damping behaviour of layered 
composite box beams using the finite element 
method and the finite element formulation is based 
on first order shear deformation theory which takes 
shear deformation of the beam into consideration. 
Aydogdu, M. (2005) studied the vibration of cross-
ply laminated beams subjected to different sets of 
boundary conditions. The analysis is based on a 
three-degree-of-freedomshear deformable beam 
theory. Jun et al. (2008) presented a dynamic finite 
element method for free vibration analysis of 
generally laminated composite beams on the basis of 
first order shear deformation theory. Subramanian, P. 
(2006) has investigated free vibration analysis of 
LCBs by using two higher order displacement based 



 

on shear deformation theories and finite elements. 
Both theories assume a quintic and quartic variation 
of in-plane and transverse displacements in the 
thickness coordinates of the beam respectively. 
Results indicate application of these theories and 
finite element model results in natural frequencies 
with higher accuracy. 

Most of the previous works are focused on the study 
of dynamic behavior of laminated composite beams, 
especially the out of plane bending vibration 
(flexural vibration). In the present study, the effects 
of fiber angle and laminate stacking sequence on the 
out-of-plane and in-plane bending frequencies for the 
laminated beams are investigated separately. In this 
study the laminated beams is modeled and analyzed 
by the FEM. The finite element software package 
ANSYS is used to perform the numerical analyses 
using an eight-node layered shell element. The rotary 
inertia and shear deformation effects are taken into 
account. Also, in the present work, an analytical 
study for dynamic behavior of laminated beams is 
presented; where the out-of-plane and in-plane 
bending vibrations of LCBs are analyzed analytically 
using Bernoulli-Nervier hypothesis and Timoshenko 
beam analysis. 

2. MATERIALS AND MECHANICAL 
PROPERTIES  

A generally laminated composite beam, as shown in 
Figure 1, is considered. The laminated beam is made 
of many plies of orthotropic materials, and the 
principal material axes of a ply may be oriented at an 
arbitrary angle with respect to the x-axis. In the right-
handed Cartesian coordinate system, the x-axis is 
coincident with the beam axis and its origin is on the 
mid-plane of the beam. The length, breadth and 
thickness of the beam are represented by L, b and h, 
respectively. 

2.1. Materials characterization 
Glass fiber (E-Glass) is used as reinforcement in the 
form of unidirectional fibers with epoxy resin as matrix 
for the laminated composite beams. The mechanical 
properties for fiber and matrix are presented in Table 1 
(Danial et al., 2003). For all finite element and 
analytical models, their associate material elastic 
properties were calculated analytically using the simple 
rule-of-mixtures as given in (Vinson and Sierakowski, 
2004). More accurate values can be further obtained 
with some mechanical testing.  

The constituent laminae were considered to be linear 
elastic and generally orthotropic therefore the concept 
of engineering constants was used to describe the 
laminae elastically. A certain set of elastic properties is 
required as input parameters for the finite element code 
and for the analytical model. The set of properties 
required as an input parameter at a material level were 
E1, E2, E3, G12, G13, G23, v12, v13 and v23  as shown in 
Table 1; Where 1, 2, and 3 are principal material 
directions. 

Table 1 Material elastic properties 
 

Material Properties Value 
Fiber longitudinal modulus in ℓ 
direction Efℓ (GPa) 74 

Fiber transverse modulus in t 
direction Eft (GPa) 74 

Fiber shear modulus Gfℓt (Gpa) 30 
Density ρf (kg/m3) 2600 

Glass fiber 

Fiber Poisson ratio νfℓt 0.25 
Elastic modulus E (Gpa) 4.5 
Shear modulus G (Gpa) 1.6 
Density ρm (kg/m3) 1200 Epoxy resin 

Poisson ratio ν 0.4 
Lamina longitudinal modulus E1 
(GPa) 46.2 

Lamina transverse modulus E2 
(GPa) 14.70 

Lamina transverse modulus E3 
(GPa) 14.70 

Density of composite ρc (kg/m3) 2040 
Lamina shear modulus in plane 
1–2 G12 (GPa) 5.35 

Lamina shear modulus in plane 
1–3 G13 (GPa) 5.35 

Lamina shear modulus in plane 
2–3 G23 (GPa) 5.22 

Major Poisson ratio in plane  
1–2 υ12 

0.31 

Laminae 
(orthotropic) 

Major Poisson ratio in plane  
1–3 υ13  

0.31 

 Major Poisson ratio in plane  
2–3 υ23 

0.41 

 Fiber volume fraction vf 60% 

 
Figure 1 Geometry of a laminated composite beam 



 

 

3. DYNAMIC MODELING BY THE FINITE 
ELEMENT METHOD, ANSYS 

3.1. Element type 
The beams were discretized using (type shell99) 
finite element Figure 2, available in the commercial 
package ANSYS10.0. This element has 8 nodes and 
is constituted by layers that are designated by 
numbers (LN - Layer Number), increasing from the 
bottom to the top of the laminate; the last number 
quantifies the existent total number of layers in the 
laminate (NL - Total Number of Layers).The element 
has six degrees of freedom at each node: translations 
in the nodal x, y, and z directions and rotations about 
the nodal x, y, and z-axes. The choice of shell99 
element type is based on layered applications of a 
structural shell model, and the type of results that 
need to be calculated. 

xIJ = Element x-axis if ESYS is not supplied. 

x = Element x-axis if ESYS is supplied. 

3.2. Analysis type 
Modal analysis will be carried out with ANSYS 10.0 
finite element software. A modal analysis typically is 
used to determine the vibration characteristics 
(natural frequencies and mode shapes) of a structure 
or machine component in the design stage. It can also 
serve as a starting point for another, more detailed, 
dynamic analysis, such as a transient dynamic 
analysis, a harmonic response analysis, or a spectrum 
analysis. 

4. DYNAMIC MODELING BY 
ANALYTICAL METHODS 

In the present paper, the out-of-plane and in-plane 
bending free vibration of symmetric laminated beams 

are studied by the Bernoulli-Euler and Timoshenko’s 
first-order shear beam theories. 

4.1. Bernoulli-Navier hypothesis 
The oldest and the well-known beam theory is the 
Euler–Bernoulli beam theory (or classical beam 
theory—CBT) which assumed that straight lines 
perpendicular to the mid-plane before bending 
remain straight and perpendicular to the mid-plane 
after bending. As a result of this assumption, 
transverse shear strain is neglected. Although this 
theory is useful for slender beams, it does not give 
accurate solutions for thick beams. 

The beams to be analyzed are orthotropic and its 
cross section has two axes of symmetry y and z. The 
mass is also symmetrical with respect to these axes, 
and, accordingly, the center of mass coincides with 
the origin of the y-z coordinate system. A beam with 
two cross-sectional planes of symmetry may undergo 
flexural vibration in either of the two planes of 
symmetry and torsional vibration (La'szlo' and 
George, 2003). Flexural vibrations are focused in this 
study.  

The natural frequencies of orthotropic beams are: 

Vibration in x-z plane is given by,  

4
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Vibration in x-y plane is given by 
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Where:  

yyEI is the bending stiffness about y axis; in N.m2, 

zzEI  is  the bending stiffness about z axis; in N.m2,  

L is the length of the beam, ρ is the mass per unit 
length, and µ4

Bi for fixed-free beam are given in 
Table 2 .The subscript i = 1,2,.. indicates the first, 
second, and so forth, modes. 
For symmetric orthotropic laminated beam;  

The bending stiffness about y axis yyEI can be 
obtained by this relation 

yyEI = 
11d
b  in (N.m2)                  (3)  

 
 

 
Figure 2  Shell99 geometry  



 

The bending stiffness about z axis zzEI can be 
obtained by this relation  

zzEI =
12

1 3

11

b
a

 in (N.m2)      (4) 

Where: 

d11: element 1–1 of the laminate bending compliance 
matrix (1/N .m) 

a11: element 1–1 of the laminate extensional 
compliance matrix (m/N) 

Table 2 The constants μBi and μGi for fixed free end 
support 

 

μB μG 

μB1 = 1.875 
μB2 = 4.694 

μBi ≈ (i-0.5) 
μGi ≈ (i-0.5)π 

4.2. Timoshenko’s first-order shear 
beam theory 

The theory, based on the assumption that cross 
sections remain plane but not perpendicular to the 
axis is frequently called first-order shear theory. A 
beam, in which shear deformation is taken into 
account, is called a Timoshenko beam. 

Timoshenko beam theory was developed to account 
for shear deformation with the assumption that the 
displacement field through the beam thickness does 
not restrict plane sections to remain perpendicular to 
the deformed centroidal line. However, the theory 
still imposes planar normals to the centroidal line to 
remain planar after deformation. The constant shear 
strain distribution throughout the beam thickness 
violates the shear traction free condition on the top 
and bottom surfaces of the beam. Shear correction 
factors are then employed to correct the discrepancy 
between results derived from exact solutions and 
solutions obtained via shear deformation theory. 

The natural frequencies of the orthotropic beams 
with shear deformation are: 

Vibration in x-z plane is given by, ωyi 
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Vibration in x-y plane is given by, ωZi 
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Where ωB is the natural frequency of a beam 
undergoing bending deformation only, ωS is the 
natural frequency of a beam undergoing shear 
deformation only, Szz is the shear stiffness in x-z 
plane; in N, Syy is the shear stiffness in x-y plane; in 
N, and µSi = µGi for fixed-free beam is given in Table 
2. 

The shear stiffness in Z direction (Transverse shear 
stiffness) is given by, Szz 

∫
−

=
2/

2/
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5 h

h
ZZ dzQbS       (9) 

ϑϑ 2
23

2
1355 sincos GGQ +=               (10) 

Where 55Q is the transformed shear stiffness and ϑ  
is the angle between the fiber direction and 
longitudinal axis of the beam. 

The shear stiffness in y direction (Lateral shear 
stiffness) is given by, Syy  

662.1 a
bS yy =                  (11) 

Where a66 is element 6–6 of the laminate extensional 
compliance matrix (m/N)   

5. NUMERICAL RESULTS AND 
DISCUSSION 

5.1. Influence of fiber angle on out of 
plane bending frequencies 

The influences of fiber orientation are investigated 
by modeling laminated beams of different lay-up 
construction of fixed – free boundary condition. The 
evaluation of the dynamic behavior was performed 
on beams with different lay-up with the same length, 
width, and thickness. The analysis was performed to 
8-layered symmetrically laminated beam with length 



 

 

400 mm, width 40 mm and thickness 3.2 mm and the 
lamination scheme of beams is ranging from θ= 00 to 
900, in increments of 50. 

The following results are obtained after modeling the 
composite beams by FE ANSYS, Euler–Bernoulli 
theory, and Timoshenko beam theory. The variations 
of the lowest six out-of-plane bending frequencies of 
the laminated beams with respect to fiber angle are 
presented in Figures 3 and 4. From the results, it is 
noticed that out-of plane bending frequencies 
decreases, in general, as the fiber angle increases; in 

the case of the effect of fiber orientation, it is found 
that the maximum out-of-plane bending vibration 
frequencies occur at θ = 00. 

5.2. Influence of fiber angle on in plane 
bending frequencies  

The influences of fiber orientation on natural 
frequencies of plane x-y vibration modes are 
investigated for the laminated beams previously 
mentioned, and the results are plotted in Figure 5.
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Figure 4 Variation of the out-of-plane bending frequencies of 1st, 2nd, and 3rd mode with respect to fiber 

angle for fixed-free boundary condition 
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Figure 5 Variation of the out-of-plane bending frequencies of 4th, 5th, and 6th mode with respect to fiber angle 
for fixed-free boundary condition. 



  

 

The variation of the lowest three in-plane bending 
frequencies of the laminated beams with respect to 
fiber angle is presented in Figure 5. From the results, 
it was found that the in-plane bending frequencies 
decrease gradually with increasing fiber angle up to 
700 then it increases by small values or nearly 
constant until it reaches to 900.  

5.3. Influence of laminate stacking 
sequences on out-of-plane and in- 
plane natural frequencies 

The influences of laminate stacking sequences on 
natural frequencies of out of plane bending and in 
plane bending modes are investigated by FE ANSYS, 
Euler–Bernoulli theory, and Timoshenko beam 
theory; by modeling laminated beams of different 

stacking sequences configuration of fixed – free 
boundary condition.  
The dynamic modeling of the laminated beams is 
performed to 3 set of symmetrical laminates with a 
total of 8 layers and dimension of 400 mm length, 40 
mm width and total thickness 3.2 mm. Assume each 
layer has the same thickness. The lamination 
schemes of the laminated beams to be modeled are as 
follow: (0/90)2S, (45/-45)2S, and (45/-45/0/90)S. 
The numerical results obtained are tabulated in 
Tables 3 and 4. 

The mode shapes associated with the frequencies of 
(0/90)2S laminated beam are illustrated in Figures 6 
and 7 They are deduced by FEM ANSYS for the first 
six out of plane bending frequencies and for the first 
three in plane bending frequencies.  

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90

Fiber orientation (θ)

Na
tu

ra
l f

re
qu

en
cy

 (H
z)

FEM---1st Mode
Euler-Bernoull---1st Mode
Timoshenko---1st Mode
FEM---2nd  Mode
Euler-Bernoull---2nd Mode
Timoshenko---2nd Mode
FEM---3rd Mode
Euler-Bernoulli---3rd Mode
Timoshenko---3rd Mode

 

Figure 6 Variation of the lowest three in-plane bending frequencies with respect to fiber angle for fixed-free 
boundary condition 

Table 3 The first six out of plane bending natural frequencies (Hz) for different stacking sequence laminates  
 

Lamination 

schemes 
Theory Modes 

  1 2 3 4 5 6 

 
(0/90)2S 

 
FEM ANSYS 13.71 85.85 240.14 470.00 775.67 1156.00 

 Euler–Bernoulli  13.70 85.80 240.30 470.70 778.1 1162.40 
 Timoshenko  13.70 85.70 240.00 469.50 774.7 1155.00 

(45/-45)2S FEM ANSYS 9.38 58.78 165.20 325.90 542.94 817.42 
 Euler–Bernoulli  9.15 57.32 160.54 314.50 520.00 776.70 
 Timoshenko  9.15 57.30 160.40 314.15 518.85 774.36 



 

 

(45/-45/0/90)s FEM ANSYS 10.27 64.30 180.45 355.20 590.20 886.24 
 Euler–Bernoulli  10.06 63.07 176.70 346.00 572.00 854.60 
 Timoshenko  10.06 63.05 176.53 345.60 570.70 851.56 

 

Table 4 The first three in plane bending natural frequencies (Hz) for different stacking sequence laminates  
 

Lamination 
schemes Theory Modes 

  
1 2 3 

 
(0/90)2S 

 
FEM ANSYS 154.4 893.0 2256.0 

 Euler–Bernoulli  156.5 980.8 2747.0 
 Timoshenko  154.3 924.6 2361.3 

(45/-45)2S FEM ANSYS 114.9 701.4 1890.0 
 Euler–Bernoulli  115.0 720.5 2018.0 
 Timoshenko  114.6 711.0 1945.0 

(45/-45/0/90)s FEM ANSYS 139.5 836.2 2202.0 
 Euler–Bernoulli  140.2 879.0 2462.0 
 Timoshenko  139.3 854.7 2283.5 
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Figure 7 The first six out of plane bending vibration modes of fixed-free beam  
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Figure 8 The first three in plane bending vibration modes of fixed-free beam 

The results presented in Figure 8 are obtained by FE 
package after modeling the three laminate 
configurations. It represents the variations of the out-
of-plane bending frequencies with respect to mode 
number of the 3 laminate schemes for fixed free 
boundary conditions. From the results, it is already 
possible to verify the influence of the stacking 
sequence of the laminates on out-plane frequencies; 
the laminate with fibers at +/-45o has in general 
smaller natural frequencies than the laminate with +/-
45/0/90o layers and than the laminate with fibers at 0o 
and 90o.  
The laminate with fibers at 0o and 90o has a larger 
natural frequency for out of plane bending (Flexural 
Modes) than the laminate of +/-45/0/90o and than the 
(+/-45o) laminate. Because 50% of the fibers are 
oriented at 00 direction for 0/900 laminate, and thus 
appropriate for bending (Flexural Modes). This can 
be explained by the fact that the fibers oriented at 0° 
are more appropriate to flexural loads. 

The variation of the in-plane bending frequencies of 
the 3 laminate schemes with respect to mode number 
for fixed free boundary conditions is presented in 
Figure 9. From the results it is already possible to 
verify the influence of the stacking sequence of the 
laminates on in-plane bending frequencies (Lateral 

modes). The laminate with fibers at 0/900 has in 
general larger natural frequencies than the laminate 
with +/-45/0/900 layers and than the laminate with 
fibers at +/-450. This is because 50% of the fibers are 
oriented at 00 for 0/900 laminate. 
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Figure 9 Influence of laminate stacking sequence on 

natural frequencies of out of plane vibration 
modes for fixed free boundary condition 
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Figure 10 Influence of laminate stacking 

sequence on natural frequencies of in-plane 
vibration modes for fixed free boundary 
condition. 

6. CONCLUSION 
From the results, it is clear that changes in fiber 
angle as well as laminate stacking sequences yield to 
different dynamic behavior of the component, that is, 
different natural frequencies for the same geometry, 
mass and boundary conditions. This gives the 
designer one additional degree of freedom to design 
the laminate - the possibility to change fiber 
orientations in order to get more (or less) structure 
stiffness. This possibility makes once more these 
materials very attractive since it makes possible to 
obtain the desired natural frequencies without 
increasing mass or changing geometry. In practical 
applications, it means that if a natural frequency 
excites the structure, the designer can change the 
material properties by changing the laminate 
stacking sequence, instead of re-design the complete 
structure. 

Also from the results, it has found that the out-of 
plane and in-plane bending frequencies decrease, in 
general, as the fiber angle increases and  the 
maximum out-of-plane and in-plane bending 
vibration frequencies occur at θ = 00.  

The theoretical results from Finite Element Analysis, 
ANSYS showed in general a good agreement with 
the numerical results values obtained by Bernoulli 
hypothesis and Timoshenko beam theory. This 
agreement is clearly shown for the out-of-plane 
lower modes than the higher modes. 

The finite element software package ANSYS is an 
efficient vibration prediction tool, because of its 
ability to model the laminated composite beam and 
reveal fundamental modal frequencies and modal 
shapes. (By using of shell element SHELL99), it is 
useful for simpleness (saving of computing time). 
Finally this study is useful for the designer in order 
to select the fiber orientation angle to shift the 
natural frequencies as desired or to control the 
vibration level. 
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