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ABSTRACT 

 
 The recent emergence of the discrete fractional Fourier transform has spurred research 
activity aiming at generating Hermite-Gaussian-like (HGL) orthonormal eigenvectors of the 
discrete Fourier transform (DFT) matrix F. By exploiting the unitarity of matrix F – resulting 
in the orthogonality of its eigenspaces pertaining to the distinct eigenvalues – the problem 
decouples into finding orthonormal eigenvectors for each eigenspace separately. A Direct 
Sequential Evaluation by constrained Optimization Algorithm (DSEOA) is contributed for 
the generation of optimal orthonormal eigenvectors for each eigenspace separately. This 
technique is direct in the sense that it does not require the generation of initial orthonormal 
eigenvectors as a prerequisite for obtaining the final optimal ones. The resulting eigenvectors 
are optimal in the sense of being as close as possible to samples of the Hermite-Gaussian 
functions. The technique is found to be numerically robust because total pivoting is allowed 
in performing the QR matrix decomposition step. The DSEOA is proved to be theoretically 
equivalent to each of the Gram-Schmidt algorithm (GSA) and the sequential orthogonal 
procrustes algorithm (SOPA). However the three techniques are algorithmically quite 
distinct. An extensive comparative simulation study shows that the DSEOA is by far the most 
numerically robust technique among all sequential algorithms thus paying off for its 
relatively long computation time. 
 
Indexing Terms: DFT matrix, discrete fractional Fourier transform (DFRFT), Gram-Schmidt 
algorithm (GSA), QR matrix decomposition, orthonormal Hermite-Gaussian-like (HGL) 
eigenvectors. 
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1. Introduction 

 

 The revived research activity in the computation of orthonormal eigenvectors of the 

discrete Fourier transform (DFT) matrix F is due to the emergence of the discrete fractional 

Fourier transform (DFRFT) [1]. The desired index additivity property of the DFRFT 

necessitates the orthonormality of the eigenvectors of matrix F. Although McClellan and 

Parks developed an analytical method for generating a complete set of eigenvectors [2], this 

set cannot be taken as a basis for defining the DFRFT due to its lack of orthogonality. The 

eigenvectors of the real symmetric nearly tridiagonal matrix S – discovered by Dickinson and 

Steiglitz [3] – which commutes with matrix F are guaranteed to be orthogonal and to be 

eigenvectors of F whenever the eigenvalues of S are simple. However in the degenerate case 

when S has an eigenvalue of multiplicity two, the two corresponding eigenvectors – 

evaluated by applying a general eigenanalysis software routine – will generally neither be 

orthogonal nor be eigenvectors of F. Candan, Kutay and Ozaktas [4] have the credit of 

arriving at a similarity transformation reducing matrix S to a block diagonal form and of 

developing an algorithm for generating an orthogonal set of eigenvectors common to both the 

S and F matrices irrespective of the multiplicities of the eigenvalues of S. Their work has 

been put on a more rigorous mathematical foundation by Hanna, Seif and Ahmed [5]. 

Moreover Candan et al. proved that the eigenvectors of S are solutions of the difference 

equation resulting from discretizing the differential equation satisfied by the Hermite-

Gaussian functions. Consequently a DFRFT defined in terms of those Hermite-Gaussian-like 

(HGL) eigenvectors will approximate its continuous-time counterpart; namely the FRactional 

Fourier Transform (FRFT) since the Hermite-Gaussian functions are the eigenfunctions of 

both the classical Fourier transform and the FRFT [6]. 
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 Pursuing it further, Pei, Yeh and Tseng [7] looked at the eigenvectors of S as only initial 

eigenvectors of F and looked for final superior ones in the sense of better approximating 

vectors formed by rearranged samples of the Hermite-Gaussian functions and proved that the 

latter vectors are approximate eigenvectors of F. They used two techniques based on different 

rationales for generating the final eigenvectors for each eigenspace individually. In the first 

technique termed the Gram-Schmidt algorithm (GSA), the approximate eigenvectors 

pertaining to one eigenvalue are projected on the corresponding eigenspace spanned by the 

initial exact eigenvectors pertaining to that eigenvalue and are next orthonormalized by the 

Gram-Schmidt procedure. In the second technique the final eigenvectors pertaining to one 

eigenspace are batch evaluated using the orthogonal procrustes algorithm (OPA) where the 

Frobenius norm of the difference between the matrices of the final exact eigenvectors and the 

approximate ones is minimized. In a completely independent endeavor, Pei, Tseng and Yeh 

[8] generated a complete set of N orthonormal HGL eigenvectors of matrix F of order N by 

solving a series of N constrained optimization problems using the Lagrange multipliers 

technique without exploiting the orthogonality of the eigenspaces of matrix F resulting from 

its unitarity. Recently Pei, Hsue and Ding [9] arrived at another nearly tridiagonal matrix - 

which commutes with matrix F - whose eigenvectors are more HGL than those of matrix S 

used in [3,4,5,7]. 

 Along a different line of development, Hanna, Seif and Ahmed [10] generated initial 

orthonormal eigenvectors of F by the singular value decomposition of its orthogonal 

projection matrices on its eigenspaces. They contributed the sequential orthogonal procrustes 

algorithm (SOPA) as a third approach – in addition to the GSA and OPA – for generating 

final superior eigenvectors given initial ones. Moreover they proved that the final 

eigenvectors – evaluated using the GSA, OPA or SOPA – are invariant under the change of 

the initial ones. Recently they showed that the GSA, OPA and SOPA can be applied for 
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generating the final superior eigenvectors – without having to first generate initial ones – by 

the direct utilization of the orthogonal projection matrices on the eigenspaces of matrix F 

[11]. More recently Hanna contributed the Direct Batch Evaluation by constrained 

Optimization Algorithm (DBEOA) for the batch generation of optimal orthonormal 

eigenvectors of matrix F by solving one constrained optimization problem for each 

eigenspace [12]. Although the DBEOA and OPA are theoretically equivalent, they are 

algorithmically quite distinct. The DBEOA has been shown to be faster than the OPA. A 

survey of the state of the art in the development of the discrete fractional Fourier transform 

using various approaches including the eigendecomposition of the DFT matrix F can be 

found in [13]. 

 In contrast to [12] which deals with the batch generation of optimal eigenvectors, the 

present paper concentrates on the sequential generation. More specifically a numerically 

stable and computationally efficient Direct Sequential Evaluation by constrained 

Optimization Algorithm (DSEOA) will be developed where the orthogonality of the 

eigenspaces of matrix F is exploited in reducing the computational load and where total 

pivoting in performing the QR matrix decomposition is employed in order to improve the 

accuracy of the computation. It will be rigorously proved that the three sequential algorithms 

– namely the DSEOA, GSA and SOPA – are theoretically equivalent despite being 

algorithmically quite distinct. This implies that in the absence of the round off error – which 

is unavoidable – the three algorithms should produce identical results. Simulation results will 

show that for a large order of matrix F, the DSEOA is by far more numerically robust than 

the GSA and SOPA. 

 The main theoretical contributions of the present paper – as compared to [8] – are the 

exploitation of the orthogonality of the eigenspaces of matrix F in generating the 

eigenvectors pertaining to distinct eigenvalues separately, the adoption of complex formalism 
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instead of splitting the constraints into their real and imaginary parts with the purpose of 

reducing the number of constraints, and the selection of the total pivoting option in 

performing the QR matrix decomposition with a definite improvement in the accuracy of the 

computation. Another contribution is the proof of the theoretical equivalence of the DSEOA 

and GSA. First it should be emphasized that the derivation leading to the DSEOA is 

completely different than that leading to the GSA proposed in [7]. Second the algorithmic 

details of the DSEOA and GSA are quite distinct; consequently the performance of both 

algorithms for large values of the order N of the DFT matrix is definitely different as will be 

testified by the simulation results. It is obvious that the DSEOA is not at all an interpretation 

of the GSA. It should be pointed out that the GSA advocated in [7] and the constrained 

eigendecomposition of the DFT matrix by Lagrange multiplier method promulgated in [8] 

have existed as isolated islands; the fact that they are theoretically equivalent is being brought 

to light for the first time here. 

 The main practical finding of the present work is that the contributed DSEOA is the most 

numerically accurate sequential technique for generating HGL orthonormal eigenvectors of 

the DFT matrix F. Since the DFRFT depends heavily on having those target eigenvectors, the 

contributed technique helps advance the state of the art in the development of the DFRFT. 

Actually the quest of the signal processing and optics communities for having excellent HGL 

eigenvectors of matrix F is not expected to end. 

 After laying out the mathematical framework in section 2, the DSEOA is developed in 

section 3. The theoretical equivalence of the DSEOA and GSA is proved in section 4. An 

extensive comparative simulation study is carried out in section 5. 

 

2. A Mathematical Framework 
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 For the sake of generality the DSEOA reported next section - as well as the GSA and 

SOPA - apply to any unitary matrix F of order N rather than being confined to the DFT 

matrix. Let the distinct eigenvalues of  be F k  with algebraic multiplicities , . 

Let  be the eigenspace corresponding to 

kr Kk ,,1

kE k , i.e. the subspace of the N-dimensional 

complex space  spanned by the eigenvectors of  pertaining to NC F k . The unitarity of F  

implies the orthogonality of the eigenspaces , kE K,k ,1  [14]. Consequently the problem 

of generating orthonormal eigenvectors of  can be decoupled into F K  separate problems 

where in the kth problem one seeks desired orthonormal basis for . The unitarity of  also 

implies that the geometric multiplicity of 

kE F

k  (which is the number of linearly independent 

eigenvectors pertaining to it) is equal to its algebraic multiplicity and consequently the 

dimension of  is  [15]. Let  be a matrix whose columns are approximate 

eigenvectors of  (having a desired feature) corresponding to the exact eigenvalue 

kE

F

kr kU

k  and 

let kU


 be a matrix whose columns are the desired exact orthonormal eigenvectors of F  

pertaining to k . 

 

3. A Direct Sequential Evaluation by Constrained Optimization Algorithm 

 

 For the kth eigenspace of matrix F exact orthonormal eigenvectors su, 


, 

su

krs ,,1   

krs ,,1 

 ill be 

sequentially evaluated such that they will be as close as possible - in the sense of Euclidian 

norm - to given approximate eigenvectors (having a desired feature) , . More 

specifically in the sth stage 

w

su


 will be derived by minimizing 

2

2ss uu
sJ  (1) 
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subject to the constraints2 

  0uIF s  
k , (2) 

1,1 ,         0  sm 


s
H
muu , (3) 

1
2 su


. (4) 

Constraint (2) ensures that su


 is an eigenvector of  pertaining to F k . Constraint (3) 

satisfies the requirement that su


 be orthogonal to the previously evaluated eigenvectors. 

Constraint (4) is a normalization condition imposed such that su


 has a unit Euclidian norm. 

The set of linear constraints (2) and (3) can be compactly expressed as 

0uC s1s 


 (5) 

where 

















 







H
1s

H
1

1s

u

u

IF

C





k

. (6) 

Since matrix  is of dimension 1sC    NsN  1 , the homogeneous system of linear 

equations (5) has redundant constraints that can be eliminated by first applying the QR matrix 

decomposition technique resulting in 









 

 0

R
ECQ 1s

1s1s
H

1s . (7) 

In the above equation  is a unitary matrix,  is a permutation matrix1sQ  1sE 
3 and  is a 1sR 

Ns 1  matrix where 

 1sC   ranks 1  . (8) 

                                                           

1sE  kE

2 The superscripts T , * , H respectively denote the transpose, the complex conjugate and the Hermitian transpose 
(i.e. the complex conjugate transpose). 
3 The symbol  for the permutation matrix should not be confused with the symbol  for the eigenspace. 
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More specifically  has the partitioned form 1sR 

 ba1s RRR    (9) 

where  is a nonsingular upper triangular matrix of order aR 1s . Since the dimension of the 

eigenspace  (defined as the nullity of kE  IF k ) is , one concludes that kr

  kk rNrank  IF  . (10) 

Since the  previously evaluated eigenvectors  1s  1,,1 ,  sm 


mu  are orthonormal, the 

last  rows of matrix  are linearly independent. Consequently the rank of  

should satisfy 

 1s  1sC  1sC 

   11  srN ks  . (11) 

Heuristically the above inequality will hold as equality in almost all cases. The strict 

inequality will occur in the much unexpected case when one of the last  rows of  

happens to be linearly dependent on the first N rows. Since 

 1s  1sC 

krs  , one concludes that 

 11  Ns  . Substituting from (7) in (5) while exploiting the unitarity of  and , 

one gets 

1sQ 1sE 

0uE
0

R
Q s

H
1s

1s
1s 














. (12) 

Therefore the set of constraints (5) involving redundancy reduces to the set of linearly 

independent constraints 

0uB s1s 


 (13) 

where  

H
1s1s1s ERB   . (14) 

 The constrained minimization problem defined by the objective (1) and the set of linearly 

independent linear constraints (13) and the single quadratic constraint (4) will be solved by 

the Lagrange multipliers technique. Augmenting the real criterion (1) by both the complex 
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vector constraint (13) and the real scalar constraint (4) using respectively a complex vector g 

and a real scalar   of Lagrange multipliers, one gets 

 1 s
H
s uu 

H
1s

H
ss1s

H
s

H
ss

H
ss

H
ss

H
s gBuuBguuuuuuuu

 
J  . (15) 

The necessary condition for the minimization of 

(16) 

where in evaluating the gradient vector w.r.t. 

J  is 

0
u

 J
s
*  

*
su


 one should view su


 and *
su


 as two different 

vectors, i.e. one should treat su


 as a constan ector when opera g wit *  [16]. From 

(15), one gets 

J uu ssu

t v tin h 
su

s
s

ugBH
1s


*     . (17) 

Substituting the above equation in (16), one obtains 

   gBuu H
1

ˆ . (18) 1sss  1

In order to evaluate the complex vector of Lagrange multipliers g, one applies (13) to get 

   0gBBuB H 
1

. 1s1ss1s 1
(19) 

The linear independence of the rows of matrix  implies the nonsingularity of . 

(20) 

Substituting (20) in (1

1sB 
H

1s1s BB 

Consequently the unique solution of (19) is 

  s1s
H

1s1s uBBBg 




1

. 

8), one gets 

  s1ss uAu 


1
ˆ  (21) 

1

where 

. (22-a) 

Upon using (14), the above eq

  1s
H

1s1s
H

1s1s BBBBI 



 
1

A 

uation takes the form 

 9 



  H
1s1s

H
1s1s

H
1s1s1s ERRRREIA 



 
1

. (22-b) 

It can be proved that matrix s bo

(23) 

This implie is a positi

1sA   i th Hermitian and idempotent, i.e., 

1s
H

1s AA         and      1
2

1sA  . sA 

s that 1sA   ve semidefinite matrix. In order to evaluate the real scalar 

Lagrange multiplier  , one applies (4). Equations (4), (21) and (23) lead to 

  s1s
H
s uAu  21  . (24) 

From (21) and (24), one gets 

s1s

s1s
H
s

s uAu 
1

ˆ . 
uAu 

(25) 

Upon exploiting (23), the above result can be expressed as 

s
s

s zu
1

ˆ   
z

(26) 

where 

. (27) 

 In order to

s1s uA sz   

 select the right sign in (25) (or (27)) one substitutes (25) in (1) to get: 

12

12
  

  

2
2

2


2









































s1s
H
ss

s1s
s1s

H
s

1s

s1s
H
s

H
s

s

s1s
H
s

1s

uAuu

uA
uAu

A
uAu

Iu

u
uAu

A
I





sJ

 (28) 

 The above form implies that  is minimized by selecting the negative sign in (28) which 

(29) 

sJ

corresponds to the positive sign in (25). Therefore (27) should be replaced by: 

s1ss uAz  . 
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 As an aside it will be shown in the Appendix that the above result can be reached by first 

setting aside the quadratic constraint (4), minimizing criterion (1) subject only to the linear 

constraints (13) and finally normalizing the solution vector - which will be proved to be (29) - 

in order to get (26). 

 Based on (26), (29), (22-b), (7) and (6), the Direct Sequential Evaluation by constrained 

Optimization Algorithm (DSEOA) for computing exact orthonormal eigenvectors of matrix 

 - pertaining to the eigenvalueF 4 k  - that are the closest to given approximate eigenvectors 

(having a desired feature) can be summarized in the following steps: 

1. Form matrix C  as 

      IFC k . (30) 

2. For kr : s ,,1

a) Perform the QR decomposition of C  with total pivoting: 

       . (31) 









0

R
CEQ H

     Remark: Since matrix Q will not be needed, the economy size version of the 

MATLAB command  qr is used in performing this step. 

b) Compute sz  as 

      . (32)   s
HHH

s uRERRERIz  
1





 



c) Compute su


 according to (26). 

d) Augment matrix C  by the row vector H
su


. 

 

4. Theoretical Equivalence of the DSEOA and GSA 

 

                                                           

k
4 The eigenvalue   should not be confused with the Lagrange multiplier   introduced in (15). 
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 One objective of this section is to show that the DSEOA is theoretically equivalent to the 

Gram-Schmidt Algorithm (GSA) - contributed by Pei et al. [7] - despite being algorithmically 

quite distinct. This will be done by first showing that the DSEOA is theoretically equivalent 

to the Sequential Orthogonal Procrustes Algorithm (SOPA) contributed by Hanna et al. [10]. 

Another objective is to compare the DSEOA as presented in this paper with its counterpart 

contributed by Pei et al. [8]. 

 

Lemma: 

The two algorithms DSEOA and GSA are theoretically equivalent. 

 

Proof: In the SOPA, the target eigenvector su


 is expressed as: 

ks rs ,,1 ,          
  Vqus  (33) 

where  is an  matrix whose columns form orthonormal basis of , i.e. those 

columns are initial orthonormal eigenvectors of matrix  pertaining to 

V krN  kE

F k . The vector  is 

evaluated by minimizing criterion (1) subject to the constraints: 

sq

1,,1 ,         0  sm s
H
mqq , (34) 

1
2 sq . (35) 

The first set of constraints of the DSEOA expressed by (2) ensures that su


 is an eigenvector 

of  corresponding to F k . In the SOPA the same constraint is satisfied by expressing su


 as a 

linear combination of the vectors of an orthonormal basis of the eigenspace  as given by 

(33). The orthonormality of the columns of V  leads to: 

kE

s
H
ms

HH
ms

H
m qqVqVquu 

. (36) 

Consequently the constraints (3) and (4) of the DSEOA are respectively equivalent to the 

constraints (34) and (35) of the SOPA. Therefore both the DSEOA and SOPA have 
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equivalent sets of constraints and since they have the same objective function (1), they are 

theoretically equivalent despite being algorithmically different. 

 Since it was proved in [10] that the SOPA and GSA are theoretically equivalent, the proof 

of the lemma is established. 

  (Q.E.D.) 

 It should be pointed out that the GSA and DSEOA are philosophically quite distinct 

 being theoretically equivalent. In the GSA presented in [7], the app

. Although both methods sequentially evaluate the desired 

ogonal by virtue of the unitarity of 

despite roximate 

eigenvectors corresponding to one eigenspace (without being elements of it) are orthogonally 

projected on that space to get exact nonorthogonal eigenvectors which are next 

orthonormalized by applying the Gram-Schmidt procedure. In the DSEOA, the exact optimal 

orthonormal HGL eigenvectors pertaining to an eigenspace are directly and sequentially 

generated by solving a series of constrained minimization problems where in each problem 

the objective function is the squared Euclidean norm of the difference between a target exact 

eigenvector and an approximate one and where the constraints are the satisfaction of the 

definition of an exact eigenvector, orthogonality to previously generated ones and 

normalization of the target one. 

 Now one turns to the comparison between the method of last section and its counterpart 

contributed by Pei et al. in [8]

eigenvectors of F  using the same minimization criterion and the same set of constraints, it 

should be noticed that the present method is more computationally efficient and numerically 

accurate than the previous one for the following reasons: 

1) In the DSEOA, orthonormal eigenvectors are computed for each eigenspace 

separately since the eigenspaces are mutually orth

matrix F . In the work of Pei et al. [8], all eigenvectors of F  are computed 
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sequentially which results in a larger number of redundant constraints at each stage 

since the orthonormality of the eigenspaces is not exploited. 

2) In the work of Pei et al. [8], the set of constraints (2) was split into two sets of 

pivoting is allowed in performing the QR matrix 

5. Simulation Results 

The general DSEOA of section 3 will be applied to the DFT matrix for which the number 

constraints by taking the real and imaginary parts and expressing them as separate 

constraints. This led to a larger number of redundant constraints at each stage of the 

sequential evaluation technique compared to the present DSEOA where the complex 

constraints are kept intact. It should be pointed out that although the vector constraints 

(2) and consequently (13) are complex, the cost function (15) has been formulated in 

such a way as to be real-valued. 

3) In the present algorithm total 

decomposition in (7), i.e. column interchange (as expressed by the permutation matrix 

1sE  ) is allowed in order to enhance the accuracy and numerical stability of the 

computation. No such provision was incorporated in the work of Pei et al. [8]. 

 

 

 

of eigenspaces is K = 4 and the columns of the matrices 4,,1 , kkU  defined in section 2 

are samples of the Hermite-Gaussian functions [7]. Here the problem of the numerical 

determination of the rank   defined by (8) will first be discussed before proceeding to a 

comparative simulation study of various sequential techniques for generating HGL 

eigenvectors of the DFT matrix. 

(A) Numerical Rank Determination  

 An examination of (7) – (9) shows that  
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     asss RrankRrankCrank   111 . (37) 

 The challenging problem is that of the numerical evaluation of 1s . In order to facilitate 

the discussion three different symbols will be used. First the rank determined by the built-in 

MATLAB function rank(C) will be denoted by matlab . Second the rank determined based on 

the results obtained by applying the QR matrix decomposition technique will be denoted by 

QR . Finally based on the discussion preceding and following (11), the heuristic value of the 

rank will be denoted by heuristic  and is given by: 

   1 srN kheuristic . (38) 

MATLAB uses a method based on the singular value decomposition and the rank matlab  is 

evaluated as the number of singular values exceeding the tolerance given by: 

eps  *  aluesingular vlargest   *  ))max(size(C    tolerance   (39) 

where 1    ))max(size(C  sN  (as can be seen from (6)) and eps  is the built-in MATLAB 

constant called the floating-point relative accuracy and defined as the distance from 1.0 to the 

next larger double-precision number5 ,i.e.   01652^2 22.2  eeps . Although the 

MATLAB function rank uses the most reliable method for rank determination, it is also the 

most time consuming. 

 Needlessly to say, having the QR decomposition of matrix  in (7) one can 

immediately determine the rank as the number of rows of matrix . The main numerical 

problem is that after performing the QR decomposition, one only gets the R.H.S. of (7) and 

one has to identify matrix  and the zero matrix (whose elements are practically negligibly 

nonzero due to the effect of the accumulated round-off error). In case of performing the QR 

decomposition with the Total Pivoting (TP) option the absolute values of the diagonal 

1sC

1sR

1sR

                                                           

016 5 Here the MATLAB notation is used where e  stands for 16^10  . 
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elements of the resulting R.H.S. matrix in (7) will appear in descending absolute values. 

Consequently the number of those diagonal elements whose absolute values pass a certain 

threshold will give the numerical rank QR . The threshold will be taken as 

    epsDRRsNthreshold   *  1  *  1     mtol   *  

 mtol  

 (40a) 

where  is the absolute value of the first diagonal element of the R.H.S. of (7). This 

choice of the threshold is based on the same sound reasoning adopted in (39). Moreover the 

arbitrary multiplying factor  appearing in (40a) has been introduced in order to allow the 

user more flexibility in coping with the challenging numerical rank determination problem. 

As a rule of thumb it has been found after tedious experimentation that the value 

 suffices in most cases. 

 1DRR

0061e

mtol

mtol 

 In case of performing the QR decomposition with the Non Total Pivoting (NTP) option, 

matrix  in (7) will be replaced by the identity matrix and the diagonal elements of the 

resulting R.H.S. matrix will not appear in descending absolute values. Consequently the 

appropriate threshold to be adopted in this case is: 

1sE 

   epsDRRsNthreshold   *  *  max  *  1      (40b) 

where  is the maximum of the absolute values of the diagonal elements of the 

R.H.S. matrix in (7). 

DRRmax 

 Now one turns to the actual simulation results obtained using matlab  and QR : 

(i) One applies the DSEOA with both the total pivoting (TP) and non total pivoting 

(NTP) options taking matlab  as the adopted rank. Expectedly the computation 

time6 in the TP case is longer than its counterpart in the NTP case as can be 

observed in Table 1. Surprisingly it has been found that in both cases 

matlabheuristic    for values of the order N of the DFT matrix F as large as 512. 

                                                           
6 The computation was performed on a PC with Intel processor Core 2 Duo having speed 2.41 GHz with 1.00 
GB of RAM. 

 16 



The conclusion is that one can take heuristic  as the reliable value of the rank for 

values of N as large as 512. 

(ii) One repeats (i) employing only QR . Guided by the above finding regarding the 

reliability of heuristic , one experiments with the selection of the multiplying factor 

mtol  appearing in (40a) and (40b) and affecting the value of the threshold and 

consequently the value of QR . For each value of the order N of matrix F one 

counts the sum of the number of stages n  of the sequential technique DSEOA in 

all eigenspaces where heuristicQR   . More specifically, let gn  be the number of 

cases  where heuristicQR    and sn  be the number of cases  where heuristicQR    

and let sg nn . Table 2 provides all the results for values of N up to 512 and 

values of mtol  ranging from 1 to 0131e . The most striking observation is the 

definite merit of the TP option over the NTP option. Adopting the TP option and 

concentrating on the choice of the value of mtol , one should avoid values as 

small as 1 and as large as 0131e . It seems that 0061e

n 

mtol   is a reasonable 

choice. It should be emphasized that having 0gn  is not acceptable at all 

because it means that the adopted value of the rank QR  is larger than the reliable 

value and consequently in identifying matrix 1sR  in (7) some almost zero rows 

will be included at the bottom resulting in having an almost singular matrix HRR  

to be inverted in (32). 

(iii) Based on the experience gained above, the DSEOA with the total pivoting option 

is applied and QR  is evaluated using 0061emtol  . The computation time of the 

algorithm is given in Table 3. Quite interestingly it has been found that 

QRheuristic    for values of N as large as N = 2048. 
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(B) A Comparative Simulation Study 

 Hermite-Gaussian-like eigenvectors of the DFT matrix are generated using the following 

five sequential techniques: 

1) The DSEOA delineated in section 3 and applied with the total pivoting option while 

taking QR  as the adopted rank identified using the multiplying factor 0061e . mtol 

2) The Gram-Schmidt algorithm proposed by Pei et al. [7] where the initial basis of the 

eigenspaces are obtained by the eigendecomposition of the nearly tridiagonal matrix S 

in the manner elaborated upon by Candan et al. [4]. (This technique will be referred to 

as GSA1). 

3) The Gram-Schmidt algorithm of Pei et al. [7] implemented by the direct utilization of 

the orthogonal projection matrices of matrix F on its eigenspaces as proposed by 

Hanna et al. [11]. (This technique will be referred to as GSA2). 

4) The sequential orthogonal procrustes algorithm proposed by Hanna et al. [10] where 

the initial basis are generated as in (2) above. (This technique will be referred to as 

SOPA1). 

5) The sequential orthogonal procrustes algorithm implemented by the direct utilization 

of the projection matrices without having to first generate initial basis [11]. (This 

technique will be referred to as SOPA2). 

 The computation time in seconds of the eigenvectors using the five sequential techniques 

is given in Table 4 for various values of the order7 N. 

 Since the three methods - DSEOA, GSA and SOPA - were shown in section 4 to be 

theoretically equivalent, the five sequential techniques mentioned above are supposed to give 

identical results in the absence of the round off error which is unavoidable. The norm of the 

                                                           
7 The computation is performed on a PC where some system related tasks are unavoidably concurrently taking 
place. This interprets the unexpected decrease in the computation time of the GSA1 for N = 64 and 128 
compared to its value for N = 32. It should be mentioned that the discrepancy between the computation time of 
the DSEOA given in the second column of Table 4 and that given in Table 3 is attributed to the same reason. 
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approximation error vectors   ,N,m 1 , ˆ  mmm uue  between the exact and approximate 

eigenvectors – which is the square root of the minimization criterion  defined by (1) – is 

plotted for the five sequential techniques. It has been found that there is no noticeable 

difference among them for values of the order N up to 128. For larger values of N, one begins 

to notice some differences which grow with N. Fig. 1 shows the plots of the DSEOA and 

GSA1 and Fig. 2 shows the plots of the DSEOA and SOPA1 for N = 512. The discrepancy 

between the two plots in each figure is pronounced only for values of the index m near N. 

mJ

 One will next explore the issue of deciding which technique is more numerically stable. 

Let matrix  be the unitary modal matrix of F. The columns of  are obtained from the 

columns of the four matrices  mentioned near the end of section 2. The 

orthonormality error matrix is defined by: 

Û Û

4,,1 , ˆ kkU

IUUC  ˆˆ H . (41) 

 In the absence of the computation round off error – which will never be the case – the 

above matrix should be identically zero. In order to compare the numerical accuracy of the 

five sequential techniques under investigation in this comparative study, two measures of the 

above matrix – namely the maximum element in absolute value and the Frobenius norm – are 

computed and given respectively in Tables 5 and 6. A rapid examination of those two tables 

reveals that the orthonormality error is negligible for the first five techniques for values of N 

up to 128. The main conclusion is that the DSEOA is the most numerically robust technique 

among the five sequential techniques since its orthonormality error is negligible for values of 

N as large as 1024. This is the distinct advantage that one gains in the DSEOA case in return 

to the long computation time noticeable in Table 4. A second conclusion is that for the GSA1, 

GSA2, SOPA1 and SOPA2 the orthonormality error is felt starting at N = 256. 

 Only for the sake of extending the comparison, the orthogonal procrustes algorithm 

(OPA) is included in this comparative simulation study although it is based on a completely 
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different rationale since it is a batch – rather than a sequential – technique. More specifically 

the simulation study also covers the following two batch techniques: 

1) The orthogonal procrustes algorithm [7] where the initial basis of the eigenspaces are 

obtained by the eigendecomposition of the nearly tridiagonal matrix S in the manner 

elaborated upon in [4]. (This technique will be referred to as OPA1). 

2) The orthogonal procrustes algorithm [7] implemented by the direct utilization of the 

orthogonal projection matrices of matrix F on its eigenspaces as proposed in [11]. 

(This technique will be referred to as OPA2). 

 The results pertaining to OPA1 and OPA2 are included as the last two columns of Tables 

4-6 and the plot pertaining to OPA1 is superimposed on Figs 1-2. By examining the 

approximation error depicted in those two figures one finds that the sequential methods have 

the advantage that the threshold value of the index m where the error starts to be noticeable is 

larger than its counterpart for the OPA. On the other hand the OPA has the merit that its 

maximum approximation error is smaller than its counterpart in the sequential methods. 

 

6. Conclusion 

 

 A technique is proposed for the direct sequential evaluation of optimal HGL orthonormal 

eigenvectors of the DFT matrix F by constrained optimization. The orthonormality of the 

eigenspaces pertaining to distinct eigenvalues is exploited in decoupling the problem such 

that the orthonormal eigenvectors of each eigenspace are separately evaluated thus reducing 

the number of constraints. Total pivoting is employed in performing the QR matrix 

decomposition – needed for singling out the linearly independent constraints – with the 

objective of enhancing the numerical stability of the computation. The contributed DSEOA 

has been proved to be theoretically equivalent to both the GSA and SOPA although the three 
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techniques are algorithmically quite distinct. The extensive comparative simulation study has 

shown that the DSEOA is the most numerically robust method among all sequential 

techniques thus justifying its relatively long computation time. 
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Appendix A: (Minimizing (1) subject to (13) setting aside (4)) 
 

 Since the quadratic constraint (4) will be set aside for a while, the solution of the 

constrained minimization problem defined by the objective (1) and the independent 

constraints (13) will be denoted by  rather than sx su


. 

Statement of the problem: Determine the vector  which minimizes the criterion: sx

2

2ss xu sJ  (A-1) 

subject to the set of linearly independent constraints: 

0xB s1s  . (A-2) 

Solution: Augmenting criterion (A-1) by the constraints (A-2) using a vector g  of Lagrange 

multipliers, one gets 

gBxxBguxxuxxuu H
1s

H
ss1s

H
s

H
ss

H
ss

H
ss

H
s  cJ . (A-3) 

The necessary conditions for the minimization of  are cJ

0
sx

 cJ*  (A-4) 

where in evaluating the gradient vector w.r.t.  one should view  and  as two different 

vectors, i.e. one should treat  as a constant vector when operating with  [16]. From (A-

3), one gets 

*
sx sx *

sx

*
sx

sx

gBux H
1sssxs
 cJ* . (A-5) 

Substituting from the above equation in (A-4), one obtains 

gBux H
1sss  . (A-6) 

In order to evaluate the Lagrange multipliers vector g , one applies (A-2) to get 

0gBBuB H
1s1ss1s   . (A-7) 
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The linear independence of the rows of matrix  implies the nonsingularity of . 

Consequently the unique solution of (A-7) is 

1sB 
H

1s1s BB 

  s1s
H

1s1s uBBBg 




1

. (A-8) 

Substituting (A-8) in (A-6), one gets 

   s1s
H

1s1s
H

1ss uBBBBIx  
1





 . (A-9) 

Upon comparing the above equation with (29) and (22-a), one concludes that 

ss zx  . (A-10) 

Therefore upon applying the normalization condition (26) - which is equivalent to constraint 

(4) - one gets the same solution obtained in section 3. 
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Fig. 1: The norm of the error vectors   ,N,m 1 , ˆ  mmm uue  between the exact and 

approximate eigenvectors using the DSEOA, GSA1 and OPA1 for N =512. 
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Fig. 2: The norm of the error vectors   ,N,m 1 , ˆ  mmm uue  between the exact and 

approximate eigenvectors using the DSEOA, SOPA1 and OPA1 for N =512. 
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Table 1: The computation time (in seconds) of the DSEOA with both the total pivoting (TP) 
and non total pivoting (NTP) options where matlab  is adopted. 

 
N DSEOA-TP DSEOA-NTP
32 0.15625 0.09375 
64 0.6875 0.578125 
128 7.9375 7.609375 
256 118.07813 116.82813 
512 1958.8594 1848.6875 
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Table 2: The number of stages  of the DSEOA where n heuristicQR    for both the total 

pivoting (TP) and non total pivoting (NTP) options versus the order N of matrix F and the 
multiplying factor . (A blank cell means a zero value). mtol

 
The case of total pivoting (TP) The case of non total pivoting (NTP)mtol  N 

n  
gn  sn  n  

gn  sn  

32 2 2  32 32  

64 25 25  64 64  

128 102 102  128 128  

256 223 223  256 256  

1 

512 510 510  512 512  

32    5 5  

64    26 26  

128    113 113  

256    256 256  

0021e  

512    512 512  

32    2 2  

64    25 25  

128    119 119  

256    255 255  

0041e  

512    512 512  

32       

64    30 30  

128    115 114 1 

256    250 220 30 

0061e  

512    508 418 90 
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32       

64    36 12 24 

128    118 74 44 

256    255 157 98 

0081e  

512    511 300 211 

32       

64    35  35 

128    116 41 75 

256    251 84 167 

0101e  

512    508 124 384 

32    15  15 

64    50  50 

128    117  117 

256    248 25 223 

0121e  

512    512 1 511 

32    23  23 

64    58  58 

128    124  124 

256 256  256 256  256 

0131e  

512 512  512 512  512 
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Table 3: The computation time (in seconds) of the DSEOA with the total pivoting (TP) 
option where QR  is adopted. 

 
N DSEOA-TP 
32 0.125 
64 0.515625 
128 5.765625 
256 81.546875 
512 1296.6563 
1024 20010.953 
2048 322546.94 
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Table 4: The computation time (in seconds) of the eigenvectors. 
 

N DSEOA GSA1 GSA2 SOPA1 SOPA2 OPA1 OPA2 
32 0.062500 0.062500 0.000000 0.015625 0.015625 0.000000 0.015625 
64 0.406250 0.015625 0.000000 0.015625 0.015625 0.015625 0.015625 

128 5.656250 0.031250 0.015625 0.062500 0.062500 0.046875 0.015625 
256 81.968750 0.234375 0.093750 0.500000 0.796875 0.203125 0.109375 
512 1297.078100 2.734375 0.687500 6.781250 9.125000 2.546875 0.812500 
1024 20227.859000 24.750000 6.406250 90.703125 129.640630 21.781250 6.046875 

 
 

Table 5: The maximum orthonormality error. 
 

N DSEOA GSA1 GSA2 SOPA1 SOPA2 OPA1 OPA2 
32 1.75601E-15 8.07E-16 1.52E-15 2E-15 1.8E-15 2.77556E-15 2.22E-15 
64 2.87701E-15 3.69E-15 1.68E-14 4.1E-15 2.01E-14 3.9968E-15 9.77E-15 
128 3.04292E-14 2.96E-12 6.15E-12 3.3E-12 1.39E-11 3.9968E-15 8.08E-13 
256 1.00472E-11 0.907323 0.948369 0.487144 0.764895 3.33067E-15 1.03E-08 
512 6.2374E-07 0.999726 0.99967 0.999694 0.999433 6.66134E-15 0.066633 
1024 1.71655E-06 0.996934 0.997635 0.996096 0.996 6.21725E-15 0.095487 

 
 

Table 6: The Frobenius norm of the orthonormality error matrix. 
 

N DSEOA GSA1 GSA2 SOPA1 SOPA2 OPA1 OPA2 
32 1.60369E-14 3.92E-15 1.18E-14 5.88E-15 1.33E-14 8.25223E-15 1.35E-14 
64 4.65985E-14 1.48E-14 8.77E-14 1.66E-14 1.11E-13 1.63735E-14 8.73E-14 
128 2.57574E-13 4.89E-12 1.67E-11 5.12E-12 2.77E-11 2.8328E-14 1.21E-11 
256 7.32889E-11 1.289249 1.44861 0.780886 1.180467 5.19285E-14 1.63E-07 
512 4.90945E-06 18.81388 18.64308 19.15301 19.11718 9.74772E-14 2.840916 
1024 2.81776E-05 50.98267 50.21463 48.26681 48.15584 1.98156E-13 6.325207 
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