The Differential Difference Operational
Floating Amplifier: A New Block for Analog
Signal Processing in MOS Technology

Soliman A. Mahmoud and Ahmed M. Soliman

Abstract—A wide-range differential difference operational floating
amplifier (DDOFA) is introduced. The DDOFA is a new block useful
for continuous-time analog signal processing. The DDOFA is realized
using a differential difference transconductor with large signal handling
capability and a single input differential output current op-amp. The
DDOFA forces two differential voltages to the same value and provides
two balanced output currents. This brief presents a CMOS realization
of the DDOFA, and some of its applications are provided, such as
a voltage-to-current converter, MOS-grounded and floating resistors,
a MOS multiplier/divider cell, a differential integrator, a continuous-
time MOS-C filter, a MOS-C current oscillator, and a MOS-C floating
inductor. Simulation results for the DDOFA circuit and its applications
are given.

Index Terms—Operational floating amplifier.

I. INTRODUCTION

Before discussing the differential difference operational floating
amplifier, a short refresher of the differential difference amplifier
(DDA) is given. As discussed in [1]–[5], the DDA, whose symbol is
shown in Fig. 1, is an extension of the concept of the op-amp, the
main difference being that, instead of two single-ended inputs as in
the case of op-amps, it has two differential input ports \((V_2 - V_1)\) and
\((V_4 - V_3)\). The output voltage of the DDA can be written as

\[
V_o = A_u [(V_2 - V_1) - (V_4 - V_3)]
\]

where \(A_u\) is the open-loop transconductance gain of the DDA. When a negative
feedback is introduced to \(V_1\) and/or \(V_4\), the basic equation that characterizes the operation of the DDA is obtained as

\[
V_2 - V_1 = V_4 - V_3 \quad \text{with} \quad A_u \rightarrow \infty.
\]

The DDOFA, whose symbol is shown in Fig. 2, also has two
differential input ports, but in addition, it provides two balanced
output currents through the two output terminals instead of one output
voltage as in the cases of op-amps and DDA’s. Therefore, the output
currents of the DDOFA can be written as

\[
I_+ = -I_- = G_u [(V_2 - V_1) - (V_4 - V_3)]
\]

where \(G_u\) is the open-loop transconductance gain of the DDOFA. If a negative
feedback is introduced, from \(I_+\) (\(I_-\)) to \(V_1\) and/or \(V_4\) (\(V_2\)
and/or \(V_3\)) which is indicated from (3), the following expression is
obtained:

\[
V_2 - V_1 = V_4 - V_3 \quad \text{with} \quad G_u \rightarrow \infty.
\]

II. THE PROPOSED DIFFERENTIAL DIFFERENCE TRANSDUCTOR

In this section, a realization of a linear NMOS differential difference
transconductor whose transconductance can be tuned by a bias
voltage \(V_{BS}\) is introduced. The differential difference transconductor
represents the input stage of the DDOFA shown in Fig. 3 and is formed from transistors \(M1–M16\). All transistors are assumed to be
operating in the saturation region with their sources connected to
their substrates.

The drain current of the NMOS transistor in that region is given by

\[
I_D = \frac{K}{2}(V_{GS} - V_T)^2
\]

where \(K = \mu_u C_{ox} (W/L)\), \((W/L)\) is the transistor aspect ratio, \(\mu_u\)
is the electron mobility, \(C_{ox}\) is the gate oxide capacitance per unit
area, and \(V_T\) is the threshold voltage (assumed to be the same for
every NMOS transistor).

Transistors \(M1–M8\) are assumed to be matched transistors, and
their currents are linearized by using the four biasing circuits formed
from transistors \(M9–M16\). First, expressions for the biasing voltages
\(V_u, V_b, V_c,\) and \(V_d\) in terms of \(V_1, V_2, V_3,\) and \(V_4\), respectively, are obtained.
Consider the biasing circuit formed from M_{11} and M_{15}; the current flowing through M_{11} is given by

$$I_{11} = \frac{K_{11}}{2} (V_1 - V_a - V_T)^2$$ \hspace{1cm} (6)$$

and the same current flowing through M_{15} is given by

$$I_{15} = \frac{K_{15}}{2} (V_H + V_{DD} + V_T)^2$$ \hspace{1cm} (7)$$

Consider the biasing circuit formed from M_{11} and M_{15}; the current flowing through M_{11} is given by

$$I_{11} = \frac{K_{11}}{2} (V_1 - V_a - V_T)^2$$ \hspace{1cm} (6)$$

and the same current flowing through M_{15} is given by

$$I_{15} = \frac{K_{15}}{2} (V_H + V_{DD} + V_T)^2$$ \hspace{1cm} (7)$$
where \(V_{B} \) is the control voltage, taking, \(K_{1} \equiv K_{15} \); hence, from (6) and (7), the biasing voltage \(V_{a} \) is given by

\[
V_{a} = V_{1} - V_{B} - V_{DD}.
\]

Similar expressions for the biasing voltages \(V_{i} \), \(V_{c} \), and \(V_{d} \) can be obtained and are given, respectively, by

\[
V_{i} = V_{2} - V_{B} - V_{DD} \\
V_{c} = V_{3} - V_{B} - V_{DD} \\
V_{d} = V_{4} - V_{B} - V_{DD}.
\]

Therefore, the currents flowing through \(M1-M8 \) can be obtained. The current of the transistors \(M1-M4 \) can be written as

\[
I_{i} = \frac{K}{2} (V_{i} - V_{DD} - V_{T})^{2}, \quad \text{for } i = 1, 2, 3, 4.
\]

The currents of the transistors \(M5-M8 \) are given, respectively, by

\[
I_{5} = \frac{K}{2} (V_{2} - V_{B} - V_{T})^{2} \\
I_{6} = \frac{K}{2} (V_{1} - V_{B} - V_{T})^{2} \\
I_{7} = \frac{K}{2} (V_{3} - V_{B} - V_{T})^{2} \\
I_{8} = \frac{K}{2} (V_{4} - V_{B} - V_{T})^{2}.
\]

The transconductance output current \(I_{d} \) is given by

\[
I_{d} = I_{a} - I_{b}.
\]

From Fig. 3

\[
I_{d} = (I_{2} + I_{3} + I_{6} + I_{8}) - (I_{1} + I_{4} + I_{5} + I_{7}).
\]

By substituting from (12)–(16) in (18), the transconductor output current \(I_{d} \) is given as

\[
I_{d} = G_{m} [(V_{2} - V_{1}) - (V_{4} - V_{3})]
\]

where

\[
G_{m} = \frac{K(V_{B} + V_{DD})}{2}.
\]

Therefore, the NMOS circuit formed from transistors \(M1-M16 \) and shown in Fig. 3 operates as a differential difference transconductor with a programmable transconductance \(G_{m} \).

Fig. 4 shows the PSPICE simulation results of the differential current of the differential difference transconductor indicating the wide linearity range when \(V_{1} \) and \(V_{2} \) are shorted and \(V_{3} \) and \(V_{4} \) are also shorted and scanned from \(-3 \) to \(3 \) V with \(V_{B} = -3.7 \) V and the supply voltage \(V_{DD} = 5 \) V. The THD of the 1 V peak-to-peak 100 kHz sinusoidal input signal of the differential difference transconductor is 0.498%.

III. THE OVERALL DDOFA CIRCUIT

The overall DDOFA circuit using the differential difference transconductor is shown in Fig. 3. The two output currents of the transconductor \(I_{a} \) and \(I_{b} \) are subtracted and converted into a voltage with a high gain by using the complementary folded cascode amplifier formed from transistors \(M17-M24 \) [6]. The amplified voltage is then converted into two balanced currents \(I_{a+} \) and \(I_{a-} \) by using the transconductance output stage formed from \(M25-M30 \) [7]–[11]. In addition, a compensation capacitor (\(C \)) is added between the \(V_{o1} \) node and ground.

A simplified function model for the DDOFA can be introduced as in the case of the op-amp [12] which is composed of ideal circuit elements shown in Fig. 5. The input signal is the differential difference voltage \(V_{id} = (V_{2} - V_{1}) - (V_{4} - V_{3}) \) applied across \(R_{in} \) (considered to be infinity). This voltage is converted into a current \(G_{m} V_{id} \), where \(G_{m} \) is the transconductance of the differential difference transconductor circuit. This current is converted into a voltage \(V_{o1} \) by the gain stage of equivalent output resistance and capacitance \(R_{o1} \) and \(C_{o1} \), respectively. This voltage is then converted into two balanced currents \(I_{a+} \) and \(I_{a-} \) by the output transconductor with the equivalent input resistance and capacitance \(R_{o1} \) (considered to be infinity) and \(C_{o1} \) (includes the compensating capacitor). The frequency-dependent output current of the DDOFA is given by

\[
I_{a+} = \frac{G_{m} \omega_{p}}{S + \omega_{p}} [(V_{2} - V_{1}) - (V_{4} - V_{3})]
\]

where the open-loop gain \(G_{o} \) is given by

\[
G_{o} = \frac{1}{\omega_{p}} \left[G_{m} \left(\frac{[g_{m20}R_{d22}R_{d24}]}{[g_{m22}R_{d22}R_{d24}]} \right) \right]^{0.5}
\]

and \(\omega_{p} \) is given by

\[
\omega_{p} = \frac{1}{\left(\frac{[g_{m20}R_{d22}R_{d24}]}{[g_{m22}R_{d22}R_{d24}]} \right) (C_{o1}/C_{o1})}
\]

where \(G_{m} \) is the transconductance of the differential difference transconductor.

PSPICE simulation results for the DDOFA circuit are given in Table I, with the transistor aspect ratios given in Table II, and the compensation capacitor \(C = 5 \) pF.
TABLE I

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Simulation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby DC power dissipation</td>
<td>10mW</td>
</tr>
<tr>
<td>Input offset voltage</td>
<td>1mV</td>
</tr>
<tr>
<td>DC gain</td>
<td>50 Db mA/V</td>
</tr>
<tr>
<td>Unity gain BW</td>
<td>10MHz</td>
</tr>
<tr>
<td>Phase margin</td>
<td>60 degree</td>
</tr>
<tr>
<td>Common mode input</td>
<td>-3.5 to 3.5 V</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>MOS Transistor</th>
<th>Aspect ratio (W μm / L μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-M8</td>
<td>2/16</td>
</tr>
<tr>
<td>M9-M16</td>
<td>4/14</td>
</tr>
<tr>
<td>M17,M24</td>
<td>160/10</td>
</tr>
<tr>
<td>M25-M30</td>
<td>30/2</td>
</tr>
</tbody>
</table>

Fig. 7. (a) DDOFA-based grounded resistor. (b) Noninverting integrator using the DDOFA grounded resistor. (c) Lossy current integrator using the DDOFA grounded resistor.

IV. APPLICATIONS OF THE DDOFA

In the following subsections, several applications of the DDOFA circuit are discussed, and the PSPICE simulation results are given to verify the concepts.

A. The DDOFA Voltage-to-Current Converter

Fig. 6 shows the DDOFA differential voltage-to-current converter. The voltage-to-current converter has a high input impedance since the inputs of this circuit are directly the inputs of the DDOFA’s (gates of MOS transistors). In addition, only a single grounded resistor is needed. The output current of this circuit is given by

\[I_o = \frac{(V_1 - V_2)}{R}. \]

(24)

PSPICE simulations of the voltage-to-current converter stepping \(V_2 \) from -1.5 to 1.5 V in steps of 0.75 V sweeping \(V_1 \) from -1.5 to 1.5 V (similar to what has been shown in Fig. 4) reveals a linear current variation of \(\pm 140 \mu A \). The THD of a 100-kHz input signal with 1 V peak-to-peak is 0.439%.

B. DDOFA-MOS Grounded and Floating Resistors

An equivalent grounded and floating resistor can be realized using the DDOFA and MOS transistors operating in the nonsaturation region. The current through the MOS transistors in that region can be linearized if its drain and its source are out of phase [13].

1) The MOS Grounded Resistor: The DDOFA-MOS grounded resistor is shown in Fig. 7(a), where the DDOFA inverter is connected between the drain and the source nodes of the transistor. Therefore, the input current of the circuit equals the linearized drain current of the MOS transistor \(M_1 \) which is given by

\[I_i = 2K(V_G - V_T)V_i, \quad \text{for } V_i \geq |V_i| + V_T. \]

(25)

Therefore, the circuit is equivalent to a voltage-controlled grounded resistor with magnitude given by

\[R = \frac{1}{2K(V_G - V_T)}. \]

(26)

PSPICE simulations of the MOS grounded resistor stepping \(V_G \) from 2.5 to 4.5 V in steps of 0.5 V sweeping \(V_i \) from -1 to 1 V reveals a linear characteristic, and for a 1-V peak-to-peak 100-kHz input signal the THD calculated using \(V_G = 3 \) V and \(K = 55/3 \mu A/V^2 \) is 0.589%.

The circuit shown in Fig. 7(a) also realizes a voltage-to-current converter by using the extra output terminal of the DDOFA. The output current \(I_o \) is given by

\[I_o = I_i = 2K(V_G - V_T)V_i. \]

(27)

A noninverting integrator can be realized as shown in Fig. 7(b), and the output voltage \(V_o \) is given by

\[V_o = \frac{2K(V_G - V_T)}{SC}V_i. \]

(28)

A lossy current integrator is realized as shown in Fig. 7(c), and the output current \(I_o \) is given by

\[I_o = \frac{1}{1 + \frac{2K(V_G - V_T)}}I_i. \]

(29)
2) The MOS Floating Resistor: The DDOFA can also be used to realize a floating resistor as shown in Fig. 8, where $M1$ and $M2$ are matched transistors operating in the nonsaturation region. The input and output currents of the floating resistor are forced to be the difference between the linearized currents I_1 and I_2. Therefore,

$$I_e = I_1 - I_2 = 2K(V_{G1} - V_T)(V_1 - V_2).$$

Fig. 9. (a) DDOFA-based multiplier/divider cell. (b) DC curves of the multiplier.
Therefore, the circuit shown in Fig. 8 is equivalent to a voltage-controlled floating resistor with magnitude given by

\[R = \frac{V_1 - V_2}{I_c} = \frac{1}{2K(V_G - V_T)} \]

(31)

PSPICE simulations of the MOS grounded resistor stepping \(V_2 \) from \(-1 \) to \(1 \) \(\text{V} \) in steps of \(0.5 \) \(\text{V} \) sweeping \(V_1 \) from \(-1 \) to \(1 \) \(\text{V} \) (similar to what has been shown in Fig. 4), reveals a linear current variation of \(\pm60 \mu\text{A} \) and for a \(1\text{-V} \) peak-to-peak 100-kHz input signal, the THD calculated using \(V_G = 3 \text{V} \) and \(K = 55/3 \mu\text{A}/\text{V}^2 \) is 0.589%.

C. The DDOFA–MOS Multiplier/Divider Cell

Analog multipliers and dividers have a wide range of applications in traditional analog signal processing, telecommunications, and electronic systems, as well as in analog computational systems based on biological neural paradigms [13]–[18].

A MOS multiplier/divider cell can be realized using the DDOFA and MOS transistors operating in the nonsaturation region by using circuit techniques similar to that used in obtaining linear grounded and floating resistors. The proposed MOS multiplier/divider circuit is shown in Fig. 9(a). It comprises six DDOFA’s and four MOS transistors operating in the nonsaturation region, where \(M1 \) and \(M2 \) are matched transistors, and \(M3 \) and \(M4 \) are also matched transistors. The cell is reconfigurable to achieve a four-quadrant multiplicative or division through the same topology with no additional circuitry. The output voltage of the circuit is tunable via gate control voltages. The current differences of the MOS transistors \(M1, M2, \) and the MOS transistors \(M3, M4 \) are given, respectively, by

\[I_1 - I_2 = 2K_i(V_{G1} - V_{G2})V_i \]

(32)

\[I_3 - I_4 = 2K_v(V_G3 - V_G4)V_v. \]

(33)

Applying the KCL at node \(a \), one obtains

\[V_v = \frac{K_i}{K_v}(V_{G1} - V_{G2})V_i. \]

(34)

Thus, the circuit achieves the computation of \(\Delta V_G12/\Delta V_G34 \) \(V_i \). The circuit also performs four-quadrant multiplication for the input signals \(V_i \) and \((V_{G1} - V_{G2}) \) with the gate voltages \(V_{G3} \) and \(V_{G4} \) as the control voltages. The circuit also operates as a divider circuit for the input signals \(V_i \) and \((V_{G3} - V_{G4}) \) with the gate voltages \(V_{G1} \) and \(V_{G2} \) as the control voltages.

The dc transfer curves of the circuit as a multiplier are shown in Fig. 9(b) with \(V_i \) scanned from \(-1 \) to \(1 \) \(\text{V} \) and the differential gate voltage \((V_{G1} - V_{G2}) \) scanned from \(-1 \) to \(1 \) \(\text{V} \). The THD for a \(1\text{-V} \) peak-to-peak 100-kHz input signal is 0.604%. The circuit is also tested as a divider in which the process of signal inversion is demonstrated. In this application, the \(V_i \) and \(V_{G12} \) are held constant, \(V_i = 1 \text{V}, V_{G1} = 4 \text{V}, V_{G2} = 3 \text{V} \), \(V_{G34} \) is a 1-kHz triangular wave varying between 0.5 and 2.5 \(\text{V} \), \(K_i = 25\mu\text{A}/\text{V}^2 \) and \(K_v = 55/2\mu\text{A}/\text{V}^2 \). The output voltage \(V_v \) which is proportional to \(1/V_{G34} \) is shown in Fig. 9(c), along with the input signal \(V_i \).

D. The DDOFA-Based Differential Integrator

Fig. 10(a) shows the DDOFA-based differential integrator. The DDOFA differential integrator has a high input impedance since the inputs of the circuit are directly the inputs of the DDOFA’s (gates
of MOS transistors). In addition, only a single grounded resistor and a single grounded capacitor are needed; hence, there are no passive component-matching requirements. The output of the circuit without \(R_2 \) is given by

\[
V_o = \frac{V_1 - V_2}{SCR_1}
\]

Fig. 10(b) shows the PSPICE simulation results of the integrator with a square-wave input of 1 V amplitude and a frequency of 25 kHz, where \(R = 10 \, k\Omega \) and \(C = 1 \, nF \). By adding the grounded resistor \(R_2 \) in parallel with the capacitor, a lossy integrator can be obtained with an output voltage given by

\[
V_o = \frac{1/R_1 C}{S + 1/R_2 C}(V_1 - V_2).
\]

E. The DDOFA-MOS-C Continuous Time Filter

The differential integrator is a basic building block in realizing continuous-time filters [20]–[25]. The DDOFA-based differential integrator and the DDOFA-based grounded resistor are used to implement a continuous-time filter with voltage and current outputs for both the bandpass and highpass and a voltage output for the lowpass characteristic as shown in Fig. 11(a). The transfer functions of the filter are given by

\[
\frac{V_{HP}}{V_i} = \frac{S^2}{D(s)}
\]

\[
\frac{I_{HP}}{V_i} = \frac{S^2 / R_1}{D(s)}
\]

\[
\frac{V_{LP}}{V_i} = \frac{-S / R_1 C_1}{D(s)}
\]

\[
\frac{I_{HP}}{V_i} = \frac{-S / R_1 R_2 C_1}{D(s)}
\]

\[
\frac{V_{LP}}{V_i} = \frac{R_1 R_2 C_1 C_2}{D(s)}
\]
Fig. 11. (a) DDOFA-based MOS-C continuous-time filter. (b) LP, BP, and HP responses.

where
\[
D(s) = s^2 + \frac{1}{R_1 C_1} s + \frac{1}{R_1 R_2 C_1 C_2}
\]

\[
\omega_n = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}} \quad \text{and} \quad Q = \sqrt{\frac{R_1 C_1}{R_2 C_2}}.
\]

(42)

The magnitudes of \(R_1 \) and \(R_2 \) are given by
\[
R_1 = \frac{1}{2K_1(V_{G1} - V_T)}, \quad R_2 = \frac{1}{2K_2(V_{G2} - V_T)}.
\]

(43)

F. The DDOFA-MOS-C Current Oscillator

Fig. 12(a) shows the DDOFA current oscillator. The oscillator has two outputs \(I_{out1} \) and \(I_{out2} \). In this circuit, a new block is introduced which makes the node voltages and currents of \(a \) and \(b \) out of phase. In addition to this block, two MOS grounded resistors and two capacitors are used to implement the oscillator. The condition of oscillation is given by

\[
\frac{R_2}{R_1} + \frac{C_1}{C_2} = 1.
\]

(44)

The PSPICE simulation results for the LP, BP, and HP characteristics are shown in Fig. 11(b), where \(R_1 = 10 \, \text{k\Omega}, R_2 = 10 \, \text{k\Omega}, K_1 = K_2 = 25 \mu A/V^2, V_{g1} = V_{g2} = 3 \, \text{V}, C_1 = 10 \, \text{nF}, \) and \(C_2 = 1 \, \text{nF}. \) Taking

\[
\frac{R_2}{R_1} = \frac{C_1}{C_2} = \frac{1}{2}
\]

(45)
the radian frequency of oscillation is given by
\[\omega_{\text{osc}} = \frac{1}{R_1 C_1} \]
where
\[R_1 = \frac{1}{2K_1(V_{G1} - V_T)} \quad \text{and} \quad R_2 = \frac{1}{2K_2(V_{G2} - V_T)}. \]

Fig. 12(b) shows the output waveform of the proposed oscillator shown in Fig. 12(a) with the oscillation frequency adjusted to 25 kHz by taking \(V_{G1} = V_{G2} = 3 \, \text{V} \), \(K_1 = \frac{1}{2} \), \(K_2 = \frac{1}{3} \mu \text{A/V}^2 \), and \(C_1 = \frac{1}{2} C_2 = 0.5 \, \text{nF} \).

In a practical implementation, the condition of oscillation may not be achieved exactly, the tuning property of the voltage-controlled grounded resistors \(R_1 \) and \(R_2 \) can be used to achieve the condition of oscillation.
TABLE III

<table>
<thead>
<tr>
<th>No.</th>
<th>DDOFA-based application</th>
<th>Fig.</th>
<th>Basic equations that describe the operation of the application</th>
<th>THD for V_1 (P-P) = 1V and f = 100KHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Voltage to Current Converter</td>
<td>6</td>
<td>$I_0 = \frac{(V_1 - V_2)}{R}$</td>
<td>0.439 %</td>
</tr>
<tr>
<td>2</td>
<td>MOS-Grounded Resistor</td>
<td>7(a)</td>
<td>$R = \frac{V_L}{I_0} = \frac{2(K_0 - V_1)}{V_2 - V_1}$</td>
<td>0.598 %</td>
</tr>
<tr>
<td>3</td>
<td>MOS-Floating Resistor</td>
<td>8</td>
<td>$R = \frac{(V_1 - V_2)}{2(K_0 - V_1)}$</td>
<td>0.598 %</td>
</tr>
<tr>
<td>4</td>
<td>MOS Multiplier/Divider Cell</td>
<td>9(a)</td>
<td>$V_0 = \frac{R_0 V_1 - V_2}{K_0 (V_1 - V_2)}$</td>
<td>0.604% (for the multiplier)</td>
</tr>
<tr>
<td>5</td>
<td>Lossless Differential Integrator</td>
<td>10(a)</td>
<td>$V_0 = \frac{1}{C_S s + 1/R_C} \left(V_1 - V_2 \right)$</td>
<td>0.45%</td>
</tr>
<tr>
<td>6</td>
<td>MOS-C Continuous-Time Filter</td>
<td>11(a)</td>
<td>$\frac{V_{0P}}{V_1} = \frac{S^2}{D(s)} \frac{1}{V_1} \frac{S^2}{R_C} \frac{D(s)}{V_1}$</td>
<td>0.45%</td>
</tr>
<tr>
<td>7</td>
<td>MOS-C Current Oscillator</td>
<td>12(a)</td>
<td>Condition of oscillation: $R_2 C_1 > 1$</td>
<td>0.45%</td>
</tr>
<tr>
<td>8</td>
<td>MOS-C Floating Inductor</td>
<td>13</td>
<td>$L = \frac{C}{4K_1 K_2 (V_{G1} - V_1) (V_{G2} - V_2)}$</td>
<td>0.45%</td>
</tr>
</tbody>
</table>

Fig. 13. DDOFA-based MOS-C floating inductor.

G. The DDOFA-MOS-C Floating Inductor

A voltage-controlled floating inductor can also be realized by using the DDOFA and MOS transistors operating in the nonsaturation region. The MOS-C floating inductor circuit is shown in Fig. 13. The input and output currents of the circuit are equal and are given by

$$I_0 = I_1 = \frac{4K_1 K_2 (V_{G1} - V_1) (V_{G2} - V_2)}{S C} (V_1 - V_2).$$

Therefore, the circuit realizes a voltage-controlled floating inductor of magnitude given by

$$L = \frac{C}{4K_1 K_2 (V_{G1} - V_1) (V_{G2} - V_2)}.$$

V. CONCLUSION

A wide-range differential difference operational floating amplifier has been proposed. The DDOFA is realized using a new NMOS differential difference transconductor with large signal-handling capability. Applications of the DDOFA in analog signal processing have been discussed, and are summarized in Table III. It is interesting to note that in all applications, tuning can be achieved via control voltage as discussed in the grounded and floating resistors, multiplier/divider cell, continuous-time filter, current oscillator, floating inductor, and also the voltage-to-current converter if a voltage-controlled grounded resistor is used. PSPICE simulation results for all applications are given to confirm the analytical results.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their useful comments.

REFERENCES

An Arithmetic Free Parallel Mixed-Radix Conversion Algorithm

David F. Miller and William S. McCormick

Abstract—A new, parallel mixed-radix (MR) conversion algorithm, based upon lookup tables, with no required arithmetic is presented. When pipelined, an effective conversion rate of one conversion per table lookup is achieved. The new algorithm is attractive for hardware implementation since it requires no arithmetic or logical units. The algorithm is shown to be faster than existing pipelined algorithms.

Index Terms—Mixed-radix conversion, parallel lookup, pipeline processing, residue number system.

I. INTRODUCTION

The residue number system (RNS) has been used extensively and effectively in digital signal processing. For example, see [2], [5], and [7], as well as [11] and its references. This is because, as is well-known, integer arithmetic can be naturally and efficiently parallelized by utilizing the residues of integer operands with respect to a convenient set of moduli. As is equally well-known, the mixed-radix (MR) number system is superior to the RNS for sign determination, magnitude comparison, and overflow detection. Consequently, considerable effort has been directed toward developing fast algorithms for residue to MR representation conversion.

The residue to MR representation conversion problem can be easily stated. Given relatively prime moduli \(m_1 < m_2 < \cdots < m_N \) and an integer \(x \), \(0 \leq x < m_1 m_2 \cdots m_N \), \(x \) can be uniquely represented as \(x = a_1 m_1 + a_2 m_2 + \cdots + a_N m_1 m_2 \cdots m_{N-1} \), where the MR digits \(a_i \) satisfy \(0 \leq a_i < m_i \). Let \(x \) have residues \(x_i \mod m_i \). Given the residue representation \(\{x_1, x_2, \cdots, x_N\} \), the conversion problem consists of deriving the MR representation \(\{a_1, a_2, \cdots, a_N\} \) quickly and efficiently. Once the MR digits are known, \(x \) itself may of course be readily recovered. (In fact, \(x \) may often be accumulated while the MR digits are being determined.)

The residue to or residue-to-decimal conversion problem has received considerable attention and many particular schemes have been proposed, though they all rely upon the Chinese Remainder Theorem or MR conversion [3]-[5].

The MR conversion problem (and more generally, the residue-to-decimal conversion problem) has an interesting history. The classical algorithm of Szabo and Tanaka [1] has been extensively utilized. It can be effectively pipelined, but it requires a considerable amount of arithmetic and significant communication between successive computations. In an effort to increase efficiency for high-speed computing, fast, inherently parallel algorithms have been presented by Huang [8], and Chakraborti et al. [10]. We present here a novel parallel algorithm for MR conversion, which possesses advantages over other algorithms discussed to date. When pipelined, it can achieve an effective conversion time equal to the time required for

Manuscript received June 27, 1994; revised June 4, 1997. The work of D. F. Miller was supported in part by a Professional Development Grant from the Wright State University Research Council. This paper was recommended by Associate Editor F. Kurdahi.

D. F. Miller is with the Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435 USA (e-mail: dmill@euler.wright.edu).

W. S. McCormick is with the Department of Electrical Engineering, Wright State University, Dayton, OH 45435 USA (e-mail: wcmcormick@nova.wright.edu).

Publisher Item Identifier S 1057-7130/98/$10.00 © 1998 IEEE