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Abstract  
Security in the wireless sensor networks (WSNs) is based 
on using public-key cryptosystems such as RSA 
cryptosystem to achieve the authentication between 
wireless sensor nodes and their base station. This 
cryptosystem has two important problems; (i) the 
decryption process is slow (ii) it is insecure due to some 
known attacks such as common modulus attack and low 
exponent attack.  
In this paper we modify the encryption algorithm of the 
NK cryptosystem to avoid the problems of the RSA 
cryptosystem. We prove that standard attacks that applied 
on the RSA cryptosystem are not applicable on the NK 
cryptosystem after our modification. 
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1. Introduction 
Wireless sensor networks are expected to be used in a 
wide range of applications, from monitoring wildlife and 
collecting microclimate data [1] to a number of military 
applications like target tracking [2] and detection of 
biological or chemical weapons. Security in the WSNs is 
based on using public key cryptosystem to provide 
privacy, data integrity, and authentication during 
handshaking process between wireless sensor nodes and 
their base station. Handshake protocol messages are 
encrypted using public-key cryptosystem such that RSA 
cryptosystem. 
This cryptosystem has two problems, (i) the decryption 
process is slow (ii) it is insecure due to the low exponent 
attack and common modulus attack. Tsuyshi Takagi [3] 
presented a new public-key cryptosystem with fast 
decryption named NK cryptosystem which is constructed 
over ZnZ k , where n is the modulus and k  is a positive 
integer. To implement the Nk cryptosystems, we used 
only ordinary and elementary mathematical techniques 
such as computation of greatest common divisors, so that 
it is easy to implement. Moreover, the decryption time of 
the first block is dominant, because after the first block 
we only calculate the modular multiplication of the 
 

 
 
encryption exponent and an extended Euclidean 
algorithm to decrypt blocks after the first one. Therefore 
the Nk cryptosystem is faster in the decryption process 
compared with the previously reported RSA-type 
cryptosystems [4]. If a message is several times longer 
than a public-key n , we can encrypt this message fast 
without additionally using a symmetry-key cryptosystem. 
This cryptosystem solves the slowness of decryption 
process, but it still suffers from the mentioned attacks. 
This paper presents a modification of the encryption 
algorithm for the NK cryptosystem based on the NK to 
optimize security for the Wins. Therefore, the public 
encryption key becomes a composite number and has the 
relation eae = , for an integer a  ≥ 1. We prove that 
standard attacks such as the common modulus attack and 
the low exponent attack are not applicable on the NK 
cryptosystem after our modification.  
The remainder of this paper is organized as follows: 
section (2) focuses on the algorithm of the modified NK 
cryptosystem. Proof of correctness for our construction is 
presented in section (3). Section (4) emphasizes on the 
effectiveness of low exponent attack and common 
modulus attack. Final section contains general 
conclusions. 
Notation: Z is an integer ring. 
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2. Modification of the Nk Cryptosystem 
In this section, we describe the algorithm of the modified 
NK cryptosystem. 
 
2.1 The modified algorithm 
  1. Generation of the keys: 
• Generate two random primes p , q  and let pqn = . 
• Compute ( )1,1 −−= qpLCML  and find e , d  which 
satisfies ( )Led mod1≡  and ( ) 1, =peGCD , where e is 
the prime public encryption key before our modification 
and d is the corresponding secret decryption key. 
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• Let e  be the modified public encryption key which 
is a composite number, where eae = , for an integer a ≥1. 
Then e , n are public keys and d , p and q are the secret 
keys. 
  2. Encryption: Let M ∈ x

nZ  be the plaintext, we 
encrypt this plaintext by the following equation: 

( ) ( )kae1k1k
10 nmodMn..nMMC −−+++≡                             (1) 

  3. Decryption:  First, we decrypt the first block 0M  by 
the secret key d; 
     )n(modCM d

0 =                                                     (2) 
This is the same decryption process as in the original 
RSA. For the remaining blocks
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decrypt by solving the linear equation modulo n . 
 
2.2 Details of decryption 
Assume that, we have already decrypted 

0
M  by the 

decryption method of the original RSA cryptosystem, and 
we write down the process to find 1k21 M.....,,M,M −  as 
follows. 
Consider that the encryption function (1) is the 
polynomial of the variables 1k10 X.....,,X,X −  such that: 
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where ( )10 −≤≤ ki and 1≥a . 
 Let ( )i10i X.....,,X,XD  be the coefficient of in ( )1ki0 −≤≤ , 
we can find ( )i10i X.....,,X,XD  by calculating: 
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Here, we write them down with small i as follows: 
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Where c2, c3 ,c4
Note that:  the only term that includes X

…. are constants. 
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Therefore, the terms i1i10 D,D....,,D,D ′−  are the 
polynomial of 1i10 X,...,X,X − . 
From this relation, we can decrypt 1k21 M,....,M,M − . 
Indeed, 1k21 M,....,M,M −  are calculated as follows: 
by setting 1=i , the relations 

ae
00001 X)X(Dand0)X(D ===′ . 

So, the solution of the linear equation: 
,)nmod(BxeM 1
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Inductively, we can decrypt all plaintexts
121
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3. Proof of Correctness for Our Construction  
In this section, we prove the correctness for our 
construction which discuss how can successfully 
recovered the original message M after encrypt it using 
our modified algorithm. 
 
3.1 Proof of correctness 
From the construction of NK cryptosystem we can see 
that: 
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   Then, the value of M  is correct if and only if the values 
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Hence, to achieve the main purpose it must be used our 
analysis to prove that, 
 1k1k1100 MM,......,MM,MM −− =′=′=′ . 
 
• Proof that 00 MM =′  
From equation (7) let 1k = and 0i = . Then,  
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The general linear equation that find 1k21 M,......,M,M −  is 
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Hence, the value of  0M  is correct. 
 
• Proof that 11 MM =′  
Then, 2k = , 1i = and 0j = . 
From equation (7) )n(mod)MnM(M 2

10 ′+′=  



 The linear equation that find 1M  is  
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Now, we can compute each value of B1
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The encryption function of M  is given by the following 
equation: 
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Hence, the value of  1M  is correct. 
By the same manner, we can prove that the values of  

1k2 M,.....,M −  are the correct values. So that our 
construction is correct to recover the original message 
after encrypt it using the proposed cryptosystem. 
 
4. The Modified Nk Cryptosystem Immunity 
to the Existing Attacks 
In this section, we explain the effectiveness of low 
exponent attack and common modulus attack against the 
NK cryptosystem after modification. 
 
4.1 Low exponent attack 
A low public exponent is desirable to reduce encryption 
time. However, there is a powerful attack on low public 
exponent for NK cryptosystem as well as RSA 
cryptosystem based on a theorem due to Coppersmith [5]. 
Hastad reported an attack, named low exponent attack 
based on Coppersmith’s theorem, which detects a low 
public exponent e . This attack is effective for eH ≥ , 
where H  is a number of parities that receive the same 
message M at the same time with common public 
exponent e ; on the other hand the public key for the 
modified NK cryptosystem has the relation:  aee = , for 

an integer a  ≥ 1. Therefore, if the attacker can achieve 
Coppersmith’s constraint such that eaH ≥ , then, our 
modified cryptosystem will be broken.  
Here, we discuss Hastad’s attack. For simplicity, suppose 
that the same message M has to be sent to three different 
users and all corresponding public exponents are equal to 
3. Therefore, the modified public key becomes aee = = 
3*2, where a =2.  
Let the original message 4M = . Then, we calculate the 
modulus n  for each message as follows: 
For message #1: 

.2025215,5,3
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corresponding ciphertexts are: 
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Applying the Chinese Remainder Theorem (CRT) to CR1 R, 
C2, and C3 as follows: 

)(mod
321

6 NCCCM ++=  
)496125mod(2=M  

Therefore, the attacker gets the value of message equal 2 
whereas the original message is equal 4. Then, the 
attacker gets a hard problem, he always gets the wrong 
value of the message M. this means that he did not know 
if the value of message M is true or false. This problem 
takes place because Coppersmith’s constraint is not 
satisfied. To successfully mount this attack he must get at 
least six messages to satisfy Coppersmith’s constraint, 
but this way will increase the effort of the attacker to 
recover the correct value of the original message. Then, 
when using the modified NK cryptosystem with small 
public exponent, the attacker will meet a hard problem 
when attempt to break this system using low exponent 
attack. The following tables summarize the numbers of 
messages required to mount a successful Hastad’s attack. 
 
Table 1. The number of messages required to mount a successful 
HastadP

’
Ps attack for NK cryptosystem before our modification. Note that: 

the system is not defined for even values of e. 
e 3 5 7 9 11 13 

# of messages 4 6 8 10 12 14 
 
Table 2. The number of messages required to mount a successful 
HastadP

’
Ps attack for NK cryptosystem after our modification. Note that: 

(*) means that the attack is not applicable which means that the attacker 
meets a hard computation to get the correct value of the original 
message. 

e e  ( a =2 ) # of messages 
3 6 7 
5 10 11 
31 62 * 

 
From Table 1 we observe that, at 3=e , the attacker just 
needs four messages to successfully break the NK 
cryptosystem, whereas at 6=e  in Table 2 the attacker 
will need at least seven messages to break that 
cryptosystem. 
 
 



4.2 Common modulus attack 
Simmon pointed out in [6] that the use of a common RSA 
modulus is dangerous, indeed, if a message M  is sent to 
two users that have comprised public encryption keys, 
then the message can be recovered. On the other hand, 
the NK cryptosystem presented by Tsuyoshi Takagi also 
suffer from this attack because the public encryption key 
still prime number. Here, we discuss the effectiveness of 
the common modulus attack on the security of the 
modified NK cryptosystem. Suppose that we need to 
send a message M  to two users that have the ciphertexts 
given by: 

)nmod(MC 1e
1 ≡  and )nmod(MC 2e

1 ≡ , where 21 e,e  are 
the public encryption keys for common modulus (n = pq ) 
for the modified NK cryptosystem. 
The attacker attempts to break this system using one of 
the following methods: 
Method #1: 
From our modification, we can see that 1)ee(gcd 2,1 ≠  
because these values become a composite numbers. So, 
when the attacker attempt to use extended Euclidean 
algorithm to find v,u  such that 1eveu 21 =+ , where 

vandu  are non-negative integers, he fail to satisfy this 
equation because 21 e,e  are composite numbers, i.e. 

1eveu 21 ≠+ . 
Therefore, he cannot use the following relation to recover 
the original message: 

)nmod(CCMM v
2

u
1

eveu 21 ≡/≠ +  
Method #2: 
The attacker succeeds to factorize the composite public 
key 21 e,e  to aeeandaee **

2211
==  respectively. 

Then, he begins his attempt to recover the original 
message as follows: 
Let 1

21
=+ eveu  

Then, 1
21

=+ aevaeu  
1e)av(e)au( 21 =+  

1eveu 21 =′+′   ⇒  This relation can be obtained from 
extended Euclidean algorithm. 
Therefore, 21 eveuMM ′+′= ⇒  veue ]M[*]M[M 11 ′′=       (8) 
But, 1

e CM 1 ≠  as well as 2
e CM 2 ≠ . 

So, the attacker cannot use equation (8) to recover the 
original message. 
Hence, the common modulus attack seems infeasible for 
the modified PKQ cryptosystem.  
 
5. Conclusions 
This paper addressed one of the important topics in 
mobile networks, which is security in the WSNs. When 
we need to achieve the authentication between wireless 
sensor nodes and their base station in WSNs, we must 
use strong public-key cryptosystem rather than RSA 
cryptosystem which is currently use for authentication 
process in WSNs because the RSA cryptosystem suffers 
from some known attacks such as low exponent attack 
and common modulus attack. Therefore, we presented a 
modified of the encryption algorithm for the NK 
cryptosystem. According to our modification, we 
conclude that the modified NK cryptosystem is secure 
against the common modulus attack because the public 

encryption key became a composite number. On the other 
hand, we showed that it is possible to use the NK 
cryptosystem with a composite small encryption key e  
provided Coppersmith’s condition eH < , where H is the 
number of parties that receive the same message at the 
same time. This condition is used to defend against the 
low exponent attack. Therefore, the Low exponent Attack 
seems infeasible. From this paper we choose the modulus 
n to be for example 1024-bit for the 341-bit primes 
p and q , in order to make both the elliptic curve method 

and the number field sieve infeasible. So, this modulus is 
secure against the fast factoring algorithms. 
Finally to optimize the security of WSNs we may use the 
modified NK cryptosystem to achieve secure 
authentication between wireless sensor nodes and their 
base station. 
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