Voiced/Unvoiced and Silent Classification Using HMM
Classifier based on Wavelet Packets BTE features

Amr M. Gody*
Fayoum University

Abstract

Wavelet Packets Best Tree Encoded (BTE) features is used here as base features
for HMM classifier. The research aimed to introduce the newly designed features that
are discussed in [1]. The considered problem is Voiced, Unvoiced and Silent
classification. Comparison to the 19 filter banks features is provided. Although it is
simple and straight forward, BTE makes comparable results to the 19 elements
features vector based on filters bank. A very accurate hand labeled database called
SCRIBE is used. Voiced sounds are recognized in 81% success rate. Silent periods
are detected in 84.5% success rate. The unvoiced sounds are not recognized using the
proposed features. It gives a 5.5% success rate. This low rate of unvoiced detection
affects the overall performance. The overall performance of 64.5% is achieved. This
overall performance is expected to be dramatically changed in case of adding some
unvoiced attributes to BTE.

1. Introduction

Using good features is the key of accurate speech recognizer. Recognizer’s
success depends on three main factors. The first factor is the database used in the
training phase. The second factor is the features used to train the model. The third
factor is the mathematical model used to recognize the different classes in the speech
signal.

BTE features are discussed in [1]. BTE inherits some human attributes by
considering the human hearing mechanism in processing the received speech.
Received speech’s stream is classified into logarithmic bands before it is being
processed by human brain [1]. This human nature is described by Mel scale as shown
in figure 1.

3500 —
3000 -
2500

2000

mels

1500
1000 -

so0 -

i

[ e B Am T i T
0 2000 4000 6000 8000 le+0d
hertz

Figure 1: Mel scale curve that models the human hearing response to different frequencies [2].

! Department of Electrical Engineering, Email: amg00@fayoum.edu.eg




Mel frequency reflects what human can discriminate. It is a scale that reflects what
human can hear. As shown in figure 1, from 4000(HZ) to 8000 (HZ) only 1000 (Mel)
change while from 0(HZ) to 1000 (HZ) a 1000(Mel) change is appeared. The curve
in low frequency till 1000(HZ) indicates that the human ear can be highly
discriminative. This property starts to be degraded toward the higher frequencies. As
shown in figure 1, change after 4000(Hz) in frequency tends to make almost very low
change in Mel scale. This phenomenon indicates that human ear is much sensitive to
low frequencies than to high frequencies. It is expected that most of the information
contained into speech is located in the low frequency area of the total bandwidth of
speech signal. Recognizers based on Filter banks tries to satisfy this logarithmic
relation that was explained by figure 1. It is not wise to handle the frequency band in
a linear manner while it is not like that in human hearing mechanism.

The objective of this paper is to test BTE through a comparative study. This
research is a preliminary work to introduce Wavelet Packets Best Tree 4 point
Encoded (BTE) features. The database is selected to be very accurate hand labeled
database. SCRIB? database is selected. SCRIBE consists of a mixture of read speech
and spontaneous speech. The read speech material consists of sentences selected from
a set of 200 "phonetically rich" sentences and 460 "phonetically compact” sentences
and a two-minute continuous passage. Hidden Markov Model (HMM) is chosen as
the mathematical model of the speech recognizer. This model is chosen for its good
reputation in speech recognition domain. The model is implemented using The
Hidden Markov Model Toolkit HTK®. Signal processing, system evaluation and
results preparation are calculated using Speech Filling System SFS*. All programming
and logic are made using Microsoft C Sharp® (C#).

Voiced, Unvoiced and silent are three main classes in any spoken language.
Almost all phonetics is either Voiced or unvoiced. Silent periods are those periods
where no speech exists. The detection of unvoiced speech in the presence of additive
background noise is complicated by the fact that unvoiced speech is very similar to
white noise [3]. The problem of detecting unvoiced appears in this preliminary
research. It is almost confused in equal proportion between Voiced and silent.

2. Framework

In this section the framework of this research will be fully explained. The system
has many actors/ resources.
1. SFS platform.
2. HTK platform.
3. Batch and Cue Logic platform (BCL). Microsoft C# is used to implement
BCL platform.
4. Hand labeled Database (SCRIBE).
5. Matlab platform.

2 SCRIBE database: www.phon.ucl.ac.uk/resource/scribe

® Hidden Markov Model Toolkit HTK: http://htk.eng.cam.ac.uk/

* Speech Filling System SFS: http://www.phon.ucl.ac.uk/resource/sfs/

® Microsoft C# is one of the programming languages by Microsoft Corporation. C# implements Object
Oriented Programming (OOP). It bears both simplicity and advanced programming technique. It is
considered the number one language nowadays. For more information go to
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)




Step 1 [Creating SFS files]

BCL is used to import all sound files provided by the SCRIBE into SFS formatted
files. Also BCL is used to import all corresponding label files into the same SFS files.
After this step each SFS file contains waveform item and annotation item.

Step 2 [Mapping phonetic labels into Voiced, Unvoiced and Silent labels]

A new map file is constructed. The map file contains the map for each phonetic
symbol into one of the three classes {VOI, UNV and SIL}. Symbols are VOI for
Voiced sound, UNV for Unvoiced sound and SIL for Silent or pauses. SFS is used to
apply the map to SFS file. Then BCL is used to apply the SFS map to all SFS files.

Step 3 [Preparing two different groups for two parallel experiments]

SFES files are cloned into two sets. This is to use each SET into different
experiment. SET_A will be used in VOC19 feature experiment and SET_B will be
used in BTE features experiment.

Step 4 [Apply feature extraction function on all SES files]

SET_A: SFS s used to apply VOC19 to the available samples.

SET_B: Matlab is used to extract BTE features. BCL is used to apply the Matlab
function to all available samples. Then finally SFS is used to import all feature
vectors into the SFS files.

Step 5 [HMM preparation]

SET_A: Three HMM models are prepared. Each model is 3 states. HTK is used to
initialize each model based on training samples, label files and feature vector files.

SET_B: The same process as in SET_A is followed.

Step 6 [Training HMM models]

In both sets, HTK is used to train the available HMM models. The training
depends on the feature vector files, label files and selected training files list. Training
continues till a convergence in log probability happened for each model.

Step 7 [Testing HMM models against test files]

Test files are some SFS files that were never being used in the training phase.
HTK is used to test HMM models against the selected test files in both groups. HTK
generates label file for each test file. Each label file is imported using BCL to the
corresponding SFS file. This will cause that each SFS test file contain two
annotations. One is the reference annotation generated in step 2 and the other one is
the test annotation.

Step 8 [Evaluation]

Each SFS test file will be analyzed using SFS. A confusion matrix is generated for
each SFS test file. Results are registered for both groups. Then results are tabulated
and graphs are obtained to view and compare the results.

3. Database

SCRIBE database is used in this research. It is multi-speakers database. Each file
is phonetically transcribed and segmented.
The following commands invoke SFS to add Sound file and the corresponding
annotation file into SFS formatted file. This SFS file will act as a container for all
items {Speech file, features data and annotation data}

Slink -i1.01 -f SamplingRate Sound_file sfsfile
Anload -S Annotation_file sfsfile
To apply the same command to all the available samples, BCL is used. The

following is the program written to do the function. All speech files in SCRIB are
listed into a string array called "files". Speech files in SCRIBE have an extension



called "PES". Speech is sampled at 20000 (HZ). All annotation files in SCRIBE have
an extension called "PEA". The Annotation file is located in the same folder as the
corresponding speech file in SCRIBE database. All functionalities for SFS are
packaged into a class library called "SPLib®™. A certain class for processing SFS
commands is implemented. It is called "SFSFile". It is located into "SPLib".

foreach (string file in files)

{
SPLib_SFSFile ¥ = new SPLib.SFSFile();

string sfsFile;

string anFile;

int start = file_LastIndexOf("\\");

int end = File_LastIndexOf(".");

sfsFile = targetdir + file.Substring(start, end - start) + "_sfs";
anFile = file._Substring(0, file_.Length - 1) + “a";
f.open(sfsFile);

T_AddSPItem(file, 20000);

f.AddANItem(anFile);

}

“AddSPItem"” and "AddANItem™" are subroutines that contain the SFS
commands which are previously listed.
Now we have SFS file for each of the database files. This SFS file will act as a
container for speech signal, associated annotation symbols and associated features.
The next operation to be applied on the speech database files is to map the
phonetic annotations into Voiced, Unvoiced and Silent annotations. This is important
for HTK to understand the classes to be trained. Let us denote the new annotation set
with a suitable name for the upcoming references. The new set is called speech type
set (STS). So, STS contains three speech type symbols
1. Voiced speech symbol (VOI).
2. Unvoiced speech symbol (UNV).
3. Silent periods or no speech symbol (SIL).
The first step is to make a MAP file that links each phonetic symbol into a suitable
type symbol in STS. This file is manually created (by human not by program). Part
of the map file is shown below:

# SIL
Hit SIL
%tc SIL
+ SIL
/ SIL
3: Vol
3:? VOl
3:a UNV
3:af UNV
3:Ff UNV
o= VOlI
=1 VOl
=Ix VOlI
=Ix? VOI
=Ixf UNV

The first column is the phonetic symbol and the second column is the map to STS
symbol. A complete version of the map file may be downloaded from [4]. To apply

® SPLIB: Speech lib class library. It is a C# class library by Amr M. Gody to work with SFS and
Matlab. It encapsulates all needed logic and business to work with speech signal using SFS or Matlab.



the map operation to annotation item inside an SFS file, the following command line
is invoked:

Anmap -m mapfile sfsfile
To apply the map operation on all the available SFS files, the following

program is written as BCL.:

foreach (string file in files)

{
SPLib.SFSFile f = new SPLib.SFSFile();
f.open(file);
f.MapAnnotation(mapfile);

}

All SFS files are listed into string array called "files". Then for each "file" in
"files” the map annotation is applied. " MapAnnotation™ IS a subroutine contains the
SFS command that was indicated above.

4. Features extraction

In this section the process of feature extraction will be explained. We have two
different groups as indicated in section 2. SET_A will be designated for VOC19 while
SET_B will be chosen for BTE features. SFS will be used to apply VOC19 on all
available samples. The following is the SFS command to do the function:

vocl9 sfsfile

To apply the above command to all available samples in SET_A, the following
program is written as BCL.:

foreach (string file in Ffiles)

SPLib.SFSFile ¥ = new SPLib.SFSFile(file);
£.V0C19();

All SFS files in SET_A are listed into string array called "files". Then the loop is
applied on each file into files. VOC19 subroutine contains the SFS command that was
indicated above. After this step, each SFS file in SET_A contains a new item that
express VOC19 features. It is called coefficients item.

Now the coefficients item, contained into the SFS file that represents VOC19
features, needs to be exported into an HTK formatted file to be used in further step
during the training of HMM model using HTK. The following SFS command do this
function:

Colist -H sfsfile
To apply the above SFS command on all the available SFS files into SET_A, the
following code snippet in BCL is used:
foreach (string file in files)
SPLib_SFSFile ¥ = new SPLib.SFSFile();

f.open(file);
T_.Co2HTKQ);

}

In the above code snippet, all SFS files in SET_A are listed into a string array
called "files". The function "Co2HTK" contains the SFS command needed to export
the features from the SFS file to HTK formatted file.



It is also needed to extract the annotation item from the SFS file to an HTK
formatted annotation file. This is achieved by calling the following SFS command:

anlist -h -0 sfsfile

Then BCL is used to apply the function on all the available SFS files in SET_A
and SET_B. The following code snippet in BCL is used to achieve this objective:

foreach (string file in files)

{
SPLib.SFSFile f = new SPLib.SFSFile();
f.open(file);
T_.An2HTKQ) ;

}

In the above code snippet, all SFS files in SET_A and in SET_B are listed into
string array called "files” Then the function "An2HTK" is called for each file in the
string array. "An2HTK" contains the SFS command mentioned above.

A parallel process is implemented on SFS files in SET_B. This time the proposed
features (BTE) will be extracted. Matlab instead of SFS is used to implement
BTE features extraction process. The following code snippet is the core part of
Matlab function to implement BTE features extraction.

function [res] = BTE (frame, depth)
nbln = nargin;
nbout = nargout;

if nbln <1 , error("Not enough input arguments.”);
elseif nbln == 1, level = 4;

elseif nbln == 2, level = depth;

end;

if nbout < 1 , error("Not enough output arguments."); end;
t = wpdec(frame, level, "db4", "shannon®);
u = leaves (1);
bt = besttree(t);
v = leaves (bt);
res = box4encoder(V);
end

The function "box4encoder” in the above code snippet is responsible for
encoding Best tree as indicated in [1].

To apply BTE algorithm on all available samples in SET_B, BCL is used. The
following code snippet is used to apply BTE to all available speech samples assigned
for SET_B experiment.

foreach (string file in files)

SPLib_SFSFile ¥ = new SPLib.SFSFile();

f.open(file);

T_ExportWAVQ);

string wfile = file.Substring(0, file.Length - 3) + "WAV";
mat.wav2bte (1, wfile);



All SFS files in SET_B are listed into a string array called files. The speech
waveform is exported from the SFS file to a known format called WAV file format.
This is important to pass the sound file to the Matlab function. The Matlab function
called "wav2bte" is called for each file in the string array "files". For more
information on the function "wav2bte" you may referee to [1].

Now it is needed to prepare the generated BTE files for being used by HTK.
BCL is used to write such a converter. The following cod snippet is written for the
converter function:

public static void BTEtoHTK(string BTEFfile, string htkfile)
{

BTEfile f1 = new BTEFile(BTEFfile);
HTKFile f2 = new HTKFile();
int sampleinl00ns = Convert.Tolnt32 ( fl.SampleLength * l1le-3 / 100e-9);
short bytesperhtksample =Convert.Tolntl6 ( T1l.BytesPerSample * 4 /
fl_BytesPerElemnt); // HTK is 4 bytes/element
T2_create(fl.NumberOfSamples, sampleinlO0Ons, bytesperhtksample,
SPLib_HTKParamKind.USER, htkfile);

int n;

n = F1_NumberOfSamples;

int m = f1_ElementsPerSample;

for (int i = 0; 1 < nj i++)

{

for (int j = 0; jJ < m; j++)
int elm =(int) fl1.ReadIlntl6();
f2.write( elm);
}
3
fl.close();
f2.close();

By the end of the above step, we should have all the training files needed by
HMM for both groups as shown in table3.

Table 1: Snapshot of HMM training files generated so far by the end of feature extraction step.

Group Feature type | HTK feature files HTK annotation files
SET_A VOC19 AAPA0001.dat | AAPAOQO0O1.lab

(24 files) : :

SET B BTE AAPAO0001.htk | AAPAQ0O01.lab

(24 files) : :

5. Training HMM

After features extraction step, it is the time for testing the features into a pattern
recognition process. As indicated in Table 1, two sets of files are prepared. They are
both ready for training HMM models using HTK.

First step in this phase is to design HMM model that best fit the information
needed to be recognized. The model here is 3 states left to right model. This assumes



that the recognized pattern is assumed to have three different parts. The parts are
consequent parts. The first part is the left one and the last part is the right one. This
assumption is very close to the reality as the consecutive sounds is supposed to have a
transition periods at the boundaries and a stable period at the middle. Figure 14
explains the relation between the proposed design model and speech sound. In this
experiment there are there sounds to be recognized {Voiced (VOI), Unvoiced (UNV)
and silent (SIL)}.

SIL ’ VOl ' UNV

Speech stream

Figure 2: Relation between HMM model and speech sounds to be recognized. TL is the leading
transition period and TR is the trailing transition period while P is the stable phone period.

The model contains two non emitting states which appear in gray color in figure 2.
The non emitting states are important in HTK to indicate the entry and the exit points
to the model. Gaussian Probability Distribution Function (PDF) is used in each state
to fit the variability of the sound. To define an HMM model for HTK the following
script is written into a separate text file.

~0

<STREAMINFO> 1 19

<VECSIZE> 19<NULLD><FBANK><DIAGC>

~h "SIL"

<BEG INHMM>

<NUMSTATES> 5

<STATE> 2

<MEAN> 19

1.404372e+001 1.146923e+001 1.089870e+001 7.190041e+000 2.423316e+000 1.263892e+000
1.634800e+000 4.447996e-002 1.654768e+000 3.511177e+000 4.378909e+000 3.915090e+000
8.674143e-002 1.574287e-001 -6.058807e-001 -1.295122e+000 -2.223198e+000 -
2.120687e+000 -9.183334e-001
<VARIANCE> 19

3.086359e+002 2.563524e+002 1.796036e+002 1.263492e+002 8.962412e+001 7.586296e+001
7 .740655e+001 6.912480e+001 8.007733e+001 9.697153e+001 1.057107e+002 1.151898e+002
7.569676e+001 7.488948e+001 6.804313e+001 6.226783e+001 5.014687e+001 5.277541e+001
6.593863e+001
<GCONST> 1.210665e+002
<STATE> 3
<MEAN> 19

-1.550593e+000 -3.269745e+000 -4.287612e+000 -5.243945e+000 -5.796925e+000 -
5.822775e+000 -5.803507e+000 -5.910261e+000 -5.803027e+000 -5.761147e+000 -
5.671880e+000 -5.702754e+000 -5.948490e+000 -5.959568e+000 -5.960902e+000 -
5.970729e+000 -5.993655e+000 -5.991790e+000 -5.961835e+000
<VARIANCE> 19

8.319610e+001 4.678292e+001 2.388155e+001 8.794478e+000 2.526003e+000 1.837515e+000
2.220891e+000 1.482371e+000 2.225448e+000 2.601058e+000 3.406267e+000 3.234430e+000
8.082389e-001 8.287914e-001 8.249093e-001 5.735081e-001 2.694195e-001 3.057849e-001
6.422817e-001
<GCONST> 5.132733e+001
<STATE> 4
<MEAN> 19

4.351817e+000 2.717550e+000 2.140117e+000 1.390050e+000 -1.326494e+000 -1.220001e+000
4_477349e-001 -1.336653e+000 -1.657292e-002 9.020020e-001 2.071208e+000 3.250645e+000
-2.780049e-001 -8.483851e-001 -9.663507e-001 -9.924042e-001 -1.579547e+000 -
1.328159e+000 -4.995179e-001



<VARIANCE> 19

1.096481e+002 9.111847e+001 8.397858e+001 7.596156e+001 5.026793e+001 4.964570e+001
7.590692e+001 6.081587e+001 6.890288e+001 7.740077e+001 8.851939e+001 1.061187e+002
7.655155e+001 7.167074e+001 7.540655e+001 8.126243e+001 7.148788e+001 7.071327e+001
8.899091e+001
<GCONST> 1.172263e+002
<TRANSP> 5

0.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
0.000000e+000 7.436733e-001 2.563267e-001 0.000000e+000 0.000000e+000
0.000000e+000 0.000000e+000 9.159696e-001 8.403045e-002 0.000000e+000
0.000000e+000 0.000000e+000 0.000000e+000 7.777685e-001 2.222315e-001
0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
<ENDHMM>

The above script defines all model parameters. It defines the following items
1- Number of states.
2- Feature type.
3- Transition Matrix.
4- Gaussian PDF parameters in each state (Means and Variance).
5- The name of the class. In the above example it is "SIL".

For more details you may referee to [5].

The above is an initial definition. This definition will be adapted on the vision of
the training data available for the training phase. Two similar HMM models will be
defined to model VOI and UNV sounds.

Now it is important to split the available speech database files into two groups.
One group will be used for training and the other group will be used for test. The
following list is the training set files. It is saved into a text file called "train.Ist".

AAPAO002 .dat
AAPAOOO3.dat
AAPAOO00O4 .dat
ACPAO002 .dat
ACPAO003.dat
ACPAO004 .dat
AEPAO002 .dat
AEPAOO03.dat
AEPAO004 .dat
AFPAO002 .dat
AFPAOOO3.dat
AFPAO004 .dat
AHPAOO002 .dat
AHPAOOO3.dat
AHPAOO04 .dat
AMPAOO0O2 .dat
AMPAOOO3.dat
AMPAOOO4 .dat

Another list will be prepared for test. The following is the test list. It is saved into
a text file called "TEST.LST".
AAPA0001 . dat
ACPA0001 . dat
AEPA0001 .dat
AFPA0001 . dat

AHPAOOO1 .dat
AMPAOOO1 .dat

We have two sets of files for testing the model as indicated in section 4. SET_A
for the filter banks features and SET_B for BTE features. It is important to configure
HTK such that it can understand the type of features under test. The following text is
saved into a text file called "config.txt".



# config.txt - HTK basic parameters
SOURCEFORMAT = HTK

TARGETKIND = FBANK

NATURALREADORDER = T

The configuration file will be provided for any HTK command to configure it to
correctly understand the provided features during the test or the training phases. The
above is the configuration file for Filter banks features. The following is the
configuration file for BTE features type.

# config.txt - HTK basic parameters
SOURCEFORMAT = HTK

TARGETKIND = USER

NATURALREADORDER = T

BTE is a new feature type so that it should be provided to HTK as user defined
type as indicated in the above script "TARGETKIND = USER".

After defining the three HMM models, it is better to initialize them using the
avalible database. This is good before starting the training phase. The following HTK
command is used to intitialize each HMM model:
hinit -T 1 -c config.txt -s train.Ist SIL

hinit -T 1 -c config.txt -s train.lIst VOI
hinit -T 1 -c config.txt -s train.lst UNV

The above three commands should initialize the available three HMM models on

the vision of the available database for each class. The above step will be applied on
the initial models in {SET_A and SET_B}.

Now the models are ready to be trained using the HTK. The following commands
are used to train the models in both groups:

HRest -T 1 -C config.-txt -S train.Ist -1 VOl VOI
HRest -T 1 -C config.-txt -S train.lIst -1 UNV UNV
HRest -T 1 -C config.txt -S train.Ist -1 SIL SIL

The above step may be repeated till log probability approaches to 0 or approaches
to stable value. As soon as the model is well trained, we can start the testing phase. By
the end of this step we should have 6 HMM models as indicated in table 2.

Table 2: HMM files after the training phase.

Group Feature type HMM files

SET A VOC19 VOl

(3 files) (Filter Banks) UNV
SIL

SET B BTE VOl

(3 files) UNV
SIL




6. Testing HMM

As shown in table 2, we have three HMM models for each group of files. Now it is
needed to test the trained models using the available testing files in each group. First it
is needed to prepare dictionary and word net. Dictionary contains all recognized
words while the Word net contains the grammar. Both of them are important for HTK
to get it correctly functioning. The problem we address in this research is a simple
classification problem that may not need grammars. So the word net will be prepared
in such way that matches with our needs. Figure 3 explains the way HTK alters
grammars. The top in the hierarchy is the word. Each word may be expressed in a
network of phones as each phone network represents certain pronunciation for the
associated word. And finally each phone is expressed in HMM model.

TN — TN
e M M e M
’ Word
level

level

Figure 3: HTK recognizer in depth. The abbreviations are explained as W for Word, P for Phone
and S for state. The dotted boundary explains the decomposition of the root element[5].

In our case the network is very simple. It will be constructed statistically from the
available samples. Each sample has a label file that explains sample contents in term
of VOI, UNV and SIL symbols. The following is a part of certain label file:

24917000 26727500 UNV
26727500 30867000 VOI
30867000 32193500 UNV

32193500 32375000 SIL
32375000 32414500 VOI

The first column indicates the beginning of the segment and the second column
indicates the end of the segment. Numbers are in term of 100(ns). For example
24917000 means segment (UNV) will start at24917000 x 100 x 107° =
2.4917(sec). The following HTK command is invoked to build the word net from
the available label files.

HBuild voices.dic voices.net

The above command uses the symbols in the file "voices.dic"” to construct the file
"voices.net" using all label files exist in the same directory. The file "voices.dic" may
be like the following script:

SIL [SIL] SIL

VOl [VOI] VOI
UNV [UNV] UNV

The dictionary file maps the word to its possible pronunciation phone streams.
Here in our example the word is the same as the phone stream. Word VOI is

constructed of phone VOI. In our experiment the word is the same as the phone. Itis a
one level recognition. We do not have further resolutions for each word. The word



between the square brackets is the output symbol. It is used by HTK to provide
suitable output when word is recognized. It is an optional parameter. The network file
generated by "HBuild" command is like the following:

VERSION=1.0

N=7 L=9

1=0 W=INULL

1=1 W=INULL

1=2 W=UNV

1=3 W=SIL

1=4 Ww=VOl

1=5 W=TINULL

1=6 W=INULL

J=0 S=0 E=1 1=0.00
J=1 S=5 E=1 1=0.00
J=2 S=1 E=2 1=-1.10
J=3 S=1 E=3 1=-1.10
J=4 S=1 E=4 1=-1.10
J=5 S=2 E=5 1=0.00
J=6 S=3 E=5 1=0.00
J=7 S=4 E=5 1=0.00
J=8 S=5 E=6 1=0.00

J means joint, S means start, E means end, W means word symbol, | means log
probability and | is node identifier. Figure 4 explains the structure of the word net
generated by "HBuild".

Figure 4: Word net structure.

After constructing the dictionary and word net files, it is possible to start testing
the models. All test files will be fed to HTK for the recognition process. The
following HTK command is used to start testing the models against the available
testing files:

HVite -T 1 -C config.-txt -w voices.net -0 S -S test.Ist voices.dic words.Ist

The above HTK command should be applied to both sets {SET_A and SET_B}.
The file "words.Ist" contains the name of HMM model files. In this experiment it is
like the following script:

SIL
VOl
UNV

After executing the above command, all recognition results will be exported into
files in the same name as the test files with a new file extension ".rec". The generated
".rec" file is just similar to the standard label file. The following is a part of such
generated files:

11800000 13600000 VOI

13600000 30000000 SIL
30000000 31200000 VOI



31200000 32800000 SIL
32800000 36000000 VOI
36000000 37400000 SIL

To start results mining process, it is required to import the recognition files into
the associated SFS files. BCL will be used to apply the import process on all files in

both sets {SET_A and SET_B}. The following code snippet is written to make the
function:

foreach (string file in files)
int index = file_LastIndexOf(".");

string sfsfile = file_Substring(0, index) + "_sfs";
Process a = new Process();

a.Startinfo.FileName = "anload"';
a.StartInfo.Arguments = "-h "+Ffile +" " + sfsfile;
a.Startinfo.RedirectStandardOutput = true;
a.StartInfo.UseShellExecute = false;

a.Start();

a.WaitForeExit();

}

The above code snippet call the following SFS command for each file in the group
to be imported into the SFS file:

anload -h recfile sfsfile

After importing all recognition files into the associated SFS files, each SFS file
will contain two annotation items. The reference annotation item and the recognized
annotation item will be used by SFS to estimate the recognition rate. The results will
be obtained by comparing the reference annotation item to the recognized annotation
item for each 10(ms) of the spoken period. The following two SFS commands
perform the annotation comparison. The output is a confusion matrix. The following
lists the commands:

ancomp -r an.02 -t an.03 -f -m - AcPA0O001.sfs > sl
Conmat sl

The above two commands are applied on all testing SFS files. The generated
confusion matrix is like the one in figure 5.

Processing date : Fri May 23 14:24:11 2008
confusion data from : s2

confusion Matrix

| SIL VOI UNV
R
SIL|1123 12 16
VOI| 151 1536 111
UNV| 79 120 591

Number of matches = 3739
Recognition rate = 86.9%

Figure 5: Confusion matrix for a certain recognition process.

The confusion matrix gives allot of information for the recognition process.
Figure 5 gives such an example of the matrix. In this matrix we can notice that SIL
sounds is recognized as SIL in 1123 matches out of (1123+12+16 = 1151). SIL is
recognized as VOI for 12 times and as UNV for 16 times.

7. Results

The results of this research will be analyzed in this section. We have two sets of
files. SET_A deals with Filter banks (VOC19) and SET_B deals with Best Tree 4
point Encoded features (BTE).



_ 100
S 80 —
(]
g 60 —
g 40 -
fut 20 L
& 0 mBTE
g
9 VOC19
8 S & & & & &
3 QS QS S QS

FFLFLFELE

e e e v N e
Sample name

Figure 6: Comparison chart of overall system performance.

Figure 6 indicates the overall performance. As it is the first round in using BTE,
Filter Banks (VOC19) features indicate a significant better performance than BTE.
Many enhancements still may be added in the future to go around the drawback in the
currently proposed BTE features. The detailed analysis of the results is introduced
below to figure out the obtained results. As it will be shown below, the features failed
in recognizing the UNV sounds while it makes comparable results in recognizing SIL
and VOC. Figures 7, 8 and 9 provide the comparison results for the three classes
under test on both features {BTE and VOC19}.

80

9
S 60— — 5
&
£ a0 — —p5p— 1 — 1
@
£ 20— — —|— — — - EBIEUNV
[-%

= e w2 m
3 0 VOC19 UNV
S T T T
3 SFFFHFSHS S

Q‘*‘QQ Q¥ QVQQ‘S)Q‘S &

¢ &I S ¥

100

_ mBTEVOI

VOC19 Vol

Success Percentage(%)

Figure 8: Comparison between BTE and Filter banks in recognizing (VOI) sound.



120
100

W BTE SIL
VOC19 SIL

Success Percentage(%)
N B OGO
oo 00
) Ly
g,
(#)
5 2
|

Figure 9: Comparison between BTE and Filter banks in recognizing (SIL).

8. Conclusions

This is a preliminary study to introduce BTE features. Many enhancements may

be included in the future to minimize the confusion results being discussed in section
1.

9. References

[1] Amr M. Gody,"Wavelet Packets Best Tree 4-Points Encoded (BTE) Features”,
The 8" Conference on Language Engineering.2008, Cairo, Egypt.

[2] Mel scale, http://en.wikipedia.org/wiki/Mel_scale

[3] Giridharan, K. Smolenski, B.Y. Yantorno, R.E, "Statistical and model based
approach to unvoiced speech detection”, Intelligent Signal Processing and
Communication Systems, 2004. ISPACS 2004. Proceedings of 2004
International Symposium, On page(s): 816 — 821

[4] University College London:
http://lwww.phon.ucl.ac.uk/resource/sfs/howto/htk.htm.

[5] http://htk.eng.cam.ac.uk/




