
Voiced/Unvoiced and Silent Classification Using HMM
Classifier based on Wavelet Packets BTE features

 Amr M. Gody1
Fayoum University

Abstract
Wavelet Packets Best Tree Encoded (BTE) features is used here as base features

for HMM classifier. The research aimed to introduce the newly designed features that
are discussed in [1]. The considered problem is Voiced, Unvoiced and Silent
classification. Comparison to the 19 filter banks features is provided. Although it is
simple and straight forward, BTE makes comparable results to the 19 elements
features vector based on filters bank. A very accurate hand labeled database called
SCRIBE is used. Voiced sounds are recognized in 81% success rate. Silent periods
are detected in 84.5% success rate. The unvoiced sounds are not recognized using the
proposed features. It gives a 5.5% success rate. This low rate of unvoiced detection
affects the overall performance. The overall performance of 64.5% is achieved. This
overall performance is expected to be dramatically changed in case of adding some
unvoiced attributes to BTE.

1. Introduction
Using good features is the key of accurate speech recognizer. Recognizer’s

success depends on three main factors. The first factor is the database used in the
training phase. The second factor is the features used to train the model. The third
factor is the mathematical model used to recognize the different classes in the speech
signal.

BTE features are discussed in [1]. BTE inherits some human attributes by
considering the human hearing mechanism in processing the received speech.
Received speech’s stream is classified into logarithmic bands before it is being
processed by human brain [1]. This human nature is described by Mel scale as shown
in figure 1.

Figure 1: Mel scale curve that models the human hearing response to different frequencies [2].

1 Department of Electrical Engineering, Email: amg00@fayoum.edu.eg

Mel frequency reflects what human can discriminate. It is a scale that reflects what
human can hear. As shown in figure 1, from 4000(HZ) to 8000 (HZ) only 1000 (Mel)
change while from 0(HZ) to 1000 (HZ) a 1000(Mel) change is appeared. The curve
in low frequency till 1000(HZ) indicates that the human ear can be highly
discriminative. This property starts to be degraded toward the higher frequencies. As
shown in figure 1, change after 4000(Hz) in frequency tends to make almost very low
change in Mel scale. This phenomenon indicates that human ear is much sensitive to
low frequencies than to high frequencies. It is expected that most of the information
contained into speech is located in the low frequency area of the total bandwidth of
speech signal. Recognizers based on Filter banks tries to satisfy this logarithmic
relation that was explained by figure 1. It is not wise to handle the frequency band in
a linear manner while it is not like that in human hearing mechanism.

The objective of this paper is to test BTE through a comparative study. This

research is a preliminary work to introduce Wavelet Packets Best Tree 4 point
Encoded (BTE) features. The database is selected to be very accurate hand labeled
database. SCRIB2 database is selected. SCRIBE consists of a mixture of read speech
and spontaneous speech. The read speech material consists of sentences selected from
a set of 200 "phonetically rich" sentences and 460 "phonetically compact" sentences
and a two-minute continuous passage. Hidden Markov Model (HMM) is chosen as
the mathematical model of the speech recognizer. This model is chosen for its good
reputation in speech recognition domain. The model is implemented using The
Hidden Markov Model Toolkit HTK3. Signal processing, system evaluation and
results preparation are calculated using Speech Filling System SFS4. All programming
and logic are made using Microsoft C Sharp5 (C#).

Voiced, Unvoiced and silent are three main classes in any spoken language.
Almost all phonetics is either Voiced or unvoiced. Silent periods are those periods
where no speech exists. The detection of unvoiced speech in the presence of additive
background noise is complicated by the fact that unvoiced speech is very similar to
white noise [3]. The problem of detecting unvoiced appears in this preliminary
research. It is almost confused in equal proportion between Voiced and silent.

2. Framework
In this section the framework of this research will be fully explained. The system

has many actors/ resources.
1. SFS platform.
2. HTK platform.
3. Batch and Cue Logic platform (BCL). Microsoft C# is used to implement

BCL platform.
4. Hand labeled Database (SCRIBE).
5. Matlab platform.

2 SCRIBE database: www.phon.ucl.ac.uk/resource/scribe
3 Hidden Markov Model Toolkit HTK: http://htk.eng.cam.ac.uk/
4 Speech Filling System SFS: http://www.phon.ucl.ac.uk/resource/sfs/
5 Microsoft C# is one of the programming languages by Microsoft Corporation. C# implements Object
Oriented Programming (OOP). It bears both simplicity and advanced programming technique. It is
considered the number one language nowadays. For more information go to
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)

Step 1 [Creating SFS files]
BCL is used to import all sound files provided by the SCRIBE into SFS formatted

files. Also BCL is used to import all corresponding label files into the same SFS files.
After this step each SFS file contains waveform item and annotation item.

Step 2 [Mapping phonetic labels into Voiced, Unvoiced and Silent labels]
A new map file is constructed. The map file contains the map for each phonetic

symbol into one of the three classes {VOI, UNV and SIL}. Symbols are VOI for
Voiced sound, UNV for Unvoiced sound and SIL for Silent or pauses. SFS is used to
apply the map to SFS file. Then BCL is used to apply the SFS map to all SFS files.

Step 3 [Preparing two different groups for two parallel experiments]
SFS files are cloned into two sets. This is to use each SET into different

experiment. SET_A will be used in VOC19 feature experiment and SET_B will be
used in BTE features experiment.

Step 4 [Apply feature extraction function on all SFS files]
SET_A: SFS is used to apply VOC19 to the available samples.
SET_B: Matlab is used to extract BTE features. BCL is used to apply the Matlab

function to all available samples. Then finally SFS is used to import all feature
vectors into the SFS files.

Step 5 [HMM preparation]
SET_A: Three HMM models are prepared. Each model is 3 states. HTK is used to

initialize each model based on training samples, label files and feature vector files.
SET_B: The same process as in SET_A is followed.
Step 6 [Training HMM models]
In both sets, HTK is used to train the available HMM models. The training

depends on the feature vector files, label files and selected training files list. Training
continues till a convergence in log probability happened for each model.

Step 7 [Testing HMM models against test files]
Test files are some SFS files that were never being used in the training phase.

HTK is used to test HMM models against the selected test files in both groups. HTK
generates label file for each test file. Each label file is imported using BCL to the
corresponding SFS file. This will cause that each SFS test file contain two
annotations. One is the reference annotation generated in step 2 and the other one is
the test annotation.

Step 8 [Evaluation]
Each SFS test file will be analyzed using SFS. A confusion matrix is generated for

each SFS test file. Results are registered for both groups. Then results are tabulated
and graphs are obtained to view and compare the results.

3. Database
SCRIBE database is used in this research. It is multi-speakers database. Each file

is phonetically transcribed and segmented.
 The following commands invoke SFS to add Sound file and the corresponding

annotation file into SFS formatted file. This SFS file will act as a container for all
items {Speech file, features data and annotation data}

Slink -i1.01 -f SamplingRate Sound_file sfsfile

Anload -S Annotation_file sfsfile
To apply the same command to all the available samples, BCL is used. The

following is the program written to do the function. All speech files in SCRIB are
listed into a string array called "files". Speech files in SCRIBE have an extension

called "PES". Speech is sampled at 20000 (HZ). All annotation files in SCRIBE have
an extension called "PEA". The Annotation file is located in the same folder as the
corresponding speech file in SCRIBE database. All functionalities for SFS are
packaged into a class library called "SPLib6". A certain class for processing SFS
commands is implemented. It is called "SFSFile". It is located into "SPLib".

foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile();
 string sfsFile;
 string anFile;
 int start = file.LastIndexOf('\\');
 int end = file.LastIndexOf('.');
 sfsFile = targetdir + file.Substring(start, end - start) + ".sfs";
 anFile = file.Substring(0, file.Length - 1) + "a";
 f.open(sfsFile);
 f.AddSPItem(file, 20000);
 f.AddANItem(anFile);
 }

 "AddSPItem" and "AddANItem" are subroutines that contain the SFS
commands which are previously listed.

Now we have SFS file for each of the database files. This SFS file will act as a
container for speech signal, associated annotation symbols and associated features.

The next operation to be applied on the speech database files is to map the
phonetic annotations into Voiced, Unvoiced and Silent annotations. This is important
for HTK to understand the classes to be trained. Let us denote the new annotation set
with a suitable name for the upcoming references. The new set is called speech type
set (STS). So, STS contains three speech type symbols

1. Voiced speech symbol (VOI).
2. Unvoiced speech symbol (UNV).
3. Silent periods or no speech symbol (SIL).

The first step is to make a MAP file that links each phonetic symbol into a suitable
type symbol in STS. This file is manually created (by human not by program). Part
of the map file is shown below:

SIL
SIL
%tc SIL
+ SIL
/ SIL
3: VOI
3:? VOI
3:a UNV
3:af UNV
3:f UNV
3:~ VOI
=l VOI
=lx VOI
=lx? VOI
=lxf UNV

The first column is the phonetic symbol and the second column is the map to STS
symbol. A complete version of the map file may be downloaded from [4]. To apply

6 SPLIB: Speech lib class library. It is a C# class library by Amr M. Gody to work with SFS and
Matlab. It encapsulates all needed logic and business to work with speech signal using SFS or Matlab.

the map operation to annotation item inside an SFS file, the following command line
is invoked:

Anmap -m mapfile sfsfile

 To apply the map operation on all the available SFS files, the following
program is written as BCL:
foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile();
 f.open(file);
 f.MapAnnotation(mapfile);
 }

 All SFS files are listed into string array called "files". Then for each "file" in
"files" the map annotation is applied. " MapAnnotation " is a subroutine contains the
SFS command that was indicated above.

4. Features extraction
In this section the process of feature extraction will be explained. We have two

different groups as indicated in section 2. SET_A will be designated for VOC19 while
SET_B will be chosen for BTE features. SFS will be used to apply VOC19 on all
available samples. The following is the SFS command to do the function:

voc19 sfsfile

To apply the above command to all available samples in SET_A, the following
program is written as BCL:
foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile(file);
 f.VOC19();
 }

All SFS files in SET_A are listed into string array called "files". Then the loop is
applied on each file into files. VOC19 subroutine contains the SFS command that was
indicated above. After this step, each SFS file in SET_A contains a new item that
express VOC19 features. It is called coefficients item.

Now the coefficients item, contained into the SFS file that represents VOC19
features, needs to be exported into an HTK formatted file to be used in further step
during the training of HMM model using HTK. The following SFS command do this
function:

Colist -H sfsfile

To apply the above SFS command on all the available SFS files into SET_A, the
following code snippet in BCL is used:
foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile();
 f.open(file);
 f.Co2HTK();

 }

In the above code snippet, all SFS files in SET_A are listed into a string array
called "files". The function "Co2HTK" contains the SFS command needed to export
the features from the SFS file to HTK formatted file.

It is also needed to extract the annotation item from the SFS file to an HTK
formatted annotation file. This is achieved by calling the following SFS command:

anlist -h -O sfsfile

 Then BCL is used to apply the function on all the available SFS files in SET_A
and SET_B. The following code snippet in BCL is used to achieve this objective:

foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile();
 f.open(file);
 f.An2HTK();
 }

In the above code snippet, all SFS files in SET_A and in SET_B are listed into
string array called "files" Then the function "An2HTK" is called for each file in the
string array. "An2HTK" contains the SFS command mentioned above.

A parallel process is implemented on SFS files in SET_B. This time the proposed

features (BTE) will be extracted. Matlab instead of SFS is used to implement
BTE features extraction process. The following code snippet is the core part of
Matlab function to implement BTE features extraction.

function [res] = BTE (frame, depth)
 nbIn = nargin;
 nbout = nargout;
 if nbIn < 1 , error('Not enough input arguments.');
 elseif nbIn == 1, level = 4;
 elseif nbIn == 2, level = depth;
 end;
 if nbout < 1 , error('Not enough output arguments.'); end;
 t = wpdec(frame,level,'db4','shannon');
 u = leaves (t);
 bt = besttree(t);
 v = leaves (bt);
 res = box4encoder(v);
end

 The function "box4encoder" in the above code snippet is responsible for
encoding Best tree as indicated in [1].

 To apply BTE algorithm on all available samples in SET_B, BCL is used. The
following code snippet is used to apply BTE to all available speech samples assigned
for SET_B experiment.
foreach (string file in files)
 {
 SPLib.SFSFile f = new SPLib.SFSFile();
 f.open(file);
 f.ExportWAV();
 string wfile = file.Substring(0, file.Length - 3) + "WAV";
 mat.wav2bte (1, wfile);

 }

All SFS files in SET_B are listed into a string array called files. The speech
waveform is exported from the SFS file to a known format called WAV file format.
This is important to pass the sound file to the Matlab function. The Matlab function
called "wav2bte" is called for each file in the string array "files". For more
information on the function "wav2bte" you may referee to [1].

 Now it is needed to prepare the generated BTE files for being used by HTK.
BCL is used to write such a converter. The following cod snippet is written for the
converter function:

public static void BTEtoHTK(string BTEfile, string htkfile)
 {

BTEfile f1 = new BTEfile(BTEfile);
HTKFile f2 = new HTKFile();
int samplein100ns = Convert.ToInt32 (f1.SampleLength * 1e-3 / 100e-9);
short bytesperhtksample =Convert.ToInt16 (f1.BytesPerSample * 4 /
f1.BytesPerElemnt); // HTK is 4 bytes/element
f2.create(f1.NumberOfSamples, samplein100ns, bytesperhtksample,
SPLib.HTKParamKind.USER, htkfile);
 int n;
 n = f1.NumberOfSamples;
 int m = f1.ElementsPerSample;
 for (int i = 0; i < n; i++)
 {

 for (int j = 0; j < m; j++)
 {
 int elm =(int) f1.ReadInt16();
 f2.write(elm);
 }
 }
 f1.close();
 f2.close();
 }

By the end of the above step, we should have all the training files needed by
HMM for both groups as shown in table3.
Table 1: Snapshot of HMM training files generated so far by the end of feature extraction step.

Group Feature type HTK feature files HTK annotation files
SET_A
(24 files)

VOC19 AAPA0001.dat
 ڭ

AAPA0001.lab
 ڭ

SET_B
(24 files)

BTE AAPA0001.htk
 ڭ

AAPA0001.lab
 ڭ

5. Training HMM
After features extraction step, it is the time for testing the features into a pattern

recognition process. As indicated in Table 1, two sets of files are prepared. They are
both ready for training HMM models using HTK.

First step in this phase is to design HMM model that best fit the information
needed to be recognized. The model here is 3 states left to right model. This assumes

that
con
assu
tran
exp
exp
and

Figu
tran

T

The
to th
to f
scrip
~o
<STR
<VEC
~h "
<BEG
<NUM
<STA
<MEA
 1.4
1.63
8.67
2.12
<VAR
 3.0
7.74
7.56
6.59
<GCO
<STA
<MEA
 -1.
5.82
5.67
5.97
<VAR
 8.3
2.22
8.08
6.42
<GCO
<STA
<MEA
 4.3
4.47
-2.7
1.32

t the recogn
sequent par
umption is v
nsition perio
lains the re
eriment the
silent (SIL

ure 2: Relatio
nsition period

The model
e non emitti
he model. G

fit the variab
pt is written

REAMINFO> 1
CSIZE> 19<NU
"SIL"
GINHMM>
MSTATES> 5
ATE> 2
AN> 19
404372e+001
34800e+000 4
74143e-002 1
20687e+000 -
RIANCE> 19
086359e+002
40655e+001 6
69676e+001 7
93863e+001
ONST> 1.2106
ATE> 3
AN> 19
550593e+000

22775e+000 -
71880e+000 -
70729e+000 -
RIANCE> 19
319610e+001
20891e+000 1
82389e-001 8
22817e-001
ONST> 5.1327
ATE> 4
AN> 19
351817e+000
77349e-001 -
780049e-001
28159e+000 -

nized patter
rts. The firs
very close t
ods at the
elation betw
ere are there
)}.

on between H
d and TR is th

contains tw
ng states ar
Gaussian Pr
bility of the
n into a sepa

19
ULLD><FBANK>

1.146923e+0
.447996e-00
.574287e-00

-9.183334e-0

2.563524e+0
6.912480e+00
.488948e+00

665e+002

 -3.269745e
-5.803507e+0
-5.702754e+0
-5.993655e+0

4.678292e+0
.482371e+00
.287914e-00

33e+001

2.717550e+0
-1.336653e+0
-8.483851e-

-4.995179e-0

rn is assum
st part is the
o the reality
boundaries

ween the pro
e sounds to

HMM model
he trailing tra

wo non emitt
re important
robability D
e sound. To
arate text fil

<DIAGC>

01 1.089870e
2 1.654768e+
1 -6.058807e
01

02 1.796036e
1 8.007733e+
1 6.804313e+

+000 -4.2876
00 -5.910261
00 -5.948490
00 -5.991790

01 2.388155e
0 2.225448e+
1 8.249093e-

00 2.140117e
00 -1.657292
001 -9.66350
01

med to have
e left one a
y as the con

and a stab
oposed desi
be recogniz

and speech s
ansition perio

ting states w
t in HTK to

Distribution
o define an
le.

e+001 7.1900
+000 3.51117
e-001 -1.295

e+002 1.2634
+001 9.69715
+001 6.22678

612e+000 -5.
1e+000 -5.80
0e+000 -5.95
0e+000 -5.96

e+001 8.7944
+000 2.60105
-001 5.73508

e+000 1.3900
2e-002 9.020
07e-001 -9.9

e three diff
and the last
nsecutive so
ble period a
ign model a
zed {Voiced

sounds to be
od while P is

which appea
o indicate th

Function (
HMM mod

041e+000 2.4
77e+000 4.37
5122e+000 -2

492e+002 8.9
53e+001 1.05
83e+001 5.01

.243945e+000
03027e+000 -
59568e+000 -
61835e+000

478e+000 2.5
58e+000 3.40
81e-001 2.69

050e+000 -1.
0020e-001 2.
924042e-001

ferent parts
part is the

ounds is sup
at the midd
and speech
d (VOI), Un

recognized.
the stable ph

ar in gray co
he entry and
PDF) is use
del for HTK

423316e+000
78909e+000 3
2.223198e+00

962412e+001
57107e+002 1
14687e+001 5

0 -5.796925e
-5.761147e+0
-5.960902e+0

526003e+000
06267e+000 3
94195e-001 3

326494e+000
071208e+000
-1.579547e+

. The parts
right one.

pposed to ha
dle. Figure
sound. In

nvoiced (U

TL is the lea

hone period.

olor in figu
d the exit po
ed in each
K the follow

1.263892e+0
.915090e+00
0 -

7.586296e+0
.151898e+00
.277541e+00

e+000 -
00 -
00 -

1.837515e+0
.234430e+00
.057849e-00

 -1.220001e
 3.250645e+

+000 -

s are
This

ave a
e 14
this

UNV)

ading

re 2.
oints
state
wing

00
0

01
2
1

00
0
1

+000
000

<VARIANCE> 19
 1.096481e+002 9.111847e+001 8.397858e+001 7.596156e+001 5.026793e+001 4.964570e+001
7.590692e+001 6.081587e+001 6.890288e+001 7.740077e+001 8.851939e+001 1.061187e+002
7.655155e+001 7.167074e+001 7.540655e+001 8.126243e+001 7.148788e+001 7.071327e+001
8.899091e+001
<GCONST> 1.172263e+002
<TRANSP> 5
 0.000000e+000 1.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
 0.000000e+000 7.436733e-001 2.563267e-001 0.000000e+000 0.000000e+000
 0.000000e+000 0.000000e+000 9.159696e-001 8.403045e-002 0.000000e+000
 0.000000e+000 0.000000e+000 0.000000e+000 7.777685e-001 2.222315e-001
 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000 0.000000e+000
<ENDHMM>

The above script defines all model parameters. It defines the following items
1- Number of states.
2- Feature type.
3- Transition Matrix.
4- Gaussian PDF parameters in each state (Means and Variance).
5- The name of the class. In the above example it is "SIL".

For more details you may referee to [5].
The above is an initial definition. This definition will be adapted on the vision of

the training data available for the training phase. Two similar HMM models will be
defined to model VOI and UNV sounds.

Now it is important to split the available speech database files into two groups.
One group will be used for training and the other group will be used for test. The
following list is the training set files. It is saved into a text file called "train.lst".
AAPA0002.dat
AAPA0003.dat
AAPA0004.dat
ACPA0002.dat
ACPA0003.dat
ACPA0004.dat
AEPA0002.dat
AEPA0003.dat
AEPA0004.dat
AFPA0002.dat
AFPA0003.dat
AFPA0004.dat
AHPA0002.dat
AHPA0003.dat
AHPA0004.dat
AMPA0002.dat
AMPA0003.dat
AMPA0004.dat

Another list will be prepared for test. The following is the test list. It is saved into
a text file called "TEST.LST".
AAPA0001.dat
ACPA0001.dat
AEPA0001.dat
AFPA0001.dat
AHPA0001.dat
AMPA0001.dat

We have two sets of files for testing the model as indicated in section 4. SET_A

for the filter banks features and SET_B for BTE features. It is important to configure
HTK such that it can understand the type of features under test. The following text is
saved into a text file called "config.txt".

config.txt - HTK basic parameters
SOURCEFORMAT = HTK
TARGETKIND = FBANK
NATURALREADORDER = T

The configuration file will be provided for any HTK command to configure it to

correctly understand the provided features during the test or the training phases. The
above is the configuration file for Filter banks features. The following is the
configuration file for BTE features type.
config.txt - HTK basic parameters
SOURCEFORMAT = HTK
TARGETKIND = USER
NATURALREADORDER = T

BTE is a new feature type so that it should be provided to HTK as user defined
type as indicated in the above script "TARGETKIND = USER".

After defining the three HMM models, it is better to initialize them using the
avalible database. This is good before starting the training phase. The following HTK
command is used to intitialize each HMM model:
hinit -T 1 -c config.txt -s train.lst SIL
hinit -T 1 -c config.txt -s train.lst VOI
hinit -T 1 -c config.txt -s train.lst UNV

The above three commands should initialize the available three HMM models on
the vision of the available database for each class. The above step will be applied on
the initial models in {SET_A and SET_B}.

Now the models are ready to be trained using the HTK. The following commands

are used to train the models in both groups:
HRest -T 1 -C config.txt -S train.lst -l VOI VOI
HRest -T 1 -C config.txt -S train.lst -l UNV UNV
HRest -T 1 -C config.txt -S train.lst -l SIL SIL

The above step may be repeated till log probability approaches to 0 or approaches
to stable value. As soon as the model is well trained, we can start the testing phase. By
the end of this step we should have 6 HMM models as indicated in table 2.

Table 2: HMM files after the training phase.

Group Feature type HMM files
SET_A
(3 files)

VOC19
(Filter Banks)

VOI
UNV
SIL

SET_B
(3 files)

BTE VOI
UNV
SIL

6. Testing HMM
As shown in table 2, we have three HMM models for each group of files. Now it is

needed to test the trained models using the available testing files in each group. First it
is needed to prepare dictionary and word net. Dictionary contains all recognized
words while the Word net contains the grammar. Both of them are important for HTK
to get it correctly functioning. The problem we address in this research is a simple
classification problem that may not need grammars. So the word net will be prepared
in such way that matches with our needs. Figure 3 explains the way HTK alters
grammars. The top in the hierarchy is the word. Each word may be expressed in a
network of phones as each phone network represents certain pronunciation for the
associated word. And finally each phone is expressed in HMM model.

Figure 3: HTK recognizer in depth. The abbreviations are explained as W for Word, P for Phone

and S for state. The dotted boundary explains the decomposition of the root element[5].

In our case the network is very simple. It will be constructed statistically from the
available samples. Each sample has a label file that explains sample contents in term
of VOI, UNV and SIL symbols. The following is a part of certain label file:
24917000 26727500 UNV
26727500 30867000 VOI
30867000 32193500 UNV
32193500 32375000 SIL
32375000 32414500 VOI

The first column indicates the beginning of the segment and the second column
indicates the end of the segment. Numbers are in term of 100(ns). For example
24917000 means segment (UNV) will start at24917000 ൈ 100 ൈ 10ିଽ ൌ
2.4917ሺܿ݁ݏሻ. The following HTK command is invoked to build the word net from
the available label files.
HBuild voices.dic voices.net

The above command uses the symbols in the file "voices.dic" to construct the file
"voices.net" using all label files exist in the same directory. The file "voices.dic" may
be like the following script:
SIL [SIL] SIL
VOI [VOI] VOI
UNV [UNV] UNV

The dictionary file maps the word to its possible pronunciation phone streams.
Here in our example the word is the same as the phone stream. Word VOI is
constructed of phone VOI. In our experiment the word is the same as the phone. It is a
one level recognition. We do not have further resolutions for each word. The word

between the square brackets is the output symbol. It is used by HTK to provide
suitable output when word is recognized. It is an optional parameter. The network file
generated by "HBuild" command is like the following:
 VERSION=1.0
N=7 L=9
I=0 W=!NULL
I=1 W=!NULL
I=2 W=UNV
I=3 W=SIL
I=4 W=VOI
I=5 W=!NULL
I=6 W=!NULL
J=0 S=0 E=1 l=0.00
J=1 S=5 E=1 l=0.00
J=2 S=1 E=2 l=-1.10
J=3 S=1 E=3 l=-1.10
J=4 S=1 E=4 l=-1.10
J=5 S=2 E=5 l=0.00
J=6 S=3 E=5 l=0.00
J=7 S=4 E=5 l=0.00
J=8 S=5 E=6 l=0.00

J means joint, S means start, E means end, W means word symbol, l means log
probability and I is node identifier. Figure 4 explains the structure of the word net
generated by "HBuild".

Figure 4: Word net structure.

After constructing the dictionary and word net files, it is possible to start testing
the models. All test files will be fed to HTK for the recognition process. The
following HTK command is used to start testing the models against the available
testing files:
HVite -T 1 -C config.txt -w voices.net -o S -S test.lst voices.dic words.lst

The above HTK command should be applied to both sets {SET_A and SET_B}.
The file "words.lst" contains the name of HMM model files. In this experiment it is
like the following script:
SIL
VOI
UNV

After executing the above command, all recognition results will be exported into
files in the same name as the test files with a new file extension ".rec". The generated
".rec" file is just similar to the standard label file. The following is a part of such
generated files:
11800000 13600000 VOI
13600000 30000000 SIL
30000000 31200000 VOI

3120
3280
3600

T
the
both
func
fore

T
to b
anlo

A
will
ann
be o
item
perf
lists
anco
Conm

T
con

Figu
soun
reco

7.
T

files
poin

00000 32800
00000 36000
00000 37400

To start res
associated

h sets {SET
ction:
each (strin
 {

 }

The above c
be imported
oad -h recf

After impo
l contain tw
otation item
obtained by

m for each
form the an
s the comma
omp -r an.0
mat s1

The above
fusion matr

The confu
ure 5 gives
nds is recog
ognized as V

Results
The results
s. SET_A d
nt Encoded

0000 SIL
0000 VOI
0000 SIL

sults mining
SFS files. B

T_A and SE

ng file in

 int inde
 string
 Process
 a.Start
 a.Start
 a.Start
 a.Start
 a.Start
 a.WaitFo

code snippe
into the SF
file sfsf

rting all rec
wo annotatio
m will be us
y comparing

10(ms) of
nnotation co
ands:
02 -t an.0

two comm
rix is like th

Figure 5: C

usion matrix
such an ex

gnized as S
VOI for 12

of this rese
deals with
features (B

g process, i
BCL will be
ET_B}. The

files)

ex = file.
sfsfile =
a = new P

Info.FileN
Info.Argum
Info.Redir
Info.UseSh
();
orExit();

et call the fo
FS file:
ile

cognition fi
on items. T
sed by SFS
g the referen
f the spoke
omparison.

3 -f -m - -

mands are a
he one in fig

Confusion ma

x gives all
xample of th
SIL in 1123
times and a

earch will b
Filter bank
TE).

it is require
e used to ap
e following

LastIndexO
file.Subst
rocess();
ame = "anl
ents = "-h
ectStandar
ellExecute

ollowing SF

files into the
he referenc
to estimate

nce annotat
en period.
The output

- AcPA0001.s

applied on
gure 5.

atrix for a cer

lot of infor
he matrix. I
3 matches o
as UNV for

be analyzed
ks (VOC19)

ed to impor
pply the im
g code snipp

f('.');
ring(0, in

oad";
"+file +"

dOutput =
= false;

FS comman

e associated
ce annotatio
e the recogn
tion item to
The follow
is a confus

sfs > s1

all testing

rtain recognit

rmation for
In this matr
out of (112
16 times.

d in this sec
) and SET_

t the recogn
mport proces

pet is writt

dex) + ".s

" + sfsfi
true;

nd for each f

d SFS files
on item and
nition rate. T

the recogn
wing two S
sion matrix

SFS files.

tion process.

r the recog
rix we can
3+12+16 =

ction. We h
_B deals wi

nition files
ss on all file
ten to make

fs";

le;

file in the gr

s, each SFS
d the recogn
The results

nized annota
SFS comma
. The follow

The gener

gnition proc
notice that

= 1151). SI

have two set
ith Best Tr

into
es in
e the

roup

S file
nized

will
ation
ands
wing

rated

cess.
SIL

IL is

ts of
ree 4

Figure 6: Comparison chart of overall system performance.

Figure 6 indicates the overall performance. As it is the first round in using BTE,
Filter Banks (VOC19) features indicate a significant better performance than BTE.
Many enhancements still may be added in the future to go around the drawback in the
currently proposed BTE features. The detailed analysis of the results is introduced
below to figure out the obtained results. As it will be shown below, the features failed
in recognizing the UNV sounds while it makes comparable results in recognizing SIL
and VOC. Figures 7, 8 and 9 provide the comparison results for the three classes
under test on both features {BTE and VOC19}.

Figure 7: Comparison between BTE and Filter banks in recognizing (UNV) sound.

Figure 8: Comparison between BTE and Filter banks in recognizing (VOI) sound.

0
20
40
60
80

100

Su
cc
es
s
Pe

rc
en

ta
ge
(%

)

Sample name

BTE

VOC19

Figure 9: Comparison between BTE and Filter banks in recognizing (SIL).

8. Conclusions
This is a preliminary study to introduce BTE features. Many enhancements may

be included in the future to minimize the confusion results being discussed in section
7.

9. References
[1] Amr M. Gody,"Wavelet Packets Best Tree 4-Points Encoded (BTE) Features",

The 8th Conference on Language Engineering.2008, Cairo, Egypt.
[2] Mel scale, http://en.wikipedia.org/wiki/Mel_scale
[3] Giridharan, K. Smolenski, B.Y. Yantorno, R.E, "Statistical and model based

approach to unvoiced speech detection", Intelligent Signal Processing and
Communication Systems, 2004. ISPACS 2004. Proceedings of 2004
International Symposium, On page(s): 816 – 821

[4] University College London:
http://www.phon.ucl.ac.uk/resource/sfs/howto/htk.htm.

[5] http://htk.eng.cam.ac.uk/

