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Abstract

Abstract
The aim of this research is to design an Arabic recognition system

based on wavelet transform that is highly reliable even in the presence of

noise. There are many achievementsin thisresearch:

1. New techniques based on wavelet transform are
implemented to classify the speech signal into voiced sounds
and unvoiced sounds. The system indicates high sensitivity to

voice changes even in case of low signal to noise ratio.

2. New technique for end points detection based on wavelet
transform is achieved. The system can work in a poor signal
to noise ratio (S/N) with a good accuracy of determining the
speech boundaries. At about 9dB it gives about 91% of

accuracy.

3. New technique for pitch estimation based on wavelet

transform is achieved.

4. New technique for vowel/consonant classification is
achieved using wavelet transform. The system gives a

probability of success more than 95% at 9 dB S/N.

5. New technique for vowel recognition based on wavelet
transform is achieved. The gives a recognition rate of about
90%.

The research is divided into smaller objectives. Each one is totally

studied as a separate research point.

o Speech classification into voiced and unvoiced segments.
Speech signal is classified into voiced speech or unvoiced speech

using wavelet transform. The effect of noise is taken into

1st



Abstract

consideration and a good classification accuracy is achieved even in

case of very low signal to noise ratio.

o End points detection. In this part, the problem is treated using
wavelet transform as features of the speech signal. The problem is

handled using different methods which are:
Correlation between wavelet bands.
Using mathematical classifier.
Using neural network.
All methods are tested in the presence of noise.

o Pitch estimation is one of the fundamental properties that is
very important in speech recognition. The problem is handled here
using a new algorithm based on wavelet transform. The correlation
between wavelet bands gives indication about pitch pulses. The

system is also tested in case of low signal to noise ratio.

o Recognition of Arabic phonemes. In this part the problem is
divided into two parts. The first one is to classify the vowels and the
consonants inside the utterance. This problem is manipulated using the
wavelet transform and the mathematical classification of wavelet

features.

The second part is to discriminate the vowels itself. In this part the
wavelet transform and mathematical classification is used to
recognize the Arabic vowels. Vowels are monitored in six frequency

bands using wavelet features.

The first three objectives have been implemented by different ways

in many languages including the Arabic language. The practical

2nd
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constrains are taken into consideration. New methods are introduced.
Practical results have been achieved in the first three objectives.
Recognition of Arabic vowels gives best results while consonant
phonemes will be considered in future work. The results, which are
obtained here, give a promise that the realistic-unlimited-real time speech
dictation machine is in the way.

3rd
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Chapter 1
Speech signal and wavelet transform




Speech signal and Wavelet transform

1.1 Introduction
Much of our thinking about spoken language has been focused on its use as

an interface in human-machine interactions mostly for information access and
extraction. With increases in cellular phone use and dependence on networked
information resources, and as rapid access to information becomes an
increasingly important economic factor, telephone access to data and
telephone transactions will no doubt rise dramatically. There is a growing
interest, however, in viewing spoken language not just as a means to access
information, but as, itself, a source of information. Important attributes that
would make spoken language more useful in this respect include: random
access, sorting (e.g., by speaker, by topic, by urgency), scanning, and editing.
How could such tools change our lives? Enabling such a vision challenges our
systems still further in noise robustness and in spontaneous speech effects.
Further, the resulting increased accessibility to information from
conversational speech will likely also raise increased concern for privacy and
security, some of which may be addressed by controlling access by speech:
speaker identification and verification. While such near-term application
possibilities are exciting, we can envision an even greater information
revolution with the development of writing systems if we can successfully
meet the challenges of spoken language both as a medium for information
access and as itself a source of information. Spoken language is still the means
of communication used first and foremost by humans, and only a small
percentage of human communication is written. Automatic-spoken-language
understanding can add many of the advantages normally associated only with

text (random access, sorting, and access at different times and places) to the
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many benefits of spoken language. Making this vision a reality will require

significant advances.

Speech-understanding research was non-existent 50 years ago[1l]. The
dramatic changes in speech recognition and in language understanding during
the past 50 years, combined with political changes and changes in the
computing infrastructure, led to the state of the art that we observe today.

Challenges remain in several areas:

Integration. There is much evidence that human speech understanding
involves the integration of a great variety of knowledge sources, including
knowledge of the word or context, knowledge of the speaker and/or topic,
lexical frequency, previous uses of a word or a semantically related topic,
facial expressions (in face-to-face communication), prosody, in addition to the
acoustic attributes of the words. Our systems could do much better by

integrating these knowledge sources.

Prosody. Prosody can be defined as information in speech that is not
localised to a specific sound segment, or information that does not change the
identity of speech segments. Such information includes the pitch, duration,
energy, stress, and other supra-segmental attributes. The segmentation (or
grouping) function of prosody may be related more to syntax (with some
relation to semantics), while the saliency or prominence function may play a
larger role in semantics and pragmatics than in syntax. To make maximum use
of the potential of prosody will likely require a well-integrated system, since
prosody is related to linguistic units not just at and below the word level, but

also to abstract units in syntax, semantics, discourse, and pragmatics.

Spontaneous Speech. The same acoustic attributes that indicate much of

the prosodic structure (e.g., pitch, stress, and duration patterns) are also very
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common in aspects of spontaneous speech that seem to be more related to the
speech planning process than to the structure of the utterance. For example, a
long syllable followed by a pause can indicate either an important syntactic
boundary or that the speaker is planning the rest of the utterance. Similarly, a
prominent syllable may mark new or important information, or a restart
intended to replace something said in error. Although spontaneous speech
effects are quite common in human communication and may be expected to
increase in human machine discourse, as people become more comfortable
conversing with machines, modelling of speech disfluencies is only just

beginning.

1.2 Speech signal
1.2.1 Speech production:
The study of the nature of speech generation is required as a

background of speech modelling and analysis. The understanding of speech
generation in human is needed for modelling the organs of speech and
controlling of speech model. The organs of speech are discussed first to
explain how speech signal is produced and recognised in nature.[2-5].
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Figure 1. 1 Speech production Organs

Figure 1.1 lists all organs that are responsible for speech formation[4].

The acoustical speech waveform is simply an acoustic pressure wave, which

start from intentional physiological movements of the structures shown in

Figure 1.1. Air is released from the lungs into the trachea and then forced

between the vocal cords. The lungs and trachea also control the intensity of

the resulting speech, but they rarely make an audible contribution to speech.

The vocal tract plays a very important task in speech signal. It acts as a filter

that its input comes from the lungs and trachea through the larynx. It consists

of Epiglottis, Lower jaw, Tongue, Velum, Palate, Teeth and Lips.
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Figure 1. 2 thelarynx structure
The diaphragm is a dome shaped muscle attached to the bottom of the rib

cage, when this muscle contracts the dome becomes flatter; the volume of
pleura increases and air rushes into the lungs. When the diaphragm relaxes, it
resumes its dome shape and process reverses[3]. We speak while breathing
and must mange to reconcile linguistic and physiological requirements. We
learn to do this as children. The vocal cords is included in the larynx. Figure
1.2 describes the structure of the larynx. The larynx consists of four basic
elements  Cricoid cartilage, Thyroid cartilage, Arytenoid cartilage and
Vocal cords. The first two elements are mostly framework. The Cricoid
cartilage is essentially another one of the rings making up the trachea, but
much higher at the rear in order to support the ends of the vocal cords. The

domed shape of the Cricoid cartilage is the Adam’s apple.

Comprising phonation, whispering, friction, compression and vibration does
excitation. The phonation is the most important excitation source. It is the
oscillation of the vocal cords. The opening and closing of the cords break the
air stream up into pulses as shown in figure 1.3. The repetition rate of the

pulses is termed Pitch.
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Figure 1. 3 Theglottal pulsetrain

Research in speech processing and communication, for the most part, was
motivated by people's desire to build mechanical models to emulate human
verbal communication capabilities. The earliest attempt of this type was a
mechanical mimic of the human vocal apparatus by Wolf-gang von
Kempelen, described in his book published in 1791 [1]. Charles wheatstone,
some 40 years later, constructed a machine based on Kempelen's specification
using a bellow to represent the lung in providing a reservoir of compressed air.
The vocal cords were replaced by a vibrating reed that was placed at one end
of a flexible leather tube-*“the vocal tract”-whose cross-sectional area could be
varied to produce various voiced sounds. Other sounds could be produced by
the machine as well, e.g., nasals by opening a side branch tube (the "nostrils"),
fricatives by shutting off the reed and introducing turbulence at appropriate
places in the vocal tract, and stops by closing the tube and opening it abruptly.
It appears that Wheatstone was able to produce a fairly large repertoire of
vowels and consonants and even some short sentences using this simple

mechanical device.

Interest in mechanical analogous of the human vocal apparatus continued
into the 20th century. While several notable people (Faber, Bell, Paget, and
Riesz) followed Kempelen and Wheatstone's speech-production models,
Helmholz, Miller, Koenig, and others pursued a different design principle.

They synthesized vowel sounds by superimposing harmonically related




Speech signal and Wavelet transform

sinusoids with appropriately adjusted amplitudes. These two fundamentally
different approaches, source-tract modelling (motivated by physics) and
sinusoidal modelling (motivated by mathematics), have dominated the speech
signal-processing field for more than 100 years.

Research interest in speech processing today has gone well beyond the
simple notion of mimicking the human vocal apparatus (which still intrigues
many researchers). The scope (both breadth and depth) of speech research
today has become much larger due to advances in mathematical tools
(algorithms), computers, and the almost limitless potential applications of
speech processing in modern communication systems and networking
Conversely, speech research has been viewed as an important driving force
behind many of the advances in computing and software engineering,
including digital signal processors (DSPs). Such a synergetic relationship will

continue for years to come.

With the collaboration of Riesz and Watkins, Dudlev implemented two
highly acclaimed devices, the VODER (VOice DEmonstration Recorder) and
the VOCODER, based on this principle. The VODER (a schematic diagram of
which is shown in Figure 1.4 was a system in which an operator manipulated a
keyboard with 14 keys, a wrist bar, and a foot pedal to generate the control
parameters required to control the sound source and the filter bank. This
system was displayed with great success at the New York World's Fair in
1939. According to Dudley, it took a few weeks of training to be able to

operate a VODER and produce intelligible speech on demand.
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Figure 1. 4 VODER synthesiser model[1]

1.2.2 Linear prediction model

Representation of the vocal-tract frequency response, independent of the
source parameters (e.g., voicing and fundamental frequency), captured
researchers' interest in the 1960s. One approach to this problem was to analyze
the speech signal using a transmission line analog of the wave-propagation
equation. This method allows use of a time-varying source signal as excitation
to the "linear" system of the vocal tract.

To make analysis of the vocal-tract response tractable, one often assumes
that the vocal tract is an acoustic system consisting of a concatenation of
uniform cylindrical sections of different areas with planar waves propagating
through the system. Each section can be modelled with an equivalent circuit
with wave reflections occurring at the junctions between sections. Such a

model allows analysis of the system from its input-output characteristics.
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In the late 1960s, Atal and Itakura independently developed a spectral
analysis method, now known as linear prediction. While the motivations were
different, they made an identical assumption; namely, that the speech signal at
time t could be approximately predicted by a linear combination of its past
values. In a discrete time implementation of the method, this concept is

expressed as:

~oop
S.~S. =Yas. . (1.1)
I = N

S;i : Actual speech value at time index i.

S; : predicted speech value at time index i.

Where p is called the order of the predictor. The task is to find the
coefficients {a;} that minimize some measure of the difference between S; and
S; over a short-time analysis window. To retain the time-varying

characteristics of the speech signal, the analysis procedure updates the

coefficients estimation process progressively over time.

The linear prediction analysis method has several interesting interpretations.

In the frequency domain, the computed coefficients {a; } define an all-pole

spectrum o/A(c/?) where

10
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b1
AZ)=1- ¥ a Z (1.2)
j=1

with z = el

Such a spectrum is essentially a short-term estimate of the spectral envelope
of the speech signal, at a given time [1]. The "envelope” models the frequency
response of the vocal tract while the fine structure in the Fourier spectrum is a
manifestation of the source excitation or driving function. This spectral
envelope estimate can be used for many purposes; e.g., as the spectral
magnitude control in a speech synthesizer or as features for speech

recognition.

Another interesting result of the linear prediction technique is that it
provides an estimate of the reflection coefficients as well as the area functions
of a cylindrical tube of the type mentioned above [3]. Linear prediction thus
could be viewed as a spectral estimation technique as well as a method for

vocal-tract modelling (through the cylindrical tube model approximation).

The all-pole spectrum that resulted from linear prediction is a very efficient
representation of the speech short time spectrum and is widely used in a range

of speech-coding systems.

1.2.3 Acoustical parameters
Most languages, including Arabic, can be described in terms of a set of

distinctive sounds, or phonemes. In particular, for American English, there are
about 42 phonemes including[4] vowels, diphthongs, semivowels and

consonants. There are a variety of ways of studying phonetics; e.g., linguists

11
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study the distinctive features or characteristics of the phonemes. For our
purposes it is sufficient to consider an acoustic characterisation of the various
sounds including the place and manner of articulation, waveforms, and

spectrographic characterisations of these sounds.

Figure 1.5 shows how the sounds of American English are broken into
phoneme classes." The four broad classes of sounds are vowels, diphthongs,
semivowels, and consonants. Each of these classes may be further broken
down into subclasses that are related to the manner, and place of articulation

of the sound within the vocal tract.

Each of the phonemes in Figure 1.5 (a) can be classified as either a
continuant, or a noncontinuant sound. Continuant sounds are produced by
fixed (non-time-varying) vocal tract configuration excited by the appropriate
source. The class of continuant sounds includes the vowels, the fricatives
(both unvoiced and voiced), and the nasals. The remaining sounds
(diphthongs, semivowels, stops and aifricates) are produced by a changing

vocal tract configuration. These are therefore classed as noncontinuants.

—PHONEMES——_

\\\\.
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. /1
Fiont Mid Back Diphthongs st \
U e (A) (00 al (AI) S
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Figure 1. 5 (a)Phonemesin American English[5],(b) Arabic
phonemeg[72].

The Arabic language has basically 34 phonemes , 28 consonants and six
vowels (see fig 1.5 b).

1.2.4 Human ear and speech perception

According to the source-filter model of speech production, the speech
signal can he considered to be the output of a linear system. Depending on the
type of input excitation (source), two classes of speech sounds are produced:

voiced and unvoiced. If the input excitation is noise, then unvoiced sounds

13
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such as /S/, /t/, etc., are produced, and if the input excitation is periodic then
voiced sounds such as /a/, /i/, etc., are produced. In the unvoiced case, noise is
generated either by forcing air through a narrow constriction (e.g., production
of /f/) or by building air pressure behind an obstruction and then suddenly

releasing that pressure (e.g., production of /t/). In contrast, the excitation used

to produce voiced sounds is periodic and is generated by the vibrating vocal
cords. The frequency of the voiced excitation is commonly referred to as the

fundamental frequency (FO) or the pitch[2].

14
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The vocal tract shape defined in terms of tongue, velum, lip and jaw
position, acts like a "filter" that filters the excitation to produce the speech
signal. The frequency response of the filter has different spectral
characteristics depending on the shape of the vocal tract. The broad spectral
peaks in the spectrum are the resonances of the vocal tract and are commonly
referred to as formants. Figure 1.6 shows, for example, the formants of the
vowel /eh/ (as in "head"). The frequencies of the first three formants (denoted
as Fl, F2, and F3) contain sufficient information for the recognition of vowels
as well as other voiced sounds. Formant movements have also been found to
be extremely important for the perception of unvoiced sounds. In summary,

the formants carry some information about the speech signal.

8000
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—2000°
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Figure 1. 6 A 30 ms segment of thevowel /en/ and its spectrum
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This leads to the question “How does the auditory system encode
frequencies?" The pioneering work of Georg von Bekesy in the 1950s showed
that the basilar membrane in the inner ear is responsible for analyzing the
input signal into different frequencies. Different frequencies cause maximum
vibration amplitude at different points along the basilar membrane (see
Figure 1.7).

Figure 1. 7 Frequency response distribution in the basiliar membrane [2]

Low-frequency sounds create travelling waves in the fluids of the cochlea
that cause the basilar membrane to vibrate with largest amplitude of
displacement at the apex (see Figure 1.3) of the basilar membrane. On the
other hand, high-frequency sounds create travelling waves with largest
amplitude of displacement at the base (near the stapes) of the basilar
membrane. If the signal is composed of multiple frequencies, then the
resulting travelling wave will create maximum displacement at different
points along the basilar membrane. The cochlea therefore acts like a spectrum

analyzer. It decomposes complex sounds into their frequency components.

16
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The cochlea is one of the mechanisms used by our auditory system for
encoding frequencies. The travelling wave of the basilar membrane in the
cochlea vibrates with maximum amplitude at a place along the cochlea that is
dependent on the frequency of stimulation. The corresponding hair cells bent
by the displacement in the membrane stimulate adjacent nerve fibres, which
are organized according to the frequency at which they are most sensitive.
Each place or location in the cochlea is therefore responding "best" to a
particular frequency. This mechanism for determining frequency is referred to
as place theory. The place mechanism for coding frequencies has motivated
multichannel cochlear implants. Another theory, called volley theory, suggests
that frequency be determined by the rate at which the neurons are fired.
According to the volley theory, the auditory nerve fibres fire at rates
proportional to the period of the input signal up to frequencies of 5,000 Hz. At
low frequencies, individual nerve fibres fire at each cycle of the stimulus; i.e.,
they are "phase locked" with the stimulus. At high frequencies, the organized

firing of groups of nerve fibers indicates frequency.

1.2.5 Speech processing in time and frequency domains
Speech processing techniques are based on either time analysis methods or

frequency analysis methods. The time based methods are those that
manipulate the speech signal in time domain such as autocorrelation methods
for finding pitch , voiced/unvoiced,.. etc. Frequency methods handle the
speech signal via spectral parameters such as cepstrum based pitch

determination.

In time-based methods we take the advantage of handling the speech signal
as it is which means more faster algorithms. The disadvantage of this

manipulation is that we can not eliminate the noise effect [5]. The time-based

17
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techniques are useful in case of high signal to noise ratio’s environments. The
frequency based methods overcome the last disadvantage. But in general we
lose information in the transition from time to frequency domain. The
intermediate frequency information is not available rather the information is
about a package of time (frame). Any variation within frame can not be
predicted. The last statement raise the problem of what is the appropriate
frame length that gives a minimum error. In the problem of pitch estimation,

selecting frame length affects the whole process as shown in figure 1.8.

1.0 —=

——_ —
““““ tc)

:\/j\\/m\/[\\/\\/\\f AV/\\/\V/\V an/\vf\f

]

-1.0 —

1.0 -

Figure 1. 8 Autocorrelation function for voiced speech with frame length
N (a) N=401 samples, (b) N=251 samples, (c) N= 125 samples.

Figure 1.8c corresponds to a window length of 125 samples. Since the
period for this example is about 72 samples, not even two complete pitch
periods are included in the window. This is clearly a situation to be avoided,
but avoiding it is difficult because of the wide range of pitch periods that may

be encountered. One approach is to simply make the window long enough to

18
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accommodate the longest pitch period, but this leads to undesirable averaging
of many periods when the pitch period is short. Another approach is to allow

the window length to adapt to match the expected pitch period.

The joint-time-frequency is the best representation of the speech signal. We
can take the advantages of both simplicity of time based methods and
powerful of frequency based methods in noise cancellation and signal

compression. The joint-time-frequency is what we called wavelet transform.

1.3 Wavedet transform

Strictly speaking, wavelets transform is a topic of pure mathematics,
however in only a few years of existence as a theory of its own, it have shown

great potential and applicability in many fields.

There are several excellent monographs and articles talking about
wavelets[8-15].

1.3.1 What are wavelets?
Wavelets are functions that satisfy certain requirements. The name wavelet

comes from the requirement that they should integrate to zero[61], ~"waving"
above and below the x-axis. The diminutive connotation of wavelet suggests
the function has to be well localized. Other requirements are technical and
needed mostly to insure quick and easy calculation of the direct and inverse

wavelet transform.

There are many kinds of wavelets. One can choose between smooth
wavelets, compactly supported wavelets, wavelets with simple mathematical
expressions, wavelets with simple associated filters, etc. The most simple is

the Haar[6]. Examples of some wavelets (from the family of Daubechies

19
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wavelets) are given in Figure 1.9. Like sines and cosines in Fourier analysis,
wavelets are used as basis functions in representing other functions. Once the

wavelet (sometimes called the mother wavelet) W(x) is fixed, one can form

)—> (a,b)e RT xR}

translations and dilations of the mother wavelet {\V(XT_b

It is convenient to take special values for a and b in defining the wavelet basis:

a=2"Jb=k27) where k and j are integers. This choice of a and b is called a
critical sampling and will give a sparse basis. In addition this choice naturally
connects the multiresolution analysis in signal processing with the world of

wavelet.

Wavelet novices often ask, why not use the traditional Fourier methods?
There are some important differences between Fourier analysis and wavelets.
Fourier basis functions are localized in frequency but not in time. Small
frequency changes in the Fourier transform will produce changes everywhere
in the time domain. Wavelets are local in both frequency/scale (via dilations)

and in time (via translations). This localization is an advantage in many cases.

Many classes of functions can be represented by wavelets in a more
compact way. For example, functions with discontinuities and functions with
sharp spikes usually take substantially fewer wavelet basis functions than

sine-cosine basis functions to achieve a comparable approximation.

This sparse coding makes wavelets excellent tools in data compression. For

example, the FBI has standardized the use of wavelets in digital fingerprint
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image compression[6]. The compression ratios are on the order of 20:1, and
the difference between the original image and the decompressed one can be
told only by an expert. There are many more applications of wavelets, some of
them very pleasing. Coifman and his Yale team used wavelets to clean noisy
sound recordings, including old recordings of Brahms playing his First

Hungarian Dance on the piano.
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Figure 1. 9 Waveets from the Daubechies family

-10

1.3.2 Wavedets and filter bank
The wavelet is a small wave from which many other waves are derived by

translation and dilation of the wavelet wave. It can be defined as:

=w(2! t-jt) (1.3)

WiJ
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Where:

W;j; is the wavelet function obtained by shifting the main wavelet base
function by j samples and compressing the base function’s duration by a factor
of 2'. The compression in time gives expansion in frequency. From the
previous point of view the index i indicates the frequency level of the

wavelet function.

Any function of time can be expressed in terms of wavelet functions and

wavelet coefficients according to the following synthesizing equation.

m 2i
f(t) = W (1.4)
(®) igo ,Eo bij *Vij

bjj: The wavelet coefficient at frequency level i and time index j. It is given

by:

T
bij = éf(t) “Wij dt (1.5)

T: The frame duration.

Equation 1.5 is valid if and only if the wavelets are orthogonal i.e.

fw, W, dt=0ij #mu (1. 6)
]
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The first index makes a dilation of the original wavelet. It gives the
indication of the period of the wavelet function so that it conveys information
about certain frequency band of the signal. As an example, if the duration of a
signal is reduced in the time domain by half then it will expand in the

frequency domain by a factor of 2.

Equation 1.4 can be rearranged as:

1 oM
fO= 2 bojwoj+++ X bmjwmj (1.7)

Each summation represents the signal over the whole period in time domain
but in different frequency bands. Table 1.1 represents each summation of
equation 1.7. Each one gives a projection of the speech signal in a certain
frequency band. As shown in table 1.1 column 3, the signal is represented with
different number of parameters in each frequency band. The different number
of parameters that represents the speech signal in the different frequency
bands is called the multiresolution nature of Dyadic wavelet transform. In this

research the dyadic wavelet is used for simplicity.

Table 1.1 Thewavelet parameter s distribution over the whole frequency
band in case of 11025 samples/sec and 1024 samples/frame.

Window # Frequency Rangein Number of wavelet parameters
Hz
9 2756 - 5512 512
8 1378 - 2756 256
7 689 - 1378 128
6 344- 689 64
5 172 - 344 32
4 86-172 16
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3 43 - 86 8
2 21-43 4
1 10-21 2
0 0-10 1
133 Speech processing using wavelet transform

The application of the wavelet transform in speech gives a powerful tool to
manipulate many speech-processing needs. It can be used to detect the pitch

period or to classify the speech into voiced or unvoiced.

The speech processing has many fields that gain from wavelet
representation of the speech signal. As an announcement not integration of the

following areas are briefly discussed.
e Speech compression|6]

Speech compression is important in mobile communications, to reduce
transmission time. Digital answering machines also depend on compression.
The bit-rates are low, typically 2.4 kbits per second to 9.6 kbits/seconds. The

best algorithms use either linear predictive models or sinusoidal models.

Speech is classified into voiced and unvoiced sounds. Voiced sounds are
mainly low frequency. In CELP (code excitation linear predictor) the voiced
sound is modelled as the output of an all-pole IIR filter with white noise as
input. The filter coefficients are found by linear prediction. This filter
represents the transfer function of the vocal tract. In a sinusoidal transform,
the voiced sounds use a sinusoidal basis. Unvoiced sounds (like sss) have
components in all frequency bands and resemble white noise. Model-based

techniques achieve reasonable performance at low rates.

24



Speech signal and Wavelet transform

At more than 16 kbits/second, subband coding is effective and compatible
with the models. Psychoacoustics has associated human hearing to
nonuniform critical bands. These bands can be realized roughly as a four-level
dyadic tree (Figure 1.10). For sampling at 8kHz, the frequency bands of the
dyadic tree are: 0-250 Hz, 250-500 Hz, 500-1000 Hz, 1000-2000 Hz and 2000-
4000 Hz. These bands can be quantized and coded depending on subband
energy; the average signal to noise ratio is maximized. And the noise masking

property is used.

2-band
Z-hand filter hank)
2-band filer bank

2-band [ |filier bunk
filterbank|

+

¥ ¥

Figure 1. 10 Tree-structured filter banks used to approximate the critical
bandg[6].

e Denoising:

The piecewise constant signal below (Figure 1.11) [6] is corrupted by
Gaussian white noise. The corrupted signal is decomposed using the
Daubechies wavelet D6. The coefficients at level 4 are thresholded using
Stein's Unbiased Risk Estimate. Notice that the reconstruction consists of the

original signal and some of the noise.

In both wavelet shrinkage and denoising, the output is a cleaned-up version
of the input. This works only when one knows the signal characteristics in
advance. The algorithm will distort the desired signals when thresholding is

applied.
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Figure 1. 11 Denoising using wavelet transfor m[6].
e Speech classification

Using wavelet transform the frequency variation of speech signal along the
time of utterance can be monitored so that the variation from voiced to
unvoiced or vice versa can be detected easily. Furthermore, The speech signal
can be manipulated in a very narrow frequency band that corresponds to the
maximum frequency of the voiced sounds this makes the effect of noise on the

signal negligible.
e Pitch detection

Fundamental frequency estimation is one of the difficult problems in
speech processing. It is handled using time-based methods and frequency
based methods. The wavelet representation of the signal makes it possible to
correlate the signal projections in different frequency bands to get the actual

fundamental peaks, which is the pitch peaks.
e End pointsdetection

End points detection of the speech utterance is one of the major problems
in speech processing specially in case of low signal to noise ratios. The
importance of this problem comes from the fact that the total efficiency of any
speech-based machine is dramatically degraded if the speech boundaries are

not accurate. Wavelet transform gives a frequency-time representation of the
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speech signal. This makes it possible to find a certain threshold to detect the

speech from the background noise as will be illustrated in chapter 2.

1.4 Artificial Neural Network for pattern classification
Many researchers believe that neural networks offer the most promising

unified approach to building truly intelligent computer systems.

Artificial neural networks (ANNSs) are simplified models of the central
nervous system and are networks of highly interconnected neural computing
elements that have the ability to respond to input stimuli and to learn to adapt
to their environment. Neural networks employ parallel distributed processing
(PDP) architectures. Hammerstrom clearly describes the three major

advantages of neural networks [36-44].

Fig. 1.12 illustrates the basic neural network. As shown in fig. 1.12 there
are 3 different layers: input layer, hidden layer and output layer. Each layer
consists of nodes called neurones. The input layer actually not a neurones, it is
just a buffer layer that illustrate the inputs to the next layer. As shown in fig.
1.12 there are small bubbles on the end of each arrow. Those bubbles
represent the weights. It means that the input is multiplied with weight before
introducing it to the neurone. Each neurone makes two fundamental functions.
The first is the summation of all inputs from the previous layer after
multiplying them with the corresponding weights. The second function is the
firing function or comparing the sum with certain threshold. If the sum is

higher than the threshold the neurone gives a one, else it gives a zero.
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Input Hidden Output

O Network nodes ®  Connection weights

Figure 1. 12 Artificial Neural Network.
The basic anatomical unit in the nervous system is a specialised cell called

the neurone. Fig. 1.13 is a view of a typical neurone [36][37].

Figure 1. 13 Typical neuronein the nervous system.
Many extensions of the single cell are long and filamentary; these structures

are called processes. Every neurone plays several functional roles in a neural

system:
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Metabolic machinery within the cell provides a power source for
information-processing functions. In addition, the cell enforces a certain unity

for biochemical mechanisms throughout its extent [36].

A tree of processes called dendrites is covered with special structures called
synapses, where junctions are formed with other neurones. These synaptic

contacts are the primary information-processing elements in neural systems.

Processes act as wires, conveying information over a finite spatial extent.
The resistance of fine dendrites allows the potential at their tips to be

computed with only partial coupling to other computations in the tree.

Temporal integration of signals occurs over the short term through charge
storage on the capacitance of the cell membrane, and over the longer term by

means of internal second messengers and complex biochemical mechanisms.

Certain neurones are equipped with a long, specialised proces called an
axon. The axon is used for "digitising” data for local transmission, and for

transmitting data over long distances.

The classical neurone is equipped with a tree of filamentary dendrites that
aggregate synaptic inputs from other neurones. The input currents are
integrated by the capacitance of the cell until a critical threshold potential is
reached, at which point an output is generated in the form of a nerve pulse.
This output pulse propagates down the axon, which ends in a tree of synaptic

contacts to the dendrites of other neurones.

The resistance of a nerve's cytoplasm is sufficiently high that signals can
not be transmitted more than about 1 millimetre before they are hopelessly
spread out in time, and their information largely lost. For this reason, axons

are equipped with an active amplification mechanism that restores the nerve
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pulse as it propagates. In lower animals, such as the squid, this restoration is

done continuously along the length of the axon. In higher animals many axons

are wrapped with a special insulating material called myelin, which reduces

the capacitance between the cytoplasm and the extracellular fluid, and thereby

increases the velocity at which signals propagate. The sheaths of these

myelinated axons have gaps called nodes of Ranvier every few millimetres.

These nodes act as repeater sites, where the signal is periodically restored

[39]. A single myelinated fibre can carry signals over a distance of 1 meter or

more.

1.4.1 Features of Artificial Neural Network ANN [36][38]

o They are adaptive; they can take data and learn from it. This ability
differs radically from standard software because it does not depend upon
the prior knowledge of rules. In addition, neural networks can reduce
development time by learning underlying relationships even when they are
difficult to find and describe. They can also solve problems that lack

existing solutions.

o Neural networks can generalise; they can correctly process
information that only broadly resembles the original training data set.
Similarly, they can handle imperfect or incomplete data, providing a
measure of fault tolerance. Generalisation is wuseful in practical

applications, because in the real world data is often noisy.

o Neural networks are non-linear; they can capture complex

interactions among the input variables in a system.

1.4.2 Limitations of Neural Network
A limitation of neural networks is that
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e they can consume vast amounts of computer time - two months, for

example - particularly during training.

e The output from a neural net is usually difficult to directly interpret

without the assistance of an expert system.

e Not adaptive, If the environment is changed the training must be

repeated.

1.5 Mathematical modelling using multipleregression
In this section, focus will be on how the experimental results can be used to

formulate a system model. System model is a mathematical function that can
relate output to input. This is the case in pattern recognition methods.
Database is collected for independent input variables and the corresponding
dependent outputs in the training phase. After that we try to get a relation
between inputs and output to model the system. Then, test data are introduced
to system model for evaluation of its efficiency. This problem in mathematics

is called Regression.

In Matrix notation this can be written as:

_ _ _b N
Yol - ~[bg
v, Xor %02 %03 Xoa Xos %os || By
b
_ |0y
= z by [ )
v _Xml ><m2 Xm3 Xm4 Xm5 Xm6 I04
L M| b5
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[Y] matrix is the outputs that correspond to input vectors ([X] matrix). [B]

matrix is the linear statistical model of the system. The term linear comes from

the linear relation between [Y] and [X]. [X] is called the design matrix.

In order to find least-squares estimators of the b’s, we consider the sums of

squares of errors in predicting Y; by

b0 + le1i SEPRRE bkxki

—

The demand is to find 60’ 1""’6k that minimize

n
Q(b) =S(bgy,by....by ) = i zl(vi ~ (b +byXy; +-+b, X, )2

By differentiate Q(b) with respect to b then equating by 0,

b=xxX)1xy

For complete details see [47].

(1. 9)

(1. 10)

(1. 11)

In speech processing area this mathematical tool can be useful in

classification. The problem of voiced/unvoiced as an example is a

classification problem. There are two categories in this case voiced speech or

unvoiced speech. The data is collected for each category and aligned into
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matrices [X] and [Y] as indicated above. The matrix [B] is obtained which is a

system model for voiced/unvoiced classification system.

1.6 Conclusion
As indicated in this chapter, the wavelet transform can give a good

representation of the speech signal in multiple frequency bands. The property
of joint time frequency of the wavelet transform gives it the facility to keep
track with frequency-change-events, such that voiced sounds and unvoiced

sounds or pitch or vowels and consonants, along the duration of utterance.

The classification tools such as neural network or mathematical linear
regression, can be used in the classification problems of speech using the
wavelet parameters as inputs. The use of wavelet parameters that describe the
frequency changes of the speech in many bands along the utterance duration
makes the classifier to make a good decision. Neural network is used in end
points detection problem and the mathematical linear regression is used in all

classification problems in this research.
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Chapter 2
End points Detection

35



End points detection

2.1 Introduction

The problem of extracting the speech from the background noise is one of
the major problems in speech applications. This is always the first step in any
speech-based application. The performance of the application may be
degraded dramatically if this point is not handled carefully. The problem of
locating the beginning and end of a speech utterance in a background of noise
iIs of importance in many areas of speech processing. In particular, in
automatic recognition of isolated words, it is essential to locate the regions of
a speech signal that correspond to each word. A scheme for locating the
beginning and end of a speech signal can be used to eliminate significant
computation in non-real-time systems by making it possible to process only

the parts of the input that correspond to speech in speech transmission.

The problem of discriminating speech from background noise is not trivial,
except in the case of extremely high signal-to-noise ratio acoustic
environments - e.g., high fidelity recordings made in an isolated chamber or a
soundproof room. For such high signal-to-noise ratio environments, the
energy of the lowest level speech sounds (e.g., weak fricatives) exceeds the
background noise energy, and thus a simple energy measurement suffices.
However, such ideal recording conditions are not practical for most

applications.

The algorithm to be discussed in this section is based on wavelet transform.
The wavelet transform as discussed before makes the link between time and
frequency domains in one step by splitting the signal into many frequency
channels. A new method will be introduced by using the wavelet transform

for detecting the speech from the background noise. The algorithm gives
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highly accurate results even though in case of very low signal to noise ratio

and low energy phonemes at the beginning or end of utterance.

The chapter begins by introducing the old method of end points detection
and its advantages and disadvantages. Then the problem will be handled with

new algorithm based on wavelet transform.

2.2 Energy and zero crossing rate method

The problem of end points of speech is usually handled in almost all speech
applications by two simple time-domain measurements - energy, and zero-
crossing rate. Several simple examples will illustrate some difficulties
encountered in locating the beginning and end of a speech utterance[5]. Figure
2.1 shows an example (the beginning of the word eight) for which the
background noise is easily distinguished from the speech, as denoted in the
figure. In this case a radical change in the waveform energy between the
background noise and the speech is the cue to the beginning of the utterance.

Figure 2.2 shows another example (the beginning of the word /six/) for which

it is easy to locate the beginning of the speech. In this case, the frequency
content of the speech is radically different from the background noise, as seen
by the sharp increase in zero crossing rate of the waveform. It should be noted
that, in this case, the speech energy at the beginning of the utterance is

comparable to the background noise energy.
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BEGIN

st 25 6 msecC — —

Figure 2.1 Waveform of the beginning of utterance/eight/[5]

BEGIN

HilA

- 2% 6 msec ~

Figure 2.2 The beginning of word /six/[5]
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Figure 2.3 gives an example of a case in which it is extremely difficult to

locate the beginning of the speech signal. This figure shows the waveform for
the beginning of the utterance /four/. Since /four/ begins with the weak
fricative /f/ (low energy), it is very difficult to precisely identify the beginning
point. Although the point marked B in this figure is a good candidate for the
beginning, point A is actually the beginning. In general it is difficult to locate

the beginning and end of an utterance if there are:

1. Weak fricatives (/f/, /th/, /h/) at the beginning or end.

2. Weak plosive bursts (/p/, /t/, /k/) at the beginning or end.

3. Nasals at the end.

4. Voiced fricatives which become devoiced at the end of words.

5. Trailing off of vowel sounds at the end of an utterance.

>

0

,\{\1\1\{\, \[\A

A \, AN

2% 6 msecC

Figure 2. 3word / four/[5]
In spite of the difficulties posed by the above situations, energy and zero

crossing rate representations can be combined to serve as the basis of a useful
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algorithm for locating the beginning and end of a speech signal. One such
algorithm was studied by Rabiner and Sambur in the context of an isolated-
word speech recognition system [5]. In this system a speaker utters a word
during a prescribed recording interval, and the entire interval is sampled and
stored for processing. The purpose of the algorithm is to find the beginning
and end of the word so that subsequent processing and pattern matching can

ignore the surrounding background noise.

The algorithm can be described by reference to figure 2.4. The basic

representations used are the number of zero-crossings per 10 msec frame and

the average magnitude computed with a 10 msec window. As follows:

o0
My = m:z_oo\x(m)\

o0
Zn = mzz_oo\sgn(x(m)) —sgn(x(m-1))
(2.1)
Where M,, is the short time average magnitude at time index n.

Z, is the short time average zero crossing rate at time index n.

Both functions are computed for the entire recording interval at a rate of
100 times/sec, It is assumed that the first 100 msec of the interval contains no
speech. The mean and standard deviation of the average magnitude and zero
crossing rate are computed for this interval to give a statistical characterization
of the background noise. Using this statistical characterization and the
maximum average magnitude in the interval, zero-crossing rate and energy

thresholds are computed. (Details are given in [5].)
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ENERGY

IZCT

Figure 2. 4 Energy and zero crossing rate algorithm for end points
detection [5].

The average magnitude profile is searched to find the interval in which it

always exceeds a very conservative\e threshold (ITU in Figure 2.4). It is

assumed that the beginning and ending points lie outside this interval. Then
working backwards from the point at which energy magnitude first exceeded
the threshold ITU, the point (labeled N1 in figure 2.4) where energy first falls

below a lower threshold ITL is tentatively selected as the beginning point. A
similar procedure is followed to find the tentative endpoint N2. This double
threshold procedure ensures that dips in the average magnitude function do
not falsely signal the endpoint. At this stage it is reasonably safe to assume
that the beginning and ending points are not within the interval N1 to N2. The
next step is to move backward from N1 (forward from N2) comparing the

zero-crossing rate to a threshold (IZCT in figure 2.4) determined from the

statistics of the zero-crossing rate for the background noise. This is limited to
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the 25 frames preceding N1 (following N2). If the zero-crossing rate exceeds
the threshold 3 or more times, the beginning point N1 is moved back to the
first point at which the zero-crossing threshold was exceeded. Otherwise N1 is
defined as the beginning. A similar procedure is followed at the end.

The above discussion is briefly introducing the famous method for end
points detection. There are many advantages using this method. As it can be
seen, it depends on a very simple mathematical basis so that this method is
widely used in most of speech applications. It gives good results especially in

case of high signal to noise ratio or medium signal to noise ratio.

The disadvantages of this method are that it degrades dramatically in case
of highly noise environment (S/N < 16 dB.). It also needs to apply at the
whole speech sample before any further processing so that it is not suitable for
real time applications. The computation of the end points pass through two

mathematical phases one from energy and the other from zero-crossing rate.

The wavelet transform gives an alternative method that combines the
energy and zero-crossing rate in one step. Although it is more complex in
understanding and calculation but it is fast and can be implemented using fast
algorithms such that of fast Fourier transform. The wavelet transform as seen
before is splitting the speech sample using quad filters into many frequency
channels. We can see the frequency contribution for the signal in different

bands along the period of time that contains the speech.

2.3 End points detection using wavelet correlation of wavelet features
[69]
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For high signal-to-noise ratio environments, the energy of the lowest level
speech sounds (e.g., weak fricatives) exceeds the background noise energy,
and thus a simple energy measurement suffices. However such ideal recording
conditions are not practical for most applications. The wavelet transform is
one of the powerful tools that are used in the signal processing field [10-22].
The wavelet transform extracts the frequency contents of the signal as similar
to the Fourier transform do, but it links the frequency domain with the time
domain [6]. This link between the time and the frequency gives this transform
its powerful characteristic for the determination of the boundaries of
frequency-band-defined signals such as the speech signal. The wavelet
parameters indicate an appropriate mapping for the power distribution of the
speech signal along the analysis time period. In this case a radical change in
the waveform energy between the background noise and the speech is the cue
to locate the boundaries of the segment. A mathematical form derived from
the wavelet parameters is used to track the energy changes along the speech

duration.

2.3.1 The proposed algorithm

Figure 2.5 is a speech signal of Arabic word “ _.~”. The word contains a

whisper consonant /h/ at the start and unvoiced fricative /s/ at the end. There
are a silence periods before and after the signal. The start and end of this
sample is hard-to-detect in case of low signal to noise ratio. Figure 2.6 is the

wavelet-based energy function of figure 2.5. As shown in figure 2.6, the

energy changes can easily be detected. Correlating the energy contents of the
same signal in two different frequency bands generates the curve as shown in

figure 2.6.
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The algorithm of detecting the end points from this curve is divided into
Three parts:

1- Correlation model: The correlation model is obtained from the
correlation between wavelet windows. Win(5) and win(6) are selected for
correlation. As shown in table 1.1, win(5) covers frequency band 172-344Hz
with resolution of 32 parameters and win(6) covers the frequency band 344-
689 Hz with resolution of 64 parameters. Most of speech power is
concentrated below 1000 Hz[5]. So the above two bands are selected because
they have the minimum number of parameters beside they are in the middle of
the range of frequencies below 1000 Hz. The two windows are selected
adjacent to insure that the power curves will be alike as much as possible. This
is important to get the correlation information. Moreover, the crosscorrelation
Is used rather than the autocorrelation of one window to get the highest
immunity to noise. To illustrate this point, if the speech sample is weak in one
window (due to noise strike) it may be strong in the adjacent window. For the
above two reasons the crosscorrelation can give the maximum reliable

correlation representation between the two windows win (5) and win (6).

The algorithm begins by dividing the speech signal into smaller windows of
1024 samples each (~ 92 ms in case of 11025 Hz sampling rate). The wavelet
parameters are extracted for each window. The crosscorrelation is performed
on win (5) and win (6). The frames of R parameters are concatenated then the
absolute value of the points is taken and smoothed using moving average of
1024 points (figure 2.6). Figures 2.5 and 2.6 show how far the energy

correlation model tracks the boundaries of the speech signal

2-Noise analysis. The first 20 ms (~220 samples in case of 11025

samples/sec) of the correlation model are used to extract the noise statistics.
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The moving standard deviation is calculated to each 10 ms (110 samples) to
monitor the rate of change. The maximum of the first 220 points of the
moving standard deviation is multiplied by 4 and taken as a threshold to
discriminate the noise from the speech. This threshold is obtained after many
trials. In the noise there is no correlation between windows so the rate of

change is very small.

Time

Figure 2.5 Speech signal contains a whisper consonant /h/ at the start and
unvoiced fricative/d at theend. Thereare a silence periods before and
after thesignal. Theword is_.# in Arabic. Thisword is pronounced

/nll®//M//c/

| 7N

Time

Figure 2. 6 The correlation model. (T he crosscorrelation parametersare
concatenated)

3-Logical series: The moving standard deviation is applied over the whole
speech utterance. The standard deviation points are compared with the noise
threshold generated in the first step. The logical series, a series which,
contains 1’s and 0’s only where the number of ones and zeroes equals to

speech samples. The element in the series takes a value of 1 if the threshold of
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noise is less than the standard deviation at this point, else the value of the

element is 0.

After this loop the SERIES contains ones "1" at speech duration only and
zeroes '0" at the noise or silence periods. Figure 2.7 gives an example of some

speech utterances and the markers of the logical series after the application of

the proposed algorithm.

Figure 2.7 The speech signal and thelogical series markers. Thefirst and
the last markersrepresent the speech boundaries.

Consider the following definitions:

o Win (n) The wavelet window which has 2" parameters according to
tablel.1.
o R (n) The crosscorrelation’s parameters number n that indicates the

correlation between win (5) and win (6) in table 1.1. It indicates the
correlation at txn. The crosscorrelation between the prepared win (5)
(interpolated so that it contains 1024 points) and the prepared win (6) gives

2047 points of R (n). R(0) is the energy of speech frame.

2.3.2 System performancein case of noise
To study how far the previous algorithm is valid in case of noise, the
normal distribution noise is generated to superimpose it on speech signal. The

noise is multiplied with different values to control the signal to Noise ratio.
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After applying the previous algorithm on the noisy speech the following

results are obtained as shown in figures 2.8 and 2.9.

L i

Time

&

Figure 2. 8 The speech signal and logical series markersin case of 48 dB
signal to noiseratio.

The markers still detect the boundaries of speech signal.

Figure 2.9 indicates that in case of 16 dB S/N the last point is shifted left

and the starting point is still acceptable.

W;_

Time

Figure 2.9 the speech signal and logic seriesmarkersin case of 16 dB
signal to noiseratio.

In figure 2.10 the weak plosive /k/ at the beginning and the nasal /n/ at the

end is detected accurately. This speech signal is acquired in normal noise

condition not in laboratory conditions.
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s

Time

Figure 2.10 Theword contains a weak plosive at the beginning /k/ and a
nasal at theend /n/. Theword iscws in Arabic and it is pronounced

Ix//®//M//®/Iv/
The case of weak fricatives at the beginning or end is previously illustrated

” >

Time

in the previous section.

A

Figure2. 11 Theword contains avoiced fricativeat the end of
utterance /z/.Theword iss s in Arabic and it ispronounced

IM//olVIl/1O//C//oH/
Figure 2.12 summarizes the overall system performance in case of noise.
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Figure 2.12 EPD'S System perfor mance with correlation of win(5) and
win(6).

POS s Probability Of Success.

POS is calculated by measuring how far the logical markers matches the

actual pre-calculated markers. A tolerance of 5 ms is taken into consideration.

As shown in figure 2.12, the system indicates a good noise immunity in
case of low signal to noise ratio. The system performance is the same for
signal to noise ratios from 29dB up to large values and degrades slowly when

we go lower than 29 dB. The performance at 9 dB is about 91 %.

2.4 End points Detection using wavelet transform and Neural Network as
a classifier

The previous section illustrates how far the wavelet transform can success

for extracting the speech signal from the background noise. In the previous
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section, all information about speech signal is extracted from two wavelet
windows only. The other windows are omitted. In this section all available
windows are included. The decision of speech boundaries will be taken via
neural network. The neural network takes the input from all windows and

gives the decision of speech or nonspeech.

24.1 Neural Network design

Neural network of our concern will take its information from six different
wavelet channels and the decision will be either speech or nonspeech. So NN
will have a six nodes in the input layer and only one node in the output layer.
The hidden layer is assumed to be 20 nodes.

Training data prepar ation

In this phase, data is collected from speech and prepared into input output
vectors to train NN. A speech of about 20sec contains many words and silence
is captured. The speech signal is segmented into smaller windows each of
1024 samples. Wavelet transform is applied on all windows. Wavelet
parameters are interpolated into all wavelet channels so that each wavelet
channel contains 1024 wavelet parameters. To trace energy changes in each

wavelet channel, each channel is prepared such that the following equation.

> (m)
_m

B (2.2)

N = 200

m : Moving index. It takes a sequence of 200 samples starting at the first

sample in Wavelet channel and ending at the last point in wavelet channel.

50



End points detection

N: Wavelet channel index. It takes values from 1 to 6.
B: Moving-average-wavelet-series name of band index N.
W: Wavelet-series name of raw wavelet parameters in band index N.

The input vector is constructed from the following equation:

|
V. = (B 8,18, B4,BS,BG,D)¢50 2. 3)

I Index of sample within B. Note size of B is the same as size of

speech sample.
V: Training vector.

Is0: Decimate sequence by a factor of 50 samples ~ 5ms(sampling rate
Is 11025 Hz). i.e. a training vector is assembled every 5ms of training

speech.

D: Desired output value which in this case either 0 for nonspeech and 1
for speech. The decision is made according to spectrogram and listening
(see figure 2.13).

Training vectors are introduced to NN. The network is sensitively
trained to avoid overtraining i.e. a test is made every about 5 traces over

a complete training set.
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Figure 2.13 Speech data and spectrogram.

Testing NN with prepared test data.

In this phase, many speech samples are used to test the system (about
3 minutes). Vectors such that of the previous section vectors are
constructed from a different speech file contains words and silence

periods. The vectors are delivered to the input of the trained NN

Results are summarized in figure 2.14. System performance degraded

dramatically in case of low signal to noise ratio.
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Figure 2.14 EPD's system performancein case of noise. Neural Network
iIsused as a classifier.

As shown in figure 2.14, system performance is degraded slightly in
case of S/N ratio less than 50 dB. In case of high S/N ratio it gives a
good system performance. This indicates that if the neural network is
chosen as a classifier, the training phase must cover the noisy
environments. This makes it more complex to learn a single neural
network to make the same decision for widely variant process ( High
S/N and low S/N). So it is decided to design different neural networks
for different S/N ratios.

Figure 2.15 introduce an example of applying NN in EPD. In figure

(2.15 a) the speech signal represents the Arabic word _us is captured.

Markers that indicate the speech regions in the original speech signal
are indicated in figure (2.15 c). Figure (2.15 b) is the speech data

extracted from the original speech according to EPD markers.
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A training data is prepared for regression process. A training period of 20
54

sec of speech and silences is used to prepare the training data set.
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Wavelet parameters are extracted, interpolated and smoothed as previous
method. The bands under study are six bands so that a single piece of
information is taken from each band. X-vector of 6 elements, each is a
smoothed-interpolated-wavelet parameter from a single band, is constructed.
The corresponding Y-output of X-vector is 0 in case of silence or 1 in case of
speech. The following table is constructed from subsequence of X-vectors and

corresponding Y-outputs.

BO Bl B2 B3 B4 B5

54000 |30200 |2230 |1000 |650 120 lor0

Y is regressed on X to find the mathematical model of the system.

Equation (2.4) represents the system equation. [B] Matrix is the system
model that is obtained from training as discussed above. [X] Matrix is the
input speech signal after preparation (Smoothed-interpolated-wavelet

parameters from the six bands). [Y] Matrix is the output decision.

_Y _ bo
0| rx X X X X X..1lb
Y1 01 02 03 04 05 06 1
b
_ 5 5 ) bg (2. 4)
v _Xml Xm2 Xm3 Xm4 Xm5 Xm6_ b4
L M| b5

55



End points detection

After training the system Matrix is:

0.0031 ]
0.0012
0.0036
-0.0253
0.0332

0.0033 |

To Evaluate the efficiency of this method a test data from the database is

applied on the system matrix according to equation (2.4) with different signal

to noise ratios. Figure 2.16 summarizes the output results.

100
90
80
70
60
50
40
30
20
10

POS(%)

9 29 50
SIN (dB)

Figure2. 16 EPD'S system performance. Mathematical regression is used
as classifier.
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The system of figure 2.16 behaves like neural network-based
classifier system. Actually this result is expected because this system
depends on training data. The system gives a good results in case of
high S/N and the performance degrades for lower S/N ratios (< 50 dB).

Figure 2.17 a and b, illustrate EPD markers using the mathematical
classifier. In fig. 2.17 a, the word begin with plosive /k/ and end with
plosive /b/. In fig. 2.17 b, the word begin with whispering /h/ and end

with fricative /s/.
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2.6 Conclusion

It is clear that from the above discussion the wavelet transform can be used
efficiently in EPD problem. The problem is treated with several methods. The

first one based on manipulating the speech signal itself to find a threshold for
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EPD calculations. This method gives a good performance over a wide range of
S/N ratios. But it needs some pre analysis for noise threshold calculation. It

can be used in the applications where the speed is not a critical factor.

The last two methods of classifier are extremely alike. They are based on
training the system then finding a model. They can be used in systems that
have relatively stable environment (approximately constant S/N ratio). They

are faster than the first method because no extra calculations are needed.

The mathematical-based method is faster than the neural network-based
method because the mathematical operations needed to find the output are less

than those of the neural network.
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Chapter 3

Classification of voiced/unvoiced utterances
and pitch period estimation

62



Classification of voiced/unvoiced utterances and pitch period estimation

3.1 Introduction

Speech classification is one of the basic points in speech processing. Speech
signals are composed of a sequence of sounds. These sounds and the
transitions between them serve as a symbolic representation of information.
The arrangement of these sounds (symbols) is governed by the rules of
language. The study of these rules and their implications in human
communication is the domain of linguistics and the study and classification of
the sounds of speech is called phonetics. A detailed discussion of phonetics
and linguistics would take us too far afield. However, in processing speech
signals to enhance or extract information, it is helpful to have as much
knowledge as possible about the structure of the signal; i.e., about the way in

which information is encoded in the signal.

The following section deals with the problem of classifying the speech
signal into voiced or unvoiced sound. This problem is handled by different

methods.

3.2 Voiced / unvoiced classification

3.2.1 Voiced sound ver sus unvoiced sound

The Speech sounds can be classified into 3 distinct classes according to
their mode of excitation. Voiced sounds are produced by forcing air through
the glottis with the tension of the vocal cords adjusted so that they vibrate in a
relaxation oscillation, thereby producing quasi-periodic pulses of air which

excite the vocal tract[5].
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Forming a constriction at some point in the vocal tract (usually toward the
mouth end), and forcing air through the constriction at a high enough velocity
to produce turbulence generates fricatives or unvoiced sounds. This creates a

broad-spectrum noise source to excite the vocal tract.

Plosive sounds result from making a complete closure (again, usually
toward the front of the vocal tract), building up pressure behind the closure,

and abruptly releasing it.

The vocal tract and nasal tract are shown in Figure 3.1 as tubes of non-
uniform cross-sectional area. As sound is generated, it propagates down these
tubes, the frequency spectrum is shaped by the frequency selectivity of the
tube. This effect is very similar to the resonance effects observed with organ
pipes or wind instruments. In the context of speech production, the resonance
frequencies of the vocal tract tube are called formants. The formant
frequencies depend upon the shape and dimensions of the vocal tract; each
shape is characterized by a set of formant frequencies. Varying the shape of
the vocal tract forms different sounds. Thus, the spectral properties of the
speech signal vary with time as the vocal tract shape varies.

MUSCLE FORCE NASAL TRACT  NOSTRIL

-P
—iT T

Figure 3.1 Schematics of vocal tract system
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As shown in figure 3.1, T is the pitch period in case of voiced sound. Ug is

the generated velocity function (excitation of the vocal tract tube). Uy, and Uy

are the output speech velocity function from mouth and nose respectively.

The following section will discuss the differences between voiced and

unvoiced sounds in terms of energy and frequency contents.

3.2.2 Signal characteristics of voiced and unvoiced sounds
The underlying assumption in most speech processing schemes is that the

properties of the speech signal change relatively slowly with time. This
assumption leads to a variety of "short-time" processing methods in which
short segments of the speech signal are isolated and processed as if they were
short segments from a sustained sound with fixed properties. This is repeated
(usually periodically) as often as desired. Often these short segments which
are some-times called analysis frames, overlap one another. The result of the

processing on each frame may be either a single number, or a set of numbers.

We have observed that the amplitude of the speech signal varies
appreciably with time. In particular, the amplitude of unvoiced segments is
generally much lower than the amplitude of voiced segments. The short-time
energy of the speech signal provides a convenient representation that reflects

these amplitude variations. In general, we can define the short-time energy as

= Ix(m)? (3.1)
En m=n—N+1 '
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Where N is the window length or frame length. If N is too small, i.e., on the
order of pitch period or less, E,, will fluctuate very rapidly depending on the
exact details of the waveform. If N is too large, i.e., on the order of several
pitch periods. E, will change very slowly and thus will not adequately reflect
the changing properties of the speech signal. Unfortunately this implies that no
single value of N is entirely satisfactory because the duration of a pitch period
varies from about 20 samples (at a 10 kHz sampling rate) for a high pitch
female or a child, up to 250 samples for a very low pitch male. With these
conditions in mind, a suitable practical choice for N is on the order of 100-200

for a 10 kHz sampling rate (i.e., 10-20 msec duration).

Figures 3.2 and 3.3 show the effects of varying the duration of the window
(for the rectangular and Hamming windows, respectively) on the energy
computation for the utterance /What, she said/ spoken by a male speaker. It is
readily seen that as N increases, the energy becomes smoother for both

windows.
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/WHAT SHE SGID-WECTANGL L A Wil Do

A
/\

Nz 201

SHORY-TIME ENERGY £,

N-401

TiME IN -SECONDS

Figure 3. 2 Energy distribution for Rectangular weighted frames for
different frame lengthg[5].

The major significance of E, is that it provides a basis for distinguishing
voiced speech segments from unvoiced speech segments. As can be_seen in

Figures 3.2 and 3.3, the values Of E, for the unvoiced segments are

significantly smaller than for voiced segments. The energy function can also

be used to locate approximately the time at which voiced speech becomes
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unvoiced, and vice versa, and for very high quality speech (high signal-to-
noise ratio), the energy can be used to distinguish speech from Silence [5] as

was shown in chapter 2.

/WHAT SHE SAID/ - HAMMING WINDOW

N: 201

SHORT - TIME ENERGY ,E,

N
A

TiME IN SECONDS

Figure 3. 3 Energy distribution for Hamming weighted frames for
different frame lengthg[5].

The above discussion illustrates the speech signal properties from the

energy point of view.

Now let us see how the short-time average zero-crossing rate applies to

speech signals. The model for speech production suggests that the energy of
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voiced speech is concentrated below about 3kHz because of the spectrum fall-
off introduced by the glottal waveform whereas for unvoiced speech, most of
the energy is found at higher frequencies. Since high frequencies imply high
zero-Crossing rates, and low frequencies imply low zero-crossing rates, there
IS a strong correlation between zero-crossing rate and energy distribution with
frequency. A reasonable generalization is that if the zero-crossing rate is high
the speech signal is unvoiced, while if zero-crossing rate is low, the speech
signal is voiced. This, however, is a very imprecise statement because we have
not said what is high and what is low, and, of course, it is really not possible to

be precise. Figure 3.4 shows a histogram of average zero-crossing rates

(averaged over 10 msec) for both voiced and unvoiced speech. Note that
Gaussian curve provides a reasonably good fit to each distribution. The mean
short-time average Zero-crossing rate is 49 per 10 msec for unvoiced and 14
per 10 msec for voiced. Clearly the two distributions overlap so that an
unequivocal voiced/unvoiced decision is not possible based on short-time

average zero crossing rate alone.
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Figure 3.4 Histogram of average zero-crossing ratesover 10 mec for both
voiced and unvoiced speech[5].

3.3 Voiced / unvoiced classification using Dyadic wavel et
3.3.1 Dyadic wavelet

Corresponding to the GCI (glottis closure), the glottal pulse exhibits a peak
that can be regarded as a transient phenomenon, a singularity carrying
information about the vibration of the vocal folds. Until recently, the Fourier
transform was the main mathematical tool for analyzing signal singularities.
Unfortunately, the Fourier transform is global and provides only an overall
description of the regularity of the signal, not being well adapted to finding the
time location and distribution of singularities. This was a major motivation for
studying the wavelet transform in mathematics and in applied science

domains. The wavelet transform is reforming a decomposition of signals into
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elementary building blocks that are well localized both in time and in
frequency. The wavelet transform is suitable for characterizing the local

regularity of signals [6].

In dyadic form, The wavelet transform of a signal x(t) is defined by the
relation:

1
o]

of x(OF* )t = x(t) * P (1) (3.2)

DW(t,j) = J
— 0 2

where:
7 : The time delay.
J: The scale parameter.

¥’(t): The complex conjugate wavelet function for which:

o0
(¥ (u)du=0 (3.3)

—00

From a signal processing point of view the Dyadic Wavelet can be

considered as the output of a bank of constant Q, octave band, band-pass

filters whose impulse response is ij‘P(ij) for each scale 2' .
20 2

Mallat has shown in [7] that if a signal x(t) or its derivatives have
discontinuities, then the modulus of the DW of x(t) , | DW (z, a)| exhibits

local maxima around the point of discontinuity at t=t,. So, if we choose a
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wavelet function Y (t) that is the first derivative of a smoothing function f (t),
then the local maxima of the [DW | will indicate the sharp variations of the
signal. This property is used in estimating the instantaneous pitch period, by
noting that at the instant of the glottis closure, the speech signal has a
discontinuous behaviour, and hence., the |[DW| will have maxima. The
important difference from other functions that have maxima at the GCI is that
these maxima can be detected across several dyadic scales. This fact ensures a
better reliability of the method, a multichannel (multiscale) decision being
possible. The wavelet transform may be calculated in discrete form with the
pyramidal algorithm proposed by Mallat in [7]. The band-pass filter for each
scale is made up of a pair of low-pass and high-pass quadrature mirror filters
with impulse responses h(k) and g(k). For one scale the processing chain is
depicted in figure 3.5: the entire algorithm is represented in figure 3.6. The
number of coefficients of the transform decreases for each scale yielding a

multiresolution representation.

From Prewvious g(k) \l, 5 Té nest

Lew pass filter

High tass filte

Warvelet coefficients for scale 27

Figure 3. 5 The basic unit of wavelet transform mechanism (DWT Block
in figure3.6).
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Figure 3.6 Pyramidal algorithm for the processing of Dyadic wavelet
transform.

3.3.2 Classification using single band

A band of which the vowels or voiced sounds are dominant in the speech
signal is selected for the analysis[48]. Our work is oriented to the Arabic
language so the selected words are all in Arabic. The speech samples are
digitized with a 16 bit sound card. The sampling rate was 11025 samples per
second. The Mathcad! software package is used as a platform of all
mathematics such as wavelet transform, interpolation ... etc. Window of 1024
samples is used in the analysis. Table 3.1 relates the wavelet coefficients to

the according frequency bands.

1© 1986-1994 Mathsoft Inc. Version 5.0. © 1993 by Houghton Mifflin Company.
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Table 3. 1 Wavelet parametersdistribution over the whole frequency
band in case of 1024 samples window length and 11025 kHz sampling

rate.

Frequency Rangein Hz Number of wavelet parameters
2756 - 5512 512
1378 - 2756 256
689 - 1378 128

344- 689 64
172 - 344 32
86-172 16
43 - 86 8
21 -43 4
10-21 2
0-10 1

The frequency band of 172-344 Hz is chosen here for the tracking method.
This band is represented by 32 wavelet parameters as shown in Table 1.
Daubechies four-coefficient wavelet filter[6] was used in the wavelet

analysis.

The unvoiced sound is modeled in speech as a white noise distributed in all
ranges and the voiced is modeled by the vocal tract filter excited with a pulse
train having a frequency equals to the pitch [4], [3]. The voiced sound is a
limited band sound because both the excitation and the vocal tract filter are
band limited. The wavelet transform of a given signal may be interpreted as a
decomposition of the signal into a set of frequency channels of equal

bandwidth on a logarithmic scale.

Most of the speech signal power is contained around the first formants. The
statistical results for many vowels of adult, males, and females indicate that

the first formant frequency doesn't exceed 1000 Hz and isn’t below 100Hz [4]
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approximately. The 172-344 Hz level is chosen for analysis because it has the
minimum number of wavelet parameters than the other two levels as shown in

table3.1, beside that, it contains most of the speech energy.

The algorithm generates a mathematical function that depends on the
wavelet transform and reflects the energy changes along the speech utterance.
The first step toward generating this function is introduced in the previous
paragraph. In this step the wavelet parameters are extracted. The magnitude of
the 32 wavelet parameters in the 172-344Hz band are used to make the
appropriate mapping for the power distribution of the speech samples along
the analysis time period in this frequency band. The entire analysis period is
distributed over those 32 parameters. Each parameter concerns of one window
length divided by 32. Time is given by the following formula:

(3.4)

N W
tn—FS+m2

where:

Fs: Sampling rate.

m: Frame number,

w: Window length in samples.

n: Time index.

The frame number is the number of the analysis window. A 50%
overlapping between the analysis windows is implemented. This overlapping
IS needed to eliminate the error produced from the frame discontinuity. The
suffix "n" is the index of the wavelet parameter within the selected band. Each

wavelet parameter represents a point in the time-power domain. The Xx-axis
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represents the time and the Y-axis (log scaled) represents the power in figure
3.7-a. A simple interpolation is made to smooth these points by using low pass

filter. The generated smoothing tracking function is shown in figure 3.7-b. The
characteristics of the low pass filter are:

1- Very narrow bandwidth.

2- Critical edge transition.

3- No ripple in the stop band and flat response in the pass band.

4- Small order as much as possible to insure a good speed in a real-time

application.
Figure 3.8 indicates the designed and the implemented digital filter.
The narrow band width is to smooth the curve of figure 3.7-b. The abrupt

change in the filter is to eliminate the sudden variations totally. The different
manipulations of the pass band components makes reshaping of the slow
variations which may give harmful results so that the filter is flat in the pass
band.

The tracking function is a level sensitive function, i.e. thresholds will be
extracted from it in the training phase. Those thresholds give the information

about the unvoiced level.
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Figure 3. 7 a-The wavelet parameter s before applying to the smoothing
filter. b- Thewavelet parameters after applying the smoothing filter.
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Figure 3. 8 The proposed digital filter for smoothing process.

3.3.2.1 Training phase
The process of finding appropriate thresholds is based on statistical data

collection. The data is extracted from linking between the time waveform
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curve, the listening and the tracking function curve as shown in figure 3.9.
This phase of the process is called the training phase.
Assume the following definitions:

e L: the minimum limit that represents the starting of the unvoiced

segment.

e U: the upper limit, which can not be exceeded by the tracking

function during the unvoiced sound duration.
e Y: tracking function.
e Y. Maximum statistical value of tracking function
e .Y,. Normalized tracking function.
* Yima : Maximum statistical value of tracking function of frame i.
® Y men :average value of tracking function of frame i.
e Min_U_Duration: minimum unvoiced duration.

In the training phase, many speech samples are taken from many speakers
(males and females). The tracking function is a power-related function. It
depends on the signal level so that the tracking function must be normalized to
be a signal level independent function. If the curve goes above the U limit it

can not represent unvoiced sound.

The tracking function Y will be normalized with respect to the statistical
maximum value Y yax rather than the absolute maximum. This is because a
fatal error can occur if there is a value which is very large with respect to all

others due to any error in the process (hazard). If the tracking function (Y ) is
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normalized with respect to this unexpected value, it will give a false

information about the signal phonetic levels.

10 | T l T T T l T

U
01 — {
001
0,001 ,_/,.——/
/

"0

Time 10 sec.

Figure 3. 9 Upper and lower threshold
To overcome this error, the statistical maximum value is taken instead of
the absolute maximum value. In each frame (analysis window), the mean
value and the standard deviation are computed. It is found statistically that the

maximum value is:

Yi max = Yi_mean * . (3.5
"I" refers to the frame number.

o; . Standard deviation of frame i.

Y max 1S the maximum value of all Yi_MAX.
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The above algorithm is applied over the training set to extract "L","U" and
Min_U_Duration (Minimum Unvoiced time Duration). According to the
experiment results L= 0.1 , U= 0.4 units of the log scale as shown in figure
3.9.

3.3.2.2 Test phase
The automatic tracking algorithm is introduced in figure 3.10. The sampling

process is applied to the speech, then the speech samples are divided into
frames. The wavelet transform is applied on each window, the wavelet
parameters for the tracking function are extracted and applied to the previous
low pass filter. Y, is generated for all frames then it is normalized as

described before. Now Y, can be used for extracting the unvoiced boundaries.
Figure 3.11 a illustrates a comparison between the actual boundaries,

which are marked by using the time waveform drawing and listening test, of
the unvoiced sounds and the boundaries which are generated from the above

tracking algorithm. A rate of 98.7% of accurate recognition is achieved.

Figure 3.11 b,c and d, illustrate the method in work. As shown in figure

(3.11 b) , Arabic word s, W4 contains a curve that represents the regions

where Y exceed U limit and W5 contains the curve that indicate the regions
where Y exceed L limit. If Y exceeds L then U within certain time as
illustrated before then the marker indicating the beginning of voiced segment

IS generated. If the curve of Y goes below L then unvoiced sound is started.

W2 and W3 in figure 3.11 b,c and d are wavelet parameters in 3D plot and

the tracking function Y respectively.
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1-Speech sample generation
2-Windowing+overlapping

3-Wavelet Transform for all frames
4-LFF

5-Y_MAXK estimation & Normailze Y(n)

=l . FrameMNo=0

| Start(h =) |

|

IN= N+1 , j=N+1 , MinDuration = N+UnvoicediVinTime |

EWmsow e —(D)

=]

| FrameMo = FramelNo + 1 |

FrameMNo> MaxNg

| End(I) = t(r) |

| 1=|1+ 1 }7@

Figure 3. 10 Flow chart of the automatic tracking algorithm.
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o 02 0.4 06 o8 1 12 14
(2) The acctual Unvoiced marker Time in se:

o o2 0.4 0.6 0.8 1 12 14

(b) The Unvoiced marker due to Tracking Time 1 sec

Figure 3. 11 a-Comparison between the ordinary method and automatic
tracking algorithm.
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3.3.3 Correlation based method
A new method for classifying the speech signal into voiced and unvoiced
sounds using the discrete wavelet transform is introduced [49]. The technique

Is a modified version of the tracking function that is presented in section 3.3.2.

A correlation model that is generated from the wavelet transform of the speech
signal is used to make the classification. This way is highly immune to noise.
It works with a good accuracy for signals with low signal to noise ratio (less

than 9 dB). This way is fast and can be implemented in real time applications.

Figure 3.12 gives a view about how the wavelet transform is powerful in
representing the variations of the speech sounds from voiced to unvoiced or
from unvoiced to voiced. The figures are constructed by interpolating the

wavelet parameters in each frequency level.

The relation between the energy and the frequency clearly appears in figure

3.12. The energy of voiced speech is approximately vanishing in the higher

ranges of the frequency, so the low frequency bands are chosen (172-344 Hz
and 344-689 Hz).

3.3.3.1 Algorithm
Assume the following definitions:

e R : Crosscorrelation parameters
e UTR : unvoiced threshold.
e MUT : maximum unvoiced threshold.

e MVT : maximum of the moving standard deviation.
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The algorithm begins by dividing the speech signal into smaller windows of
1024 samples each. The wavelet parameters are extracted for each window.
The crosscorrelation is performed on the wavelet parameters of ranges [172-
344Hz] and [344-689Hz](win(5) and win(6) in Table 1.1). To generate the
correlation function, the frames of “R” parameters (The crosscorrelation
parameters) are concatenated, then the absolute values of the points are taken
and smoothed using moving average of 1024 points (about 90ms of speech in
case of 11025 Hz sampling rate). The moving standard deviation is applied on
the correlation function to reflect the variation in the correlation parameters
along 100ms that is sufficient to detect any phonetic changes. The unvoiced

threshold UTR is calculated as follows.

The first 100 ms of speech is assumed to be unvoiced or silence. Maximum
unvoiced threshold is obtained from the first 100 ms (about 1024 samples) of

the moving standard deviation.

The maximum voiced threshold is obtained from the whole speech
duration. (MVT= the maximum of the moving standard deviation along the
speech signal which only occurs in case of transition from unvoiced to voiced

or vice virsa).

Let UTR=0.01*(MVT-MUT) the constant (0.01) is obtained by many trials

of speech samples in the training phase.

R> UTR gives 1 that indicates a voiced. R< UTR gives 0 that indicates

unvoiced.

Figures 3.13, 3.14, and 3.15 give some examples of the proposed algorithm
applied on the words (L& .l « o L) indicate the results that are obtained

by use the above technique. It is clearly shown that the markers indicate
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accurately the voiced segments. In figure 3.13 the word begins by the

unvoiced sound /s/ followed by three different voiced sounds the short vowel
/®/, the long consonant /y/ and the long vowel /®/. The markers track the
voiced sounds along the duration of the three different sounds. A small
duration drop in markers indicating unvoiced sound occurred in the transition
between /®/ and /y/ ,which may include whispering, then in the transition
between /y/ and /®/. A small duration drop in markers also occurred before
the end indicating the location of unvoiced /r/. These false markers can be
neglected by the software.

A

Figure 3. 13 Speech signal and logic markers. Themarkersarehighin
case of voiced sound. Theword is/g/@/yl1®//r [loaH/s i

Tirne

Time

Figure 3.14 Speech signal and logic markers. Themarkersarehighin
case of voiced sound. Theword is/dlyl//alls//aH/«\...
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L

Time

Figure 3.15 Speech signal and logic markers. Themarkersarehigh in
case of voiced sound. Theword is/Z//@//M//d//aH/.+.

In figure 3.14, the word starts by unvoiced /s/ followed by voiced consonant

Iyl then long vowel /®/. The markers are still high during the two different
voiced sounds. The markers are dropped in the transition duration between /y/
/®/. The markers are dropped again in the duration of the internal unvoiced

sound /s/ then become high again at the beginning of the end long vowel /G/.
Figure 3.15 is a speech signal which begins with a consonant unvoiced

sound /Z/. The markers start to be high at the beginning of vowel /®/ and
continue in high position along the voiced consonant /M/. It goes down at the
beginning of consonant /s/ then it goes back high at the beginning of vowel
18]

This method gives a classification accuracy of about 98.4% for a test of 2
minutes of speech. This method is much immune to noise than the tracking

function.

3.3.4 Voiced/Unvoiced classification using mathematical model based on
wavelet features.
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A trial to build a mathematical model to classify the speech into

voiced/unvoiced is done. This model has the advantages of:

1- Once the model is found there is no need to make pre-

estimation for unvoiced threshold.
2- It is easier to implement as hardware or software.
but there are many drawbacks:

1- It needs in the training phase a Database which must be

handled carefully for best classification accuracy.

2- Efficiency of the system is environment-sensitive. In other
words, training database must be collected in environment similar to

the practical environment in which the system will be installed.

As introduced before in chapter 1, database are collected and aligned

into the following table.

BO Bl B2 B3 B4 B5

54000 |30200 [2230 |1000 |650 120 lor0

Wavelet parameters are extracted, interpolated and smoothed as in the
previous method. The first six bands (BO, B1, B2, B3, B4, B5) that cover the

frequencey range 86-5512 Hz are chosen. The algorithm is as follows:
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A training period of 4 minutes of speech is used to prepare the

training data set.
Wavelet parameters are extracted, interpolated and smoothed.

Training matrix is prepared. It contains rows called X-vectors. Each
row represents the power distribution of the signal at certain time in the

different six bands.
X-vector contains 6 elements as follows:
X[i] ={B0,B1,B2,B3,B4,B5}

Where each element in vector X represents the wavelet function
(smoothed interpolated wavelet parameters) at time index i in the
frequency bands 86-172Hz, 172-344 Hz,344-689 Hz, 689-1378 Hz,
1378-2756 Hz, 2756-5512 Hz respectively.

5. A pre-estimation of the state of X[i] vector into Voiced or unvoiced is
made manually. The decision is put into vector Y. The i" element of Y is a

decision of X[i] vector as indicated below:

_Y _ bo
0| rx X X X X X..7|b
A 01 202 203 “o4 o5 o6 || ™
b

= . ' bg (3.6)
v _Xml Xm2 Xm3 Xm4 Xm5 Xm6_ b4
L 'm. be

Where [B] is calculated :
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1 0.0115 |
0.0034
0.0095
B|= 3.7
] -0.1058 (3:7)
0.1374

0.0200 |

Now the [B] matrix is the system model for V/U classification. Many
speech signals are tested. The system gives around 90.7% classification rate
which is less than the previous correlation method but is much faster as it

does not need pre calculations as the past two methods. Figures 3.16 and 3.17

show two examples of Arabic words ( i.L. «~\s). The markers indicate the

classification of VV/U regions using the proposed algorithm.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.2

05 o ]\M\ “\M(Wv JL w ‘ | 4 \W | et | Wiplipont 0

1T -

-40000
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e
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=
=
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Figure3.16 V/U Markersfor a speech utterance /k//i/lt//®//bl. Markers
are generated using the mathematical regression model. Theword is s
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Figure3.17 V/U Markersfor a speech utterance /d/y//@®//s/aH/. M arker s
are generated using mathematical regression model . Theword is «.t..
As shown in figures 3.16 and 3.17, the small drops in markers occur

frequently within the voiced or unvoiced period. That is because the system
here is highly sensitive to environmental changes. Practically the drop’s

duration is very small and can be corrected by software.

3.4 Pitch period estimation

Pitch period estimation (or equivalently, fundamental frequency estimation)
Is one of the most important problems in speech processing. Pitch detectors
are used in vocoders, speaker identification , verification systems and many
other applications[5]. Because of its importance, many solutions to this
problem have been proposed [52-68]. All of the proposed schemes have their
limitations, and it is safe to say that no presently available pitch detection
scheme can be expected to give perfectly satisfactory results across a wide

range of speakers, applications, and operating environments[5].

The time domain methods give good results for pitch estimation especially

for low noise environment. The frequency or spectral methods, such that LPC-
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based pitch detector, give good results in some cases but it gives a poor results

in case of high pitch speakers.

In this section a general review of some of the pitch detection methods is

given.

3.4.1 The parallel processing method
The scheme was first proposed by Gold [5] and later modified by Gold and

Rabiner [5]. Our reasons for discussing this particular pitch detector in this
chapter are:

It has been used successfully in a wide variety of applications.
It is based on purely time domain processing as this point of research.

It can be implemented to operate very quickly on a general-purpose

computer or it can be easily constructed in digital hardware.

It illustrates the use of the basic principle of parallel processing in

speech processing.

The basic principles of this scheme are as follows;

1. The speech signal is processed so as to create a number of impulse
trains that retain the periodicity of the original signal and discard features.

which are irrelevant to the pitch detection process.

2. This processing permits very simple pitch detectors to be used to

estimate the period of each impulse train.

3. The estimates of several of these simple pitch detectors are logically

combined to infer the period of the speech waveform.

95



Classification of voiced/unvoiced utterances and pitch period estimation

The particular scheme proposed by Gold and Rabiner [5] is depicted in
Figure 3.18. The speech waveform is sampled at a rate sufficient to give
adequate time resolution; e.g., sampling at 10 kHz allows the period to be
determined to within T = 10 ~* sec. The speech is lowpass filtered with a
cutoff of about 900 Hz to produce a relatively smooth waveform. A bandpass
filter passing frequencies between 100 Hz and 900 Hz may be necessary to
remove 60 Hz noise in some applications. (This filtering can be done either

with an analog filter before sampling or with a digital filter after sampling.)

3
2
n PPE |
{(n)
phic 4 PPE 2 }———
' 2 n 4
PROCESSOR ~_]m 2 ere 3 Final
n \ PITCR— | PTCH
SPEECH oF | PATCH
=T |FAIER SIGNAL [ | compuTaTion| PERIOO
PEAKS L PPE 4 - L
n ()
n
s ppe s
n) PPE 6

S1X INDIVIDUAL Py TCH
PERIOD ESTIMATORS

Figure .3 18 Block diagram of a parallé processing time domain pitch
detector.

Following the filtering the peaks and valleys (local maxima and minima)
are located, and from their locations and amplitudes, several impulse trains (6
in figure 3.18) are derived from the filtered signal. Each impulse train consists
of positive impulses occurring at the location of either the peaks or the valleys.
The 6 cases used by Gold and Rabiner [5] are:
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1. mi(n): An impulse equal to the peak amplitude occurs at the location of

each peak.

2 m2(n): An impulse equal to the difference between the peak amplitude
and the preceding valley amplitude occurs at each peak.

3. m3(n): An impulse equal to the difference between the peak amplitude
and the preceding peak amplitude occurs at each peak. (if this difference is

negative the impulse is set to zero.)

4. m4(n): An impulse equal to the negative of the amplitude at a valley

occurs at each valley.

5. mg(n): An impulse equal to the negative of the amplitude at a valley

plus the amplitude at the preceding peak occurs at each valley.

mg(n): An impulse equal to the negative of the amplitude at a

valley plus the amplitude at the preceding local minimum occurs at each

valley. (If this difference is negative the impulse is set to zero.)

Figures 3.19 and 3.20 show two examples - a pure sine wave and a weak

fundamental plus a strong second harmonic - together with the resulting

impulse trains as defined above. Clearly the impulse trains have the same

fundamental period as the original input signals, although m5(n) of Fig. 3.20 is

close to being periodic with half the fundamental period. The purpose of
generating these impulse trains is to make it simple to estimate the period on a
short-time basis. The operation of the simple pitch period estimators is
depicted in Figure 3.21. Each impulse train is processed by a time varying

nonlinear system (called a peak detecting exponential window circuit in [5]).
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When an impulse of sufficient amplitude is detected in the input, the output is
reset to the value of that impulse and then held for a blanking interval, t(n) -
during which no pulse can be detected. At the end of the blanking interval, the
output begins to decay exponentially. When an impulse exceeds the level' of
the exponentially decaying output, the process is repeated. The rate of decay
and the blanking interval are dependent upon the most recent estimates of
pitch period. The result is a kind of smoothing of the impulse train, producing

a quasi-periodic sequence of pulses as shown in Fig. 3.21. The length of each

pulse is an estimate of the pitch period. The pitch period is estimated
periodically (e.g., 100 times/sec) by measuring the length of the pulse

spanning the sampling interval.

This technique is applied to each of the six impulse trains thereby obtain-ins
six estimates of the pitch period. These six estimates are combined with two of
the most recent estimates for each of the six pitch detectors. These estimates
are then compared and the value with the most occurrences (within some
tolerance) is declared the pitch period at that time. This procedure produces
very good estimates of the period of voiced speech. For unvoiced speech there
Is a distinct lack of consistency among the estimates. When this lack of
consistency is detected the speech is classified as unvoiced The entire process
IS repeated periodically to produce an estimate of the pitch period and

voiced/unvoiced classification as a function of time.

Although the above description may appear very involved, this scheme for
pitch detection can be efficiently implemented either in special purpose
hardware or on a general-purpose computer. Indeed, near real-time operation

(within a factor of 2 times real-time) is possible on present computers.
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Furthermore it has been observed that at the initiation of voicing (i.e., the
first 10-30 msec of voicing) the speech is often classified as unvoiced. This
result is due to the decision algorithm that requires about 3 pitch periods
before a reliable pitch decision can be made - thus a delay of about 2 pitch

periods is inherently built into the method

In summary, the details of this particular method are not so important as the
basic principles that are introduced. First, note that the speech signal was
processed to obtain a set of impulse trains which retain only the essential
feature of periodicity (or lack of periodicity). Because of this simplification in
the structure of the signal, a very simple pitch estimator suffices to produce
good estimates of the pitch period. Finally, several estimates are combined to
increase the overall reliability of the estimate. Thus, signal processing
simplicity is achieved at the expense of increased logical complexity in
estimating the desired feature of the speech signal. Because the logical
operations are carried out at a much lower rate (e.g., 100 times/sec) than the
signal processing, this results in an overall speed-up in processing. A similar
approach was used by Barnwell et al. [5] in designing a pitch detector in
which the outputs of four simple zero-crossing pitch detectors were combined

to produce a reliable estimate of pitch.
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Figure 3. 19 Impulsetrains generated from peaks and valleys of a pure
sin wave5].
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Figure 3. 20 Impulse trains generated from peaks and valleys of a weak
fundamental and second har monic[5].
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Figure3.21 Basic operation of pitch estimator[5].

3.4.2 Thesmplified inversefilter tracking SIFT method
An efficient and accurate pitch extraction method based upon linear

prediction principles for the range 50-250 Hz is the simplified inverse filter
tracking (SIFT) algorithm [Markel, 1972c]. A down-sampling procedure is
used so that the effective sampling frequency for FO analysis is about 2 kHz.
Therefore, only the most reliable frequency range up to about 1 kHz is
processed and in addition, the necessary number of operations is substantially
reduced. A block diagram of the SIFT algorithm, represented in two steps, is
shown in Figure 3.22. Efficient preprocessing to reduce formant and
fundamental frequency interaction is performed in step 1. A sequence of
speech samples corresponding to frame Kk is pre-filtered with a cutoff close to
fs/1=2kHz. where | is the integer down-sampling factor.

Down-sampling is performed to reduce the effective sampling rate to f/I.
The samples are differenced to accentuate the region of the second formant,
and multiplied by a Hamming window. A fourth-order inverse filter A (z) is
then designed using the autocorrelation method. Due to the fact that at most
two formants can reside in the range (0, 1 kHz), four coefficients have been

demonstrated to be sufficient.
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Although the inverse filter was designed on the basis of differenced
windowed data the output is obtained by applying the unwindowed non-
differenced data. The effect of this operation is to produce a low-pass filtered
error signal without low-frequency bias. This signal is then multiplied by a

second Hamming window.

In step 2, an autocorrelation sequence is obtained and then the peak within
the minimum-to-maximum desired pitch range is obtained. Parabolic
interpolation is applied to provide greater pitch period resolution. (Without
interpolation, the maximum resolution would be 1/ f;). A variable threshold
has been found to be of significant utility with a filtered error signal. The
threshold is defined by two linear segments intersecting at some quiescent
threshold location. As the peak location becomes smaller, the threshold is
raised. Since proportionally more pitch periods will be obtained per analysis
interval. As the peak location increases, the threshold is lowered. If a peak
crosses the variable threshold, its location becomes the pitch period candidate
for that frame. Otherwise the frame is defined as unvoiced (P=0). An attempt
at error detection and correction is made by storing several pitch period
candidates. After this operation, the pitch period estimate with maximum

delay is output.
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Figure 3. 22 Block diagram of the SIFT algorithm[5].
3.4.3 Pitch estimation using Cepstrum
Figures 3.23 suggest a powerful means for pitch estimation based on

cepstrum. It is observed that for the voiced speech, there is a peak in the
cepstrum at the fundamental period of the input speech segment. No such peak

appears: in the cepstrum of the unvoiced speech segment.

2 - - - .

CEPSTRUM

al el e iae

=75 0 75
TIME (SAMPLES! )

Figure 3. 23 Cepstrum of a voiced speech segment[5].
These properties of the cepstrum can be used as a basis for determining
whether a speech segment is voiced or unvoiced and for estimating the

fundamental period of voiced speech.
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The outline of the pitch estimation procedure based on the cepstrum is
rather simple. The cepstrum is searched for a peak in the vicinity of the
expected pitch period. If the cepstrum peak is above a pre-set threshold, the
input speech segment is likely to be voiced, and the position of the peak is a
good estimate of the pitch period. If the peak does not exceed the threshold, it
iIs likely that the input speech segment is unvoiced. The time variation of the
mode of excitation and the pitch period can be estimated by computing a time-
dependent cepstrum based upon a time dependent Fourier transform.

Typically, the cepstrum is computed once.

Figures 3.24 shows example due to A. M. Noll [5], who first described a
procedure for estimating pitch using the cepstrum. Figure 3.24 shows a series
of log spectra and corresponding cepstra for a male speaker. The cepstra
plotted in this example are the square of cepstrum. In this example, the
sampling rate of the input was 10 kHz. A 40 msec (400 samples) Hamming
window was moved in jumps of 10 msec; i.e., log spectra on the left and
corresponding cepstra on the right are computed at 10 msec intervals. It can be
seen from Figure 3.24 that the first seven 40 msec intervals correspond to
unvoiced speech, while the remaining cepstra indicate that the pitch period

increases with time (i.e., fundamental frequency decreases).
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Figure 3. 24 Series of log spectra and cepstrum for a male speaker[5].
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Unfortunately, as is usually the case in speech analysis, there are numerous
special cases and trade-offs that must be considered in designing a cepstrum

pitch detection algorithm.

e First, the presence of a strong peak in the cepstrum in the range 3-20
msec is a very strong indication that the input speech segment is voiced.
However, the absence of a peak or the existence of a low-level peak is
not necessarily a strong indication that the input speech segment is
unvoiced. That is, the strength of or even the existence of a cepstrum
peak for voiced speech is dependent on a variety of factors, including
the length of the window applied to the input signal and the formant
structure of the input signal. It is easily shown that the maximum height
of the "pitch peak™ is unity[5]. This can be achieved only in the case of
absolutely identical pitch periods. This is, of course, highly unlikely in
natural speech, even in the case of a rectangular window that encloses
exactly an integer number of periods. Rectangular windows are rarely
used due to the inferior spectrum estimates that result, and in the case
of, for example, a Hamming window, it is clear that both window length
and the relative positions of the window and the speech signal will have
considerable effect upon the height of the cepstrum peak. As an extreme
example, suppose that the window is less than two pitch periods long.
Clearly it is not reasonable to expect any strong indication of periodicity
in the spectrum or the cepstrum in this case. Thus, the window duration
is usually set so that, taking account of the tapering of the data window,
at least two clearly defined periods remain in the windowed speech
segment. For low pitched male speech, this requires a window on the

order of 40 msec in duration. For higher pitched voices, proportionately
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shorter windows can be used. It is, of course, desirable to maintain the
window as short as possible so as to minimize the variation of speech
parameters across the analysis interval. The longer the window, the
greater the variation from beginning to end and the greater will be the
deviation from the model upon which the analysis is based. One
approach to maintaining a window that is neither too short nor too long
Is to adapt the window length based upon the previous (or possibly

average) pitch estimates

e Second, if the signal is band-limited, it will deviate from the model,
In this case there is only one peak in the log spectrum. If there is no
periodic oscillation in the log spectrum, there will be no peak in the
cepstrum. In speech, voiced stops are generally extremely band-limited,
with no clearly defined harmonic structure at frequencies above a few
hundred Hertz. In such cases there is essentially no peak in the
cepstrum. Fortunately, for all but the shortest pitch periods, the pitch
peak occurs in a region where the other cepstrum components have died
out appreciably. Therefore, a rather low threshold can be used in
searching for the pitch peak (e.g., on the order of 0.1).

3.4.4 Pitch estimation using wavel et

A new method for pitch estimation of the speech signal is introduced. The
technique is based on the discrete wavelet transform. The algorithm is highly
immunized to noise. A fair comparison between the ordinary methods and this

new one is presented.
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The wavelet transform creates a link between the time domain and the
frequency domain. So, the methods that are based on the wavelet transform

can take the advantages of both time domain and frequency domain.

3.4.4.1 Detection of pitch using two band correlation of wavelet
features.

Table 3.1 indicates the number of wavelet parameters for each frequency
band in case of 1024 samples frame length and sampling rate of 11025 Hz. A
simple interpolation technique is used to insert points between the wavelet
parameters to expand them in each frequency band to 1024 points. Windows#
5 and 6 are selected. Window 5 covers the range of (172-344)Hz and window
6 covers the range of (344-689) Hz. The selection is based on the criteria
which indicates that most of the power in the voiced speech is below the 900
hz [4]. A Crosscorrelation algorithm is applied between Window#5 and
Window# 6 (Table 3.1) rather than the autocorrelation of one window to get
the highest immunity to noise. That is because if the speech features are weak
in one window it may be strong in the adjacent window. For the above two
reasons the crosscorrelation can give the maximum reliable correlation

representation between the two windows.
The procedure can be arranged as follows:
The speech signal is low pass filtered at 900 Hz.
The speech signal is classified into voiced and unvoiced speech.

The algorithm is applied on the voiced section only by dividing them

into smaller windows of 1024 samples each.

The wavelet parameters are extracted for each window.
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5)  The crosscorrelation is performed on win(5) and win(6) To generate

the correlation function.

6)  The frames of “R” parameters (The crosscorrelation parameters) are
concatenated to compose a continuos correlation function along the voiced

segment of speech signal.
7) A peak detection algorithm is applied on the generated function.

The duration between the fundamental peaks correspond to the pitch period.
The pitch contour will be established by using frames of speech signal of 100
ms.

The above procedure is applied on the speech signal in figure 3.25 (Arabic

word —»3).

- e R L

Time

Figure 3. 25 Speech sample of the word " —»3" in Arabic. It is
pronounced ///®/m//0//BH/
Figure 3.26 indicates the impulse train after applying the algorithm over the

utterance of figure 3.25.

Figure 3.27 focus on part of the voiced segment.
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Figure3.27 Theimpulsestrain of part of voice ssgment in figure 3.26

The power of this technique appears clearly in case of noisy environments.
This technique is highly robust in any noisy environment even in case of very

low signal to noise ratios as will be shown.

The old time based techniques are highly affected with the environmental

condition. This problem is partly solved in the case of this algorithm.,

The peak detector extracts all peaks of the correlation function to generate
an impulse train. To achieve this point the first 200 ms of utterance is
processed to extract the noise level. The correlation parameters of this period

are calculated. The maximum parameter is taken as the noise threshold.

The whole correlation parameters of the whole utterance are compared with
the noise threshold. The logical function (impulse train) is generated by this
comparison. If the correlation parameter is bigger than the noise threshold an

impulse is generated.

The above technique is applied for the speech sample in figure 3.28 to test
how far this algorithm is robust in the presence of noise. The signal to noise
ratio of 7dB is achieved and the results are the same. The following figures

summaries the results.
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N~ e

Time

Figure3.28 Arabicword " =" /Z//®//h//®//bH/. S/N = 15 dB.

Time

Figure 3. 29 Pitch markersof figure 3.28.

Time

Figure 3.30 Focus on apart of voiced segment /a/ of figure 3.29. The speech
segment correspondsto thispart isoverlaid on theimpulsetrain.

As shown in figure 3.30, the pitch impulse train still keep track with the

speech energy in case of S/N= 16 dB.
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Figures 3.31,3.32 and 3.33 indicate the result in a very poor noise
environment. The speech signal is superimposed to a uniform noise to reach a

signal to noise ratio of 7 dB only.

'l.:‘l' -
Time
Figure 3. 31 Arabicword " " . S/N =7 dB.
o
- Tirne
Figure 3. 32 Pitch markersof figure 3.31.
F

Time
Figure3.33 Focuson a part of voiced segment /a/ of figure 3.32. The speech
segment correspondsto thispart isoverlaid on theimpulsetrain.

3.4.4.2 Pitch detection using two wavelet based estimatorsin
parrallel
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The above discussion illustrate how far wavelet succeed to track the
fundamental frequency of speech utterance. In this section the algorithm is

compared with well-known pitch estimators (Autocorrelation and Cepstrum).

Figure 3.34 is a flow chart which represents the algorithm. Following is a

discussion of each block in flow chart.

Framing and overlapping: Speech signal is segmented into frames. Each
frame contains 1024 samples. The frames are overlapped by 975 samples.
This overlapping makes the steps of unoverlapped period is 50 samples (about

5 ms in case of 11025 Hz sampling rate).

e Wavelet: Performs the wavelet transform on a frame which
contains 1024 samples. The wavelet filter is Doubchi filter. The
output of this block are six series each contains 1024 samples
representing the utterance in different frequency bands. The bands

are summarized below:
BO 86-172Hz
Bl 172-344Hz.
B2 344-689 Hz.
B3 689-1378 Hz.
B4 1378-2756 Hz.

B5S5 2756-5512 Hz.
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o

Speech Capturing

Framina + Overlappina

<

Wavelet(Frame)

CrossCor(B2,B3)

CrossCor(B1,B2)

Peak detection

Peak detection

Pitch Estimator

Loop on Frames

Pitch correction

Smoothing + saving

Figure 3.34 Flow chart of two parallel pitch estimator
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e CrossCor (B, By): Performs the crosscorrelation between B,
and B,,. The crosscorrelation give indication about the dependencies

of signal components in the two selected bands.

e Peak Detection: Peaks of crosscorrelation function are detected.
Peaks occur at distance representing the repetition of the speech

signal fundamental frequency.

e Pitch Estimator: Actually the first harmonics can interfere the
process. So the information of peak detector is correlated in
different bands. The fundamental frequency appears in the two

bands so correlation between them eliminates harmonics.

e Pitch verification: Pitch contour is verified to eliminate
unexpected values or variation. Moving standard deviation of 5
points is applied. Parts of speech contains deviation more than 15

Hz are eliminated and assumed to be unvoiced.

e Pitch smoothing: A 5-points smoothing filter is applied on the
pitch contour.

*Results and comparison

The above algorithm is applied on 40 sec speech utterances. The technique

is compared with the familiar pitch estimators such as Autocorrelation pitch

estimator and Cepstrum pitch estimator. The technique is applied on normal

speech utterances as well as synthetic speech utterances for both male speaker

and female speaker. The following figures summarize the results of

comparison.

116



Classification of voiced/unvoiced utterances and pitch period estimation

Figures 3.35,3.36,3.37 and 3.38 indicate how far the system performs with
respect to a well-known systems (Autocorrelation and Cepstrum). Figure 3.35
IS a comparison of pitch contours calculated using three different pitch
methods for a speech signal on the top of the figure. The word is “ _«=” in
Arabic and it is pronounced /x//e//TH//®//BH/. The word contains two vowels
/e/ avd /@/. The first starts at 0.1 ms and ends at 0.2 ms. The second vowel
starts at 0.3 ms and ends at 0.8 ms as shown in figure 3.35. Female speaker
pronounces the word. The second graph from the top of figure 3.35 is a pitch
contour calculated with Cepestrum method. The third graph from the top of
figure 3.35 is a pitch contour calculated with the wavelet-based method. It is
clearly apparent that, the two curves give approximately the same results but
the wavelet-based method is more stable in the transition regions. The last
graph on the bottom of figure 3.35 is the pitch contour calculated using the
autocorrelation method. It is clear that it gives unstable graph compared with

the other two methods.

Figure 3.36 is the same as figure 3.35 except that the word under test is a
synthesized female word. The top graph is the original pitch of the speech
signal. The second curve from the top is the synthesized speech signal. The
third graph is the pitch of the synthesized utterances calculated with cepstrum
method. The fourth graph is the pitch contour calculated with the
autocorrelation method. The bottom graph is the pitch contour of the wavelet-
based method. It is clear that the wavelet-based pith contour is the best one

approximation of the original pitch contour on the top.
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Figure 3. 35 Female pitch comparison. Thetop graph isaligned as speech
sample, Cepstrum-based pitch, wavelet-based pitch and Autocorreation-

based pitch.

118



Classification of voiced/unvoiced utterances and pitch period estimation

-32727

Figure 3. 36 Female synthetic speech pitch comparison. Thegraph is
aligned as Cepestrum-based pitch for normal speech, Synthesized speech,
Cepstrum-based pitch for synthesized speech, Autocorrelation-based for

synthesized speech. Wavelet-based pitch for synthesized.
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Figure 3. 37 Male pitch comparison. Thegraph isaligned as speech
sample, Cepstrum-based pitch, wavelet-based pitch and Autocorreation-
based pitch.
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Figure 3.38 Male synthetic speech pitch comparison. The graph isaligned
as Cepestrum-based pitch for nor mal speech, Synthesizd speech,
Cepstrum-based pitch for synthesized speech, Autocorrelation-based for
syntheszed speech. Wavelet-based pitch for synthesized.
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Figure 3.37 is a repetition of figure 3.35 but for a male speaker. The second
graph from the top is the cepstrum-based pitch contour. The third one is the
wavelet-based pitch contour and the bottom one is the autocorrelation-based
pitch contour.

Figure 3.38 is a graph for the synthesized word of figure 3.37. The top
graph is the original pitch contour before synthesizing. The second one is the
synthesized word. The third one is the cepstrum-based pitch contour for the
synthesized word. The fourth one is the autocorrelation-based pith contour and
the last one is the wavelet-based pitch contour. As indicated in the figure the
best one fits the original curve is the cepstrum-based method. That is because
the synthesized male utterance is approximately distorted with the synthesizer.
The synthesizer is a vocoder synthesizer which generates the synthesized

speech using the filter bank outputs and pitch contour.

3.5 Conclusion
In this chapter the problem of classifying the speech into voiced or

unvoiced sounds is handled. Wavelt transform can represent the phonetic
variation along the utterance duration. This property is used in two algorithms
to find V/U boundaries. The correlation of wavelt parameters gives robust

decision.

The pitch period estimation problem is handled using wavelet transform. It
is clearly apparent that wavelet can keep track with pitch variation even in
case of poor signal to noise ratio. Pitch contour that is generated using wavelet
algorithm is more stable and smoothed than those generated using

autocorrelation method or cepstrum.
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4.1 Introduction
In this chapter, one of the most complicated areas of speech processing is

considered. The speech segmentation into basic units is a very hard and
complicated process. It is expected that the speech recognition systems will be
enhanced if it is based on a reliable data bank. The best data bank is the basic
speech units because each unit represents pure sound rather than a complex
combination of sounds. This is the dream but if we try to get it into reality we
must face a large number of problems. The first and basic one is no standard
way to detect the phonemes until now. Many trials are made to find a model
for phonemes [70] and in general it succeed only in a simple phonetic

classification problem.

The phonemes in general are divided into two categories (vowels and
consonants). Actually there is some extra categories such that Diphthongs and
semivowels in some languages such as English. The study here is concentrated
on the vowels and consonants only. The vowels and consonants have many
differences in the acoustical characteristics. Also, there are many rules that
control the existence of them into the context. These rules differ from one
language to another. The vowels themselves behave differently according to

their position in the utterance, also the consonants do the same.
For the above difficulties the problem is divided into three parts.
Determination of vowels and consonants boundaries.

Collecting database for each vowel and each consonant in the

studied language.

Differentiating between different vowels and different

consonants in the studied language.
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The first step is the base of the two further steps. The efficiency of the next
two steps will be affected dramatically if the first step is not handled with
extra care. This work tries to solve the first step. To discriminate the different
kinds of phonemes, a large database must be built, so that only vowels are

taken as target and the whole recognition system can be left for future work.

The next section illustrates the acoustic phonetics in brief. Next the problem is

handled using the wavelet transform.

4.2 Acoustic phonetics
Most languages can be described in terms of a set of distinctive sounds, or

phonemes. A phoneme is the smallest unit of speech. It does not typically
have meaning but is used to distinguish meanings between words. Number of

phonemes can range between 30 and 40 depending on the language.

The brain decides what phonemes to be said. It then takes this sequence and
translates it into neural commands that actually move the tongue, jaw, and lips
into target positions. However, other commands may be issued and executed

before these targets are reached, and this accounts for articulation effects.

Because we deal her with Arabic language, it has basically 34 phonemes
containing 28 consonants and six vowels[72]. A List of Arabic language

phonemes is introduced in Appendix A.

4.3 Method of segmentation
Segmentation of speech into vowels and consonants is manipulated in

different ways. In this work, the following two methods are introduced:

Band selection method.
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Math classifier method.

In addition to the above two methods, neural network is considered as a
classifier. It gives poor results in case of using the same training data set
supplied to the mathematical classifier. For the same test data it gives a
recognition rate less than 45%. These poor results let us to exclude neural
network from further work and concentrate the work on mathematical
regression classifier. But it may be considered again in the future work of all

phones recognition.

The above two methods depend on the features of the wavelet transform.
Speech signal is captured, wavelet transform is applied then wavelet

parameters are handled.

4.3.1 Band Selection Method (BSM)
4.3.1.1 Method description and algorithm
In this way, some wavelet bands are chosen for information extraction.

Figure 4.1 outlines the worksheet for segmentation. The algorithm will be as

follows:

e Figure (4.1 a) indicates the speech signal under test. The speech

signal is captured using a 16-bit sound card.

e Speech signal is processed. It is framed into smaller frames with
1024 samples each. The wavelet transform is applied into all frames.

e The wavelet parameters in each frequency band are interpolated to
achieve 1024 wavelet parameters in each frequency level. That is
because each frequency level has a different number of parameters to
describe the signal (see Table 1.1).
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e Wavelet parameters are smoothed to eliminate unpredictable
peaks. Smoothing is made by using the moving average of 200
samples (~20 ms in case of 11025 sampling rate). Wavelet features
of the six bands are created. Table of figure (4.1 b) show two bands

of the six bands.

e Figures (4.1 c¢),(d), (e),(f),(9),(h) are the graphical representation
of the smoothed interpolated wavelet parameters. Figure (4.1 c)
represents the frequency band 86-172 Hz, (d) represents frequency
band 172-344 Hz, (e) represents frequency band 344-689 Hz, (f)
represents frequency band 689-1378 Hz, (g) represents frequency
band 1378-2756 Hz and (h) represents frequency band 2756-5512
Hz.

e The first 4 bands are taken into consideration because most of
speech power is concentrated below 1000 Hz [5]. The idea is how to
get the points of the large variation in the first four bands. At those
points a transition from vowel to consonant occurs. In Arabic
language there is no transition between vowel to vowel [72] rather
there are always one of Six patterns CV,
CV:,CVC,CVCC,CV:C,CV:CC where C denotes to consonant and V
denotes vowel and V: denotes to long vowel. So any transition in
wavelet curves will occur at the boundaries of V or C. The only
source of error is the pattern CC that can be overcome by choosing a

reasonable threshold of variation.

e Figures4.1c, d, e and f are normalized and summed to construct a
single curve that reflects any variation in any frequency band as

shown in figure (4.1 1).
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e To measure the stability of the curve of figure (4.1 i) and to find
the points of large variations, the moving standard deviation of 550
points (~50 ms) is applied. 50 ms is a reasonable duration of
phonemes to be stable [5] then figure (4.1 j) is created.

e Figure (4.1 k) is compared with a reasonable threshold (obtained

from many trials of different cases) to get markers at the large

transition boundaries. The word in figure (4.1 k) is <ts™ in Arabic. It

Is pronounced /k//i/lt//®/B/. The pattern of it is CVCV: C. It is clear

in figure (4.1 k) that the markers surround the vowel periods.

Figure 4.2 illustrates many other examples of V/C classification. Figure

4.2 a is an Arabic word K. It contains V/C pattern as CVCCVC. The

problem of CC is appearing here. As shown in window —k- in figure 4.2 a ,

markers bound all vowels.

The last marker of figure (4.2 a) represents sudden change of the stop
plosive /b/. It is a false marker that can easily be removed by the software

where no period is detected for a vowel.
Figure (4.2 b) represent the word ©;5.. Window k shows wrong markers

within the duration of the first vowel. It can be removed by checking on the
duration between the two markers is very low with respect to a vowel
duration. The second check is that no adjacent vowels can be found in Arabic
language.
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4.3.1.2 Test and evaluation
The system is evaluated in the presence of noise. White noise is

superimposed on speech signals to achieve different signal to noise ratios.

Steps of efficiency measure are:

1. Vowel periods are those speech periods between vowel markers.
Vowel periods are marked high “1” and consonant periods are marked

low “0”. False markers will be rejected by the software check.

2. Pre-calculation of V/C periods is made for about 14 minutes of

speech under test. (Actual classification from manual test)

3. White noise is superimposed on speech under test to control signal to

noise ratio.

4. The algorithm of V/C using band-selected method is applied on
speech of step 3.

5. VI/C periods are obtained using BSM method.

6. Error signal is calculated by subtracting curve of step 5 from curve of
step 2 and taking the absolute value as shown in figure 4.3.

7. To make a tolerance, the curve of step 6 is shifted 5 ms to generate a

tolerance curve see figure 4.3.

8. Curve of step 6 is multiplied with curve of step 7 to remove the

tolerance periods from the error signal, figure 4.3 c.

9. The total error is the summation of error periods of the curve in step
8.
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10. POS = (1—@)*100%. Where T, is total duration of error and T is

total period and n is the efficiency.
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Figure 4.4 illustrate the performance of the system for different signal

to noise ratios.

POS(%)
(o]
()}

9 29 50
SIN (dB)

Figure 4. 4 System performancein the presence of noise for
vowel/consonant classification using BSM.

4.3.2 Math classification method (M CM)
It is obviously clear that BSM (Band Selection Method) gets its information

from selected bands and ignore the other bands. In this section, all bands are
taken into consideration and a mathematical way is used to get the combined
information from all bands. A mathematical linear regression is used here to

handle vowel consonant classification[47].

4.3.2.1 Training phase
A training data is prepared for regression process.

1. A training period of 27 sec of phonemes is used to prepare the
training data set.

2. Wavelet parameters are extracted, interpolated and smoothed as

previous method. The bands under study are six bands.
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3. Training matrix is prepared. It contains rows called X-vectors. Each
row represents the power distribution of the signal at certain time in the
different six bands.

4. X-vector contains 6 elements as follows:
X[i] = {B0,B1,B2,B3,B4,B5}

Where each element in vector X represents the wavelet function
(smoothed interpolated wavelet parameters) at time index i in the
frequency bands 86-172Hz, 172-344 Hz,344-689 Hz, 689-1378 Hz,
1378-2756 Hz, 2756-5512 Hz respectively.

5. A pre-estimation of the state of X]i] vector into Vowel or consonant is
made manually. The decision is put into vector Y. The i element of Y is
a decision of x[i] vector as indicated below:

X Y
BO Bl B2 B3 B4 B5
54000 |30200 [2230 |1000 |650 120 lor0
23223 | 20345 |5428 | 300 250 70 lor0

6. Y is regressed on X to find the mathematical model of the system as
equation 4.1.
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(4.1)

Equation (4.1) represent the system equation. [B] Matrix is the system

model that is obtained from training as discussed above..

[0.0009 |
~0.0001
0.0037
0.0024
0.0278

|-0.0225

4.3.2.2 Test phase

[B]=

To Evaluate the efficiency of this method a test data from the database is

applied on the system matrix according to equation (4.1) with different signal

to noise ratios. The steps are as follows:

1. Vowel periods are those speech periods between vowel markers.

Vowel periods are marked high "1" and consonant periods are marked low

HOH.

2. Pre-calculation of V/C periods is made for about 14 minutes of

speech under test.

3. White noise is superimposed on speech under test to control signal to

noise ratio.
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Wavelet transform is applied on the speech under test. The wavelet

parameters are prepared as shown in figure (4.1 c) through (h) of word —s",

4. X-vector iIs created each 2 ms.

5. [X] Matrix is multiplied with [B] vector that is obtained in the

training phase. [Y] vector is obtained from the previous multiplication.

6. [Y] vector contains high at the vowel periods and low at the
consonant periods. It can be represented graphically as per-calculated

periods of step 2.
7. Error Calculated by the same way as previous method BSM..

Figure 4.5 a and b illustrate examples of VV/C markers generated using this

method.
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Figure 4.6 summarizes the output results.
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98
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Figure 4. 6 V/C system performancein case of MCM.

4.4 Vowels recognition
In Arabic language there are only 6 main vowels. Three short vowels and

three long vowels. The short vowels are / il ws] O] el o [o,.s.
The long vowels are /®/, /o/ and /i/. In this part, discrimination of vowels is
the target. It is very difficult to discriminate between them by using the
wavelet features of single band because all of them have approximately the
same characteristics of high-energy distribution over a low frequency range
[5].

Expressing speech signal with wavelet parameters makes a joint time-
frequency representation of the signal. That makes it possible to trace the
variation of energy with time in different frequency bands. VVowels are closely
alike in frequency and time domains but their characteristics in wavelet bands
are different a little along the time. So, it is expected that all bands are

important for differentiating between vowels.
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In section 4.3.2, the problem of V/C (Vowels and consonant) classification
was handled using information supplied from all wavelet bands. The problem

here is treated by the same approach of mathematical-based classification.

4.4.1 Vowsel classifications using a single math classifier
4.4.1.1 Training phase
In this case the training data set is aligned as section 4.3.2. In this problem

of classification there are three different values in the decision vector Y. Steps

of training are:

1. Apply V/C algorithm on the training data set to obtain the vowel

boundaries.

2. Verify of boundaries manually to insure that error-free data set in the

training phase is obtained.

3. Calculate the wavelet features of the training data set as those of

figure 4.3 —c- through —h-.

4. Construct X-vectors every 2 ms as illustrated before in section 4.3.1
and 4.3.2.

5. There are three possible decisions of each X-vector as follows:

<1> in case of vowel /®/or/ ©.} |

<2> in case of vowel /il or/ <: |.

<3> incase of vowel /o/or/ [] /.
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BO Bl B2 B3 B4 BS

54000 |30200 [2230 |1000 |650 120 lor2or3

35155 | 24254 | 2341 2134 | 432 432 lor2or3

56234 | 31435 |1223 1236 | 643 21 lor2or3

6. Y vector is supplied with the proper decision value of each X-vector.
7. Y isregressed on X to obtain the system model [B]

[0.0050
0.0009
0.0162
-0.0062
-0.0849
| 0.0592

[B]=

4.4.1.2 Test and evaluation

In this part the system is tested on 12 minutes of speech data containing

different vowels. Steps of testing are:

1. Test speech data are prepared to extract the X-vectors every 2 ms.
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2. VIC algorithm is applied to extract the vowel periods.
3. A pre-calculation of vowels is made to get the reference markers.

4. X-vectors that correspond to vowel periods are collected into [X]
matrices. Each matrix of the [X] matrices contains a collection of X-
vectors within a vowel period.

5. Each [X] Matrix is multiplied with [B] vector to get the decision
vector [Y].

6. Efficiency is made by comparing the decision vector [Y] of each
vowel with the pre-calculated one at step 3.

Figure 4.7 illustrates one sample of the test process. Figure (4.7 a) is

speech signal that contains the Arabic word —\s". This word contains two

vowels. The first one is /i/ and the last one is /®/. Figure (4.7 a) indicates that
in each vowel period there are more than one decision for the vowel. Note that
vowel markers has a level of 4 in figure (4.7 a). /®/ has a level 1, /i/ has a
level 2 and /o/ has a level 3. Calculating the maximum stable period of [Y]

within the vowel period makes the final decision.
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Figure (4.7 b) is another example that indicates that one linear mathematical

classifier is not sufficient to distinguish between vowels.
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This technique failed to give acceptable results. It can not differentiate /o/
and /i/ but it gives good results in case of /a/. Recognition accuracy less than
53% is obtained.

The linear regression process can not find a suitable single system model
that can distinguish the three kinds of vowels. That leads to the idea of parallel
processing of the vowel. In other words, What will happen when treat the
problem using three different Systems model working in parallel. Each system

Is responsible to find one of the three basic vowels.

4.4.2 Vowel classification using multiple math classifiers
The problem of low recognition rate in case of handling all vowels with a

single classifier directs the work to a parallel classification. In this case each

vowel is handled with a separate classifier.

4.4.2.1 Training phase
In this section database is collected and prepared to design three system

models for the three different vowels. The process is as follows:
1. Training data set is prepared as in section 4.4.2.1.
2. [X] matrix is created by collecting X-vectors each 2 ms.

3. Three different [Y] vectors are created. Each one gives two decisions
“1” In case of the focused vowel and “0” in case of other vowels as

shown in the following tables.

BO Bl B2 B3 B4 B5
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54000 |30200 |2230 |1000 |650 120 1
21342 | 12113 |1233 |6541 |341 121 lorQ
21412 | 76542 |1243 |3532 |321 464 lor0
Training set of vowel /®/
X Y2
BO Bl B2 B3 B4 B5
54000 |30200 |2230 |1000 |650 120 lor0
21342 |12113 |1233 |6541 |341 121 lorQ
21412 | 76542 |1243 |3532 |321 464 lor0
Training set of vowel /v
X Y3
BO Bl B2 B3 B4 B5
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54000 |30200 [2230 |1000 |650 120 lorQ

21342 | 12113 | 1233 6541 341 121 lor0

21412 | 76542 |1243 |3532 |321 464 lorQ

Training set of vowel /o/

4. Each [Y] matrix is regressed on the same [X] matrix to obtain a
system model. So, three different system models are obtained each one
corresponds to a different vowel (B1,B2,B3).

[0.0003
0.0007
-0.0068
0.0030
0.0859
-0.0460 |

10.0014 ]
-0.0005
0.0024
0.0069
-0.0309

| 0.0021

B1]=
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[0.0014
-0.0005
0.0024
0.0069
-0.0309
1 0.0021

[B3]=

[B1] is the system model of vowel /®/ , [B2] is the system model of vowel

/o/ and [B3] is the system model of vowel /i/.

4.4.2.2. Test and evaluation
In this phase the system is tested using the same speech data as in section

4.4.2.1. Steps of the test are as follows:
X-vectors are obtained as in 4.4.2.1

V/C algorithm is applied on the speech under test to extract the

vowel periods.
X-vectors of each vowel are collected into different [X] matrices.
Pre-calculation of vowels is made to construct reference markers.

Each [X] matrix is multiplied with the three [B] matrices. That
generates three different [Y] matrices each one gives focus on one vowel

corresponding to the system matrix which generate it..

[Y] matrix that gives a maximum area under its curve within the
vowel period which indicates that the corresponding vowel is the

decision.
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Testing the above system on the test database of 4 minutes gives a correct

recognition rate of 80.6%.
Figures 4.8 and 4.9 indicate the process. Figure 4.8 is Arabic word s, It

contains two vowels /i/ and /®/. V/C algorithm is applied on it to get the
boundaries of vowels as it is shown in figure 4.8. Figure 4.9 represents the
integration of [Y] vectors in regions of each vowel to get the area under their
curves. [Y] Vector that represents the maximum area gives the decision. In
other words, the system that generates [Y] vector of the maximum area is the
system of the target vowel. If that system is for /i/ detection then the decision

is /i/ and so on.
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Figure 4. 9 Bound integration of thethree[Y]
Thisintegration ismadefor thefirst vowel of
word <ts

15000
10000
5000

Figures 4.10, 4.11 and 4.12 indicate a complete example of vowel
recognition using multiple math classifier. As shown in figure 4.10 c, the
bound integration of [Y] vectors give indication that /®/ and /o/ having the
same probability in this period. Figure 4.11 c and figure 4.12 ¢ give indication

that the vowel is /o/.
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4.5 Conclusion
Wavelet transform can be used in problems that needs joint time frequency

analysis. The problem Of V/C classification is solved here using wavelet
based algorithm. The technique is highly sensitive to acoustical variation

along utterance duration.

With mathematical handling of wavelet parameters that represents the
vowels, the problem of Arabic vowel recognition is solved. The recognition of
Arabic vowels is high accurate relative to similar methods of English

language.
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5.1 Introduction

This chapter illustrates the methods, which are discussed in the
previous chapters, in work as a complete speech analysis system. The
systemis called SpeechL ab.

The system now covers the following topics:
Speech acquiring.

End points detection using energy & zero crossing , wavelet
based method and mathematical classification based on wavel et
methods.

Voiced/Unvoiced classification using tracking function and

mathematical classification methods.

Pitch period estimation using wavelets, autocorrelation and

cepstrum methods.
V owel/Consonants classification using wavelet transform.
Arabic vowels recognition.

It is proposed to extend it, in the future, to cover all Arabic phonemes

using wavelet transform.

5.2 Block diagram of the system
Figure 5.1 isablock diagram of the SpeechLab systemin asimplified

form. The complete one is very complicated because of interconnections

between the basic blocks.
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Acquiring speech signal
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Figure5.1: Block diagram of the complete system model.
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Where:

e EPD: End points detection.

e PE : Pitch Estimation.

e WV : wavelet method.

e CP: Cepstrum Method.

e AC: Autocorrelation method.

e WvC: Wavelet Correlation Method.

e TF: Tracking function method.

e MC: Mathematical classifier of wavelet parameters.
e V/U: Voiced /Unvoiced classification.

e VL/C: Vowel / Consonants classification.
e VL_Rec: Arabic vowel recognition.

Asshown in figure 5.1, thefirst step isto capture speech signal. There
are three methods of capturing, by microphone, or from file , or from
examples. The first two methods are used in the interactive mode, which
allow the user to control the program. The last one is a demo mode,

which the user lose the control.

The core of those programs are made using DaDisp 4.1i. All
algorithms are made using SPL ( series processing languages inside

DaDisp) and the microsoft visual basic is used for interface.

Figure 5.2 illustrates the interface of the complete system.

1 Digital signal processing softwar e introduced in appendix.
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- SpeechLab - [Document 1]

| File Edit Window Help =15]x]
D] & (4[] =]z]v] ===
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: bints defection |
Wersion 1.0.0
Ph.D thesis. Submitted ta Electronics.and B
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communication Department, Cairo University. undes-

O “owellCosona supervison of Prof. Dr. Amin M. Massar and Dr.

. " Meamat Sayed Abdel K.ader. 1933
|20|ced£Unv0|ce

O Math classifier

H Any copy must be requested from Prof. Dr. Amin k.
m TFElelﬂq Funct Mazsar ar Dr. Memat S aped Abdel Kader...

O “Wavelet Correl

b nformakon
O wWavelet
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O Autocorrelation

=T [2Em1 00 [1n23

sk Start|| @ =% [ESin...[[4D:..|#S. |ES... | [BWEIGY 1033,

Figure5. 2 Theinterface of the complete system.

5.3 Theimplemented system
In this section, SpeechLab will be illustrated. The system has two

modes of operation. The first mode is the interactive mode and the second
mode is the demo mode. As shown in figure 5.3, the first step is to
capture speech signal. If “From file or from Mic.” options are chosen,
then the system will operate in active mode else it will operate in the
Demo mode. Some examples are given below to describe the operation

of the system.
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- SpeechlLab - [Document 1]

B File Edit “Window Help =1=]1x]
D= (&) [#|e=]a] (=] z]u] El=]=]
|;4qw}'e Speech wavelorm | [ El

from file

from Mic

Examples '

| Select Method for End points delection |

Ehanlelic infommation———————— | El
O YowellCosonants
- O/ea/
O Math classifier O jo/
O Tracking Function o jif

O “Wavelet Correlation

e farmaton

O ‘Wavelet
O Cepstrum
O Autocorrelation

=T [2Em1 00 [12:44

g€ Start|| @ 2272 |[@in.. [iac..|pFMi.[Es.. | [FEEEIut: 12:44 .
Figureb5. 3 Selecting the way for speech capturing.

Figure 5.4 is an example for choosing an examplefile. | nthiscasethe

example option is chosen and the word . “ketab” is selected. Now,

speech sample is ready for further processing. The first process is EPD.

Thisis necessary to eliminate non-speech periods.

Figure 5.5 indicates EPD process. There are three techniques that can

be chosen.
EPD using mathematical. classifier.
EPD using wavelet only.

EPD using energy and zero crossing.
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- SpeechLab - [Decument 1]

B File Edit Yindow Help [=1=][x]
Open  [@HE

Lack in: | 3 examples Fl B & =l

< ketab

of Method for End points defection |

E

File name: | [ | || Open I

Files of types  [Al Files [*.wav] =] | cancel |

C Open ag read-only

LT TTackInd FLURCTon

O i
O “Wavelet Correlation

e farmaton

O ‘Wavelet
O Cepstrum
O Autocorrelation

=T [2Em1 00 [12:44

g€ Start| | @ 222 |[@in.. [ic..|prmi. |Es.. | |[FEeEug: 12:44 .

Figure5. 4 Choice of speech fileto be processed.
After EPD step, other processing can be applied.

Figure (5.6 a) indicates V/U process using tracking function. V/U
markers are overlaid on the speech to indicate the duration of voiced or
unvoiced sounds. Also it is indicated in figure (5.6 b) the pitch contour
using wavel et transform method.

Figure (5.7 a) illustrate the process of Vowel/Consonant classification

and (5.7 b) illustrates vowels recognition. Markers in figure (5.7 a) are
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high in case of vowel and are low in case of consonant.

~ SpeechLab - [Document 1]
| File Edit Window Help 15]]

Ol=]d] Br]v] ==
|;4qw}'e Speech waveform | | Examples El

-

| Select Method for End points delection |

Ehanlelic mfommation———————— [ El
O Yowel{Cosonants __|EPD using Math classifier |
EPD using wavelet only
O/ea/ . .
O Math classifier O jo) EPD Using Energy and zero crossing

O Tracking Function o jif
O “Wavelet Correlation

e farmaton

O ‘Wavelet
O Cepstrum
O Autocorrelation

=T [2Em1 00 [12:4e

g€ Start|| @ 222 |[@in.. [iC...|pFMi.[[Bs... | |FEEut: 12:46 -

Figure5.5 EPD Step.

Figure 5.8 introduces a complicated process for advanced users. The
user is allowed to combine different processes at atime to investigate his

problem.

The system is highly flexible. Any beginner can use it to handle
complicated speech problems. System can be extended to cover al
speech areas in a simplified way. This version is just a beginning to the
complete system.
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- SpeechLab - [Document 1] [ Of[x]
B File Edit Window Help [E1=]x]
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Figure 5.6 V/U using tracking function and pitch contour using
wavelet.
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~" SpeechLab - [Document 1] =1 E3
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Figure5. 7 Vowel/Consonant classification and vowels recognition.
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~ SpeechLab - [Document 1]
| File Edit Window Help. 15]]
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|;4qw}'e Speech waveform | | Examples El

i .
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Figure 5. 8 Combination of processes.

5.4 Conclusion
This chapter illustrates a system implementation of all wavelet based

algorithms that introduced in the previous chapters. The system is made
using visual basic as interface while the core of software is DaDisp,

which isintroduced in the appendix.
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Summary, Conclusion and Future work
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6.1 Summary

This work illustrates how far wavelet transform can be used iIn

handling speech-processing problems. Work is divided into four chapters.

e In Chapter 1, speech signal and different classification

techniques that are used in the subsequent chapters are introduced.

The study of the nature of speech generation is required as a
background of speech modeling and analysis. The understanding of
speech generation in human is needed for modeling the organs of speech
and controlling of speech model. Representation of the vocal-tract

frequency response, independent of the source parameters (e.g., voicing

and fundamental frequency), captured researchers' interest in the 1960s.
One approach to this problem was to analyze the speech signal using a
transmission line analog of the wave-propagation equation. This method
allows use of a time-varying source signal as excitation to the "linear"

system of the vocal tract.

To make analysis of the vocal-tract response tractable, one often
assumes that the vocal tract is an acoustic system consisting of a
concatenation of uniform cylindrical sections of different areas with
planar waves propagating through the system. Each section can be
modeled with an equivalent circuit with wave reflections occurring at the
junctions between sections. Such a model allows analysis of the system

from its input-output characteristics.

Most larnguages, including English, can be described in terms of a set
of distinctive sounds, or phonemes. In particular, for American English,
there are about 42 phonemes including vowels, diphthongs, semivowels

and consonants. There are a variety of ways of studying phonetics; e.g.,
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linguists study the distinctive features or characteristics of the phonemes.
For our purposes it is sufficient to consider an acoustic characterization of
the various sounds including the place and manner of articulation,

waveforms, and spectrographic characterizations of these sounds.

The vocal tract shape defined in terms of tongue, velum, lip and jaw
position, acts like a "filter" that filters the excitation to produce the
speech signal. The frequency response of the filter has different spectral
characteristics depending on the shape of the vocal tract. The broad
spectral peaks in the spectrum are the resonance of the vocal tract and are

commonly referred to as formants.

Chapter 1 goes to answer the question What are wavelets?.Wavelets
are functions that satisfy certain requirements. The very name wavelet
comes from the requirement that they should integrate to zero, ~“waving"
above and below the x-axis. The diminutive connotation of wavelet
suggest the function has to be well localized. Other requirements are
technical and needed mostly to insure quick and easy calculation of the

direct and inverse wavelet transform.

There are many kinds of wavelets. One can choose between smooth
wavelets, compactly supported wavelets, wavelets with simple

mathematical expressions, wavelets with simple associated filters, etc.

Many researchers believe that neural networks offer the most
promising unified approach to building truly intelligent computer

systems.

Acrtificial neural networks (ANNS) are simplified models of the central
nervous system and are networks of highly interconnected neural

computing elements that have the ability to respond to input stimuli and
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to learn to adapt to their environment. Neural networks employ parallel

distributed processing (PDP) architectures

e Chapter 2 discuss the problem of end points detection. The
problem of extracting the speech from the background noise is one
of the major problems in speech applications. This is always the

first step in any speech-based application.

Three ways of end points detection are discussed. The first one
depends on correlating information of two adjacent wavelet frequency
bands then obtain a threshold. The second and third methods get
information about speech from all available wavelet frequency bands.
The second method uses the Artificial Neural networks as a classifier and
the third method uses the mathematical statistical regression for
classification. A table comparing the three proposed methods is
introduced at the end of the chapter. The table also gives indication of
how they perform in different signal to noise ratios.

e Chapter 3 deals with the problem of classifying the speech signal

into voiced or unvoiced sound and pitch period estimation.

The problem of /U is handled by different methods. The differences
between voiced sounds and unvoiced sounds are discussed. The wavelet
transform is reforming a decomposition of signals into elementary
building blocks that are well localized both in time and in frequency. The
wavelet transform is suitable for characterizing the local regularity of

signals.

From a signal processing point of view the Dyadic Wavelet can be

1 t
-5 Y(5)
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considered as the output of a bank of constant Q, octave band, band-pass

filters whose impulse response is for each scale 2' .

Three methods for classifying speech into /U are discussed. The first
one is Single band selection method. A wavelet frequency band of
which the vowels or voiced sounds are dominant in the speech signal is
selected for the analysis. Mathcad: software package is used as a platform
of all mathematics such as wavelet transform, interpolation ... etc. The
frequency band of 172-344 Hz is chosen here for the tracking method.
Tracking function is obtained. The system indicates high recognition

accuracy of about 97.4%.

The second way for classifying speech into V/U is the Correlation
based method. In this way information about the signal from two-
wavelet frequency bands are correlated. This correlation makes the
system more immune to noise. A correlation tracking function is
formulated. This system appears reliable even in case of low signal to
noise ratio (less than 9 dB). The first 100 ms of speech is assumed to be
unvoiced. Maximum unvoiced threshold is obtained from the first 100 ms

(about 1024 samples) of the moving standard deviation.

The third way for classifying speech into V/U is Voiced/Unvoiced
classification using mathematical model. In this way all information
available about the signal is taken into consideration to formulate a
system model. The system model depends on linear statistical regression.
The system is robust but it is highly dependent on database collected in
the training phase. It does not need pre-estimation of any thresholds as
the previous two ways so that it is more practical than the previous two

ways. But it gives less recognition accuracy than they do, about 90%.

1© 1986-1994 Mathsoft Inc. Version 5.0. © 1993 by Houghton Mifflin Company.
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At the end of this chapter the problem of pitch period estimation is
considered. Pitch period estimation (or equivalently, fundamental
frequency estimation;' is one of the most important problems in speech
processing. Pitch estimation using dyadic wavelet is the point that is
studied in this work. Pitch detectors are used in vocoders, speaker
identification and verification Systems and aids-to-the handicapped.
Because of its importance, many solutions to this problem have been
proposed. All of the proposed schemes have their limitations, and it is
safe to say that no presently available pitch detection scheme can be
expected to give perfectly satisfactory results across a wide range of

speakers, applications, and operating environments.

Two ways of pitch estimation using wavelet are introduced. The Two
band correlation method , which generates a pulse train that have a
period between pulses equal to the pitch period. This way correlates the
information from two adjacent wavelet frequency bands to formulate a
correlation function. Then by peak detection algorithm the pulse train is
generated. The method can track the peaks even in case of low signal to

noise ratio (less than 10 dB).

The second way is the Pitch detection using dependencies. This
method is much alike the previous one except that it takes the information
from four adjacent bands. Two pitch estimators like the previous one is
constructed. Each one estimate pitch period from different two adjacent
bands in range of frequencies less than 1000 Hz. Then dependencies
between the two systems are measured to eliminate false pulses from the
pulse train. This method is highly reliable and more stable than the
previous one. A comparison between this method and well-known
techniques such as Autocorrelation and Cepestrum is illustrated at the end
of this chapter.
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e In chapter four the problem of basic unit recognition is
discussed. The chapter starts with introduction to vowels and
consonants. The problem of segmentation into vowels and
consonants are illustrated. The problem is handled using two ways.
The first is Band selection method. The second is Math
classification method. As discussed before the first method
depends on selected bands and the second one depends on all
available bands. The segmentation is studied for different signal to

noise ratios.

The problem of vowel recognition is illustrated. In Arabic language
there are six different vowels. The problem is handled using

mathematical statistical regression.

6.2 Conclusion

Wavelet transform is suitable for handling speech signal. It gives a
good representation of many features of speech signal. It can be used for

monitoring acoustic phonetics variations in utterance.

Wavelet transform can be used in case of high noise environments.
Due to the nature of wavelet transform it handles speech signal
approximately with the same manner as human ear does. That makes it

highly immune to noise.

Voiced/Unvoiced recognition rate is highly increased using wavelet
based algorithms. The system indicates good immunity to noise and can

work reliably at low signal to noise ratios.
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Pitch period estimation using wavelet based algorithm gives very
accurate results compared with familiar algorithms such as
autocorrelation and Cepestrum. The fundamental frequency can be

tractable even in case of very low signal to noise ratio environments.

Speech detection from the background noise (end points detection)
using wavelet based algorithm gives reliable results. It can work in
environment of low signal to noise ratio that the ordinary method of

energy and zero crossing rates failed.

Speech segmentation into vowels and consonants problem is handled
using a technique based on wavelet transform. The system success with a
high recognition rate to trace the boundaries of vowels and consonants. In
addition to this, the technique is enhanced to distinguish between

different vowels.

6.3 Application
All the above techniques to solve common speech problems can be

used to make a speech analyzer system that is based on wavelet
transform. This system can analyze the speech signal in case of highly
noisy environments. This is very suitable in practical world. The system

can be used in environments containing heavy machines.

6.3.1 Fault detection of a heavy machine
The area of fault decision of machines based on harmonics requires

handling the sounds in a very low signal to noise ratio environments. The
machine is tested in the factory environment. Bugs are detected and
sounds corresponding to each bug are collected. Sounds are analyzed and
saved as a database for bug detector machine. Algorithms of bug detector
machine must handle sounds with very low signal to noise ratios which is

not reasonable in ordinary techniques. Actually sounds of machines is
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totally different from human speech but is simpler. Each bug is a
combination of few harmonics that is deterministic and can be calculated

mathematically.

0.3.2 Speech dictation machine

Speech dictation machine exists now and many researchers and
companies introduce a solution of this problem (IBM). This system
always depends on training a system with extra large vocabulary to make

it. After that a tree of decisions are made to speed up the decision process.

If the system of dictation machine is designed to detect basic speech
units it will be simpler, faster and reliable. The problem of phone
recognition is the barrier that makes manufacturer leaving this way. Even
If this problem is solved the system will be critically stable. It can work in
one environment with high signal to noise ratio and fail in another one
with low signal to noise ratio. That makes it not suitable for commercial

purposes.

The proposed system which is introduced in this work indicates a very
high accuracy in determining boundaries of phones even in case of low
signal to noise ratio. The system can distinguish between vowels with a
very high rate approaching 81%. It needs extra work to verify the same

results in case of consonants as well.

This work promise that the dictation machine based on basic speech

units can be founded.

6.4 Future work

It is planned to design of Arabic phone recognition system. The system
will be extension of this work to complete all phones recognition rather

than vowels only in this work.
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Huge database will be collected from different speakers. The data will
be classified into Arabic phones. It is planed to verify segmentation
manually using Spectrogram and listening test. It is acceptable to include

English database Such as TIMIT to enhance segmentation process.

Database for each phoneme will be prepared for handling using

wavelet based algorithms such as those in this work.
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A.1 Database collection
The database used here contains all Arabic language’s phonemes.

Database consists of 18 Arabic words with 6 repetitions. The total
duration of utterance is 163.08Sec. The following table contains the

words and it’s phonetic contents.

m/e/lwis/ e
IMIO/Wo! o
Ikl olIBl s
Nll®//x//tl olIBllol/v! 5555
/x/1©//t//0//p//O/ ey
NlIOIMINT o /Bl ol ] 5 senl
Jw/lo//T/al/0/1O1/8/ el s
18//0//p/ID//@//M/ e
INIO/pIII/ s b
Jo//P//N//v/ oo
1€/10//p//t//o//M/ pob =
IN/®/IIN 3
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IA/I®IM/IO/IBIIO/ .
/A//®//P//OIN//®/ £
M#/0/o//V/ISH/ T

OV L
15110/ pIIVIBIO/ o
IT//o/NJIBIIO/I/ ol

All phonetics are written using IPA® language. A table of IPA is

illustrated in next section.

* \nternational Phonetic Alphabet
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Figure 4. 1 Speech signal of single database file contains Arabic

wordsin the previoustable. Thelower half's graph is spectrogram of

the speech signal.

0 1] [y 11 [ Y

igd&ﬁctiﬁJjwuiuaubkﬁtidéd‘dea}4

Phoneme

Figure A. 1 Histogram of phonemesin a single databasefile.
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A.2 | PA charactersaccordingto articulation

Vowels
....................................... Frl:lnt Cenn-al Back
TTrroundad | Fomded | Thounded | Fomdsd | Thmoundsd| Roumded
Clase i: ¥ i H ur u:
Mear-close I Y U
Close-mid e a a a g 0
i L
Open-rnid £ ,;_-,3 3 a A 5
Meat-opet : v :
Oprn ai | & ' a: |p:
Other symbols

o oiceiess Tl e TS Bl dtisk

W "*-Lf'ciié'é'd'iélﬁi’él' velar approximant ] t)"e'ﬁi:'éi"c'l'{c'ié """""""""""""""

y Voiced labial palatal approgimant T (Post-jalveolar click

¢ """"*\ft.iéé'l'é's's"élifé'n’lﬁﬁél’é‘cél'E’ri'c'éﬁﬁé """ SR Balatoalvealar click

e Voiced alveolopalatal fricative lAli}é olar Tateral click

§ Sirmultaneous §andx 2 "‘&”’o’iﬁ:éd’ epiglottal plosive

N '"'\J"c'-i'c:'éd' alveolar lateral flap ‘u | Woiceless epiglottal fricative

........................................................................ e '"U"u'i'c'é'd' aistottal Eicative

187




App. A
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Appendix B
Software (DADI SP)
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B.1 DADISP
B.1.1 TheTask

Scientists and engineers (S&Es) are in the business of converting
data into information. With the incredible increase in processing power of
personal computers and data acquisition software, scientists and
engineers can now collect streams of data at the push of a button.
However, converting that data into useful information often remains a

daunting task.

B.1.2 The Scientific Method

Scientific inquiry is rooted in the basic tenets of the scientific
method:

e Ask a question.

e Formulate a hypothesis as a possible answer to the question.

e Design an experiment to test the hypothesis.

e Collect data from the experiment.

e Analyze the data.

e Accept or reject the hypothesis based on the results of the
analysis.

Thus, data analysis is a fundamental and necessary step in virtually
every scientific endeavor. As mentioned, personal computers are rapidly
becoming the tool of choice for both scientific data acquisition and data
analysis. To understand the necessary components of data analysis

software, we must first look at the data analysis user.
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B.1.3 Common User Attributes

S&Es who use data analysis software share four common attributes:

1. S&Es are not professional programmers. Although often
familiar with the tasks required to write software routines,

technical professionals get paid to produce results, not code.

2. S&Es are experts in their application area. The technical
professional knows precisely what methods, calculations and
graphics are required to produce acceptable results in their

particular field.

3. S&Es work in technical application areas that are extremely
diverse. Applications run the full gamut of scientific inquiry
including signal processing, statistical analysis, test and
measurement, noise and vibration, medical research, process
monitoring, image processing, communications, quality

management and just about anything and everything else.

4. S&Es routinely work with huge volumes of data and rely on
graphical representation as an interpretation aid. The raw
numbers are overwhelming and must be reduced to application
specific graphical form to convey meaningful information. The
great diversity of graphs employed by S&Es has lead to the term

scientific visualization.

B.1.4 Two Approaches

Because of the numerous target applications, there are at least two

avenues of designing data analysis software:
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e Create many application specific programs, such as
chromatography, modal analysis, filter design, etc. that target

specific customers.

e Create a general purpose tool that can be adapted to the many
application areas.

Obviously, a general purpose tool is highly preferable from a
software development and marketing point of view. In addition, add in
modules can be produced to allow the tool to further target specific

applications similar to an application specific product.

B.1.5 The Traditional Approach

The traditional approach of creating a technical data analysis tool
has been to provide an interactive, high level language. To meet the

requirements of S&Es, these languages offer the following features:

e Canned routines such as FFT, INTEGRATE, INVERT, etc. to

prevent the customer from needlessly "re-inventing the wheel".

e An interpreted language to avoid the tedious "compile and
link" development process of base level programming

languages.

e Integrated graphics capability to present results in a

meaningful form.

e Products such as Matlab, APL, IDL and a host of other

analysis languages fall into this category.

The great benefit of a language based solution is flexibility - almost
any application requirement can be programmed. Of course, this

flexibility comes at a tremendous price - the S&E must program almost
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everything! Programming is a difficult, low productivity chore not in the

realm of the S&E's expertise.

B.1.6The Business Spreadshest

The business spreadsheet is an extremely popular and flexible
software tool. The spreadsheet derives its tremendous power from the
ability of the user to easily set up relationships between numeric cells in a
relatively intuitive manner. When cells are updated with new values,
dependent cells automatically recalculate. The user is effectively writing
an application specific program without actually programming in the
traditional sense. In addition, almost all spreadsheets provide a
mechanism to reduce numeric data to graphical form. Thus, the
spreadsheet represents a flexible, easy to use tool that provides some
degree visualization without the heavy burden of programming. Not
surprisingly, surveys consistently show the overwhelming majority of
S&Es use business spreadsheets for technical data analysis over every
other solution - even though this tool was not designed to handle

technical data.

In fact, the business spreadsheet is designed to manipulate a small
collection of scalar values. These values are processed and perhaps
displayed as a final graph. For example, a user might enter values such as
sales, cost of sales, expenses, taxes and more taxes to produce a basic
income statement. Several periods of this data could then be appended
together to produce a simple trend chart. The business user starts with

numbers and perhaps ends up with a graph.

In contrast, in the course of data analysis, the S&E begins with

graphs, almost always creates additional graphs, and perhaps produces a
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meaningful scalar as a final result. For example, a mechanical engineer
would integrate the acceleration data of a vehicle chassis crash test to
produce a velocity graph. This graph by itself conveys valuable
information. However, the derived velocity data would in turn be
converted into the frequency domain to isolate the important natural
frequencies. Finally, the most prominent frequency in a certain band

would be singled out as the resonant frequency of the chassis.

In this case, the S&E starts with a graph and ends up with a scalar -
the exact opposite reduction chain of the business user. In addition, the
volume of data routinely processed by the S&E rapidly chokes the

business spreadsheet.

B.1.7 DADISP - the S& E's Spreadsheet

The business spreadsheet is a flexible and powerful tool that S&Es
often "shoehorn" to meet their analysis requirements. However, because
it was designed for business use, the standard spreadsheet presents many

limitations for S&E data analysis applications:
1. Restrictive Data Size
2. Slow Graphics for Large Data
3. Data Must be Saved with Spreadsheet
4. Numeric Focus Inappropriate for S&E Data
5. Lack of S&E Analysis Routines
6. Inability to Handle Complex Numbers
7. Inability to Handle Binary Data

8. Limited Data Import Capabilities
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Is there a better solution than the business spreadsheet? Yes there is.
It is called DADISP.

DADISP (pronounced day-disp) is spreadsheet designed specifically
for S&Es. DADISP capitalizes on the power and familiarity of the
business spreadsheet while at the same time, overcoming its limitations in

S&E applications.

Instead of cells that contain numbers, a DADiISP Worksheet consists
of analysis windows that automatically display data as a table or graph.
Like a business spreadsheet, when the data in an analysis window
changes, all dependent windows automatically update. Specific, custom
analysis can be accomplished naturally without the need for traditional
programming. DADISP employs contemporary user interface elements
such as pull down menus, dialog boxes, toolbar buttons and on line help
to provide a productive, familiar environment. And unlike business
spreadsheets, DADISP is designed to accommodate huge data series and

render graphs with optimal speed.

Data import is extremely flexible with support for ASCII and binary
file types. Imported data resides in a separate series data base and can be
exported to several file formats. Complex numbers are fully supported.
DADISP includes 1000 built-in analysis routines tailored specifically to
S&E applications. DADISP also offers several optional processing

modules that target specific application areas.

B.1.8 DADISP - Language I ncluded

To provide full user customization, DADISP includes SPL, Series
Processing Language. SPL is a full featured, incrementally compiled

series processing language based on the omnipresent C language. As a
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result, SPL programs have a clean and familiar style about them. SPL
also contains useful constructs of languages such as APL and Matlab.
Thus, the C programmer is immediately at home with SPL and the
Matlab or APL programmer will recognize their favorite programming

idioms.

B.1.9 DADISP - TheBest of Both Worlds

By combining the ease of use and familiarity of the business
spreadsheet with the power and flexibility of an interpreted analysis
language, DADISP is designed to be the analysis tool of choice for both
the "point and click" and "type and enter" S&E user. A few of DADISP's

more popular features include:
1. Graphical Worksheet Windows
2. Unlimited Data Size
3. 1000 built-in analysis functions
4. Tabular, 2D, 3D and Image- optimized graphics
5. Standard GUI Interface
6. Cross Platform Availability
7. SPL - Series Processing Language
8. Inter-Application Communication
9. Line, Legend and Text Annotations
10. Custom Menus, Dialog Boxes and Toolbar Buttons
11. Scrolling Graphs and Cross Hair Cursors
12. Overplot and Overlayed Graphs

13. On Line Help
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With DADISP, "you can have your mouse and program too."

B.2 SPL* Routines
Series Processing Language is a special purpose language that

concerns with series operations. Almost series operations are included in
SPL as simple functions. DADISP allows using of SPL. The following

sections views all routines used in this work which are written using SPL.

B.2.1 End points detection

epd(ser)

{

FrameTable = RAVEL(ser,1024,1,0);
NumberOfFrames = SERCOUNT(FrameTable);

NoiseThreshold = MAX ( movstd ( extract ( crosscor ( col
( waves ( col

(FrameTable,1)),1),col(waves(col (FrameTable,1)),2) )
,1,1024),110) );

Mrkrs = movstd ( extract ( crosscor ( col ( waves ( col (
FrameTable ,1)),1),col(waves(col(FrameTable,1)),2) )
,1,1024),110)>NoiseThreshold;

for(u=2;u<NumberOfFrames;u++)
{

prcnt=u*100/NumberOfFrames;
echo(prcnt) ;

Temps = movstd ( extract ( crosscor ( col ( waves (
col ( FrameTable,u)),1),col(waves(col(FrameTable,u)),2))
,1,1024) ,110) > NoiseThreshold;

mrkrs=concat(mrkrs, Temps) ;

}
moveleft(mrkrs,2048);

return(mrkrs);

}

* Series Processing Language
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B.2.2 Pitch period estimation
pitche(filen,sar)
{
local p;
local XX;
local PP;
datab=READWAV(filen);
FrameTable= RAVEL(datab,1024,1,975);
NumberOFFrames=SERCOUNT (FrameTable);
p=1._NumberOfFrames-1;
for(u=1;u<=NumberOfFrames-1;U++)
{
prcnt=u*100/NumberOfFrames;
echo(prcnt) ;
p[u]=0;
WvitTable = WAVES(COL(FrameTable,u));

CO =
Getpeak(extract(Crosscor(COL(WvItTable,1l),COL(WvitTable,2
)),1024,1024),.01,1,0);

setdeltax(C0,1/sar);

Cl =
Getpeak(extract(Crosscor(COL(WvItTable,2),COL(WvitTable,3
)),1024,1024),.01,1,0);

setdeltax(Cl,1/sar);

C2 =
Getpeak(extract(Crosscor(COL(WvItTable,3),COL(WvitTable,4
)),1024,1024),.01,1,0);

setdeltax(C2,1/sar);
CT = REGION(RAVEL(CO,C1,C2),1,550,1,3)>0;
p[u]=PitchEstimatel(CT,sar);

ks
XX = movstd(p,5)<15;

PP = movavg2(p,5);
p = PP * XX;
return(p);
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by
PitchEstimatel(TSer,sr)

{

local dx;

local T;

local Last;
dx=1/sr;
setdeltax(TSer,dx);
CO=col (TSer,1);
Cl=col(TSer,2);
C2=col (TSer,3);
PO=GETCONDXS(C0>0);
P1=GETCONDXS(C1>0);
P2=GETCONDXS(C2>0);

Last=sersize(Pl);
T=1._Last;

pitch=0;

k=1;
for(u=1;u<=Last;u++)
{

msk= GETCONDXS(ABS(P2-P1[u])<0.005);
y = isnavalue(msk);
if(y[1] '= 0)

{

T[k]=P1[u];

k++;

by

by

i1 T(SERSIZE(T)>1)

{

mt = abs(T[2]-T[1D);
pitch=1/mt;

iIT (pitch<70) pitch=0;
by
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return(pitch);

by
B.2.3 Data preparation for neural network and math classifier
Inputs:

Co: Count of files to be prepared from names saved
into “TSET.INP”. Full names of files without
extensions are saved into text file called
“TSET.INP”.

Sr: Sampling Rate

Createnna(co,sr)

{

fclose("TSET. INP™);

fopen("TSET. INP", " r+");

for(u=1;u<=co;u++)

{

prcnt = u * 100 / co ;

echo ( prcnt );

FileName = FGETS('TSET.INP');

FileName = strextract(FileName,l,strlen(FileName)-

1);

infile = STRCAT(FileName," _WAV'");
outfile = STRCAT(FileName,".nna');
mrkfile = STRCAT(FileName,".drk');

mrkbuffer = READA(mrkfile);
databuffer = READWAV(infile);
sz = SERSIZE(databuffer);
framenumbers = sz / 1024+1;
dx=1/sr;
setdeltax(databuffer,dx);
mrkrsbuffer = databuffer * 0.0;
echo(rate(mrkrsbuffer));
setdeltax(mrkrsbuffer,dx);

msz = SERSIZE(mrkbuffer);

for(myc=1;myc<=msz;myc++)

{
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startp= mrkbuffer[myc];
myc++;

endp=mrkbuffer[myc];

mrkrsbuffer = SUBSTX(mrkrsbuffer,startp,endp,100);
setdeltax(mrkrsbuffer,dx);

+

for(k=1;k<=framenumbers;k++)

{

mrkfram = EXTRACT(mrkrsbuffer,bk*1024-
1023,1024);

frame = EXTRACT(databuffer,k*1024-1023,1024);
wvitable = WAVES(frame);

b0 = movavg2(abs(col(wvitable,1)),200);
bl = movavg2(abs(col(wvitable,2)),200);
b2 = movavg2(abs(col(wvitable,3)),200);
b3 = movavg2(abs(col(wvitable,4)),200);
b4 = movavg2(abs(col(wvitable,5)),200);
b5 = movavg2(abs(col(wvitable,6)),200);

nnatable = RAVEL ( bO,bl,b2,b3,b4,b5,mrkfram);

WRITETABLE(outfile,nnatable,b?2);

by
nnatable = READTABLE(outfile);

by
fclose("TSET. INP™);

return(nnatable);

}
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B.2.4 Wavelet routines

frame

wavelet(FileName,sr)

{

infile STRCAT(FileName, ' .WAV");
outfile STRCAT(FileName, " .wvt™);
databuffer = READWAV(infile);

sz = SERSIZE(databuffer);
framenumbers = sz / 1024;

dx=1/sr;

setdeltax(databuffer,dx);

frame = EXTRACT(databuffer,1,1024);
wvitable = WAVES(frame);

b0 = movavg2(abs(col(wvitable,1)),200);
bl = movavg2(abs(col(wvitable,b?2)),200);
b2 = movavg2(abs(col(wvitable,b3)),200);
b3 = movavg2(abs(col(wvitable,4)),200);
b4 = movavg2(abs(col(wvitable,5)),200);
b5 = movavg2(abs(col(wvitable,6)),200);

nnatable = RAVEL ( b0O,bl,b2,b3,b4,b5);

WRITETABLE(outfile,nnatable,1);

for(k=2;k<=framenumbers;k++)

{

= EXTRACT(databuffer,k*1024-1023,1024);
wvitable = WAVES(frame);

b0 = movavg2(abs(col(wvitable,1)),200);
bl = movavg2(abs(col(wvitable,b?2)),200);
b2 = movavg2(abs(col(wvitable,3)),200);
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b3 = movavg2(abs(col(wvitable,4)),200);
b4 = movavg2(abs(col(wvitable,5)),200);
b5 = movavg2(abs(col(wvitable,6)),200);

nnatable = RAVEL ( b0,bl,b2,b3,b4,b5);

WRITETABLE(outfile,nnatable,?2);

b
nnatable = READTABLE(outfile);

nnatable = RAVEL ( b0O,bl,b2,b3,b4,b5);
setdeltax(nnatable,dx);
return(nnatable);

wave(y)

{
local buff;

writea("data.dat",y,1);

RUN("'wxfrm -Q33 data.dat>datar.dat™,-1);
buff=reada(''datar.dat™);

return (buff);

}

extractw(y,st)
{

local sz,fn;

sz=sersize(y);
fn=sz/1024+1;
for(k=1;k<=fn;k++)
{

echo (k/fn*100);
frr=k-1;
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writea("data.dat"”,extract(y, (1024*frr+1),1024),1);
RUN("'wxfrm -D8 data.dat>datar.dat',-1);
nO=sprintf("'waveletband0.%d.f%d"",st,k);
nl=sprintf("waveletbandl.%d.f%d",st,k);
n2=sprintf("'waveletband2.%d.f%d"",st,k);
n3=sprintf("waveletband3.%d. f%d",st,k);
n4=sprintf("waveletband4.%d.f%d",st,k);
n5=sprintf("'waveletband5.%d . f%d"",st,k);

saveseries(interpr(extract(reada(''datar.dat'),17,16)
,0.01465),n0);

saveseries(interpr(extract(reada('datar.dat'),33,32)
,0.0303),nl);

saveseries(interpr(extract(reada('datar.dat'),65,64)
,0.06153),n2);

saveseries(interpr(extract(reada(''datar.dat'),129,12
8),0.1241),n3);

saveseries(interpr(extract(reada('datar.dat'),b 257,25
6),0.2492),n4);

saveseries(interpr(extract(reada(''datar.dat'"),513,51
2),0.4991),n5);

}
}

waves(y)

{

local sz,fn;
local myset;
local bt;
sz=sersize(y);
myset=wave(y);

bO=interpr(extract(reada(''datar.dat),17,16),0.01465);

bl=interpr(extract(reada(''datar.dat),33,32),0.0303);

b2=interpr(extract(reada(‘'datar.dat'"),65,64),0.06153);
b3=interpr(extract(reada(''datar.dat'),129,128),0.1241);
b4=interpr(extract(reada('datar.dat') ,257,256),0.2492);
b5=interpr(extract(reada(‘'datar.dat'),513,512),0.4991);

bt=ravel (b0,bl,b2,b3,b4,b5);
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return(bt);
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Appendix C
Survey on wavelet and speech

C.1 Discrete wavelet transform techniques in speech processing
This Paper Appears in :

TENCON '96. Proceedings., 1996 IEEE TENCON. Digital Signal
Processing Applications on Pages: 514 - 519 vol.2 This Conference was
Held : 26-29 Nov. 1996 Vol. 2 ISBN: 0-7803-3679-8

Abstract:
The trend towards real-time, low-bit-rate speech coders dictates

current research efforts in speech compression. A method being evaluated
uses wavelets for speech analysis and synthesis. Distinguishing between
voiced and unvoiced speech, determining pitch, and methods for
choosing optimum wavelets for speech compression are discussed. It is
observed that wavelets concentrate speech energy into bands which
differentiate between voiced or unvoiced speech. Optimum wavelets are
selected based on energy conservation properties in the approximation
part of the wavelet coefficients. It is shown that the Battle-Lemarie
wavelet concentrates more than 97.5% of the signal energy into the
approximation part of the coefficients followed closely by the Daubechies
D20, D12, D10 or D8 wavelets. The Haar wavelets are the worst.
Listening tests show that the Daubechies 10 preserves perceptual
information better than other Daubechies wavelets and, indeed, a host of
other orthogonal wavelets. Pitch periods and evolution can be identified

from contour plots of coefficients obtained at several scales.

C.2 Adaptive pitch period decimation and its application in speech
compression
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This Paper Appears in :

Southeastcon '96. Bringing Together Education, Science and
Technology., Proceedings of the IEEE on Pages: 220 - 222 This
Conference was Held : 11-14 April 1996 ISBN: 0-7803-3088-9

Abstract:
This paper presents a new method of speech coding that takes

advantage of the repetitiveness inherent in voiced speech. VVoiced speech
is broken into pitch period lengths (wavelets) and these signals are
compared with one another to determine If two wavelets differ
significantly. If the wavelets are significantly different, then they are
encoded and transmitted; otherwise, the current wavelet Is not
transmitted, and the next pitch period wavelet is compared. This results in
encoding only a representative fraction of the speech signal and
significantly lowers the number of bits required to transmit the signal.
Pitch period determination is done by using the autocorrelation method
and a median smoothing filter. The pitch period wavelets are
preprocessed using a time weighted averaging method that allows
concatenation of wavelets without sharp transitions at pitch boundaries,
therefore reducing high frequency noise. Wavelets are compared using
the Itakura distance measure, which is usually employed in speech
recognition applications. The transmitted wavelets are encoded using a
differential PCM method to further reduce the bit rate of the transmission.
Unvoiced speech is encoded using an LPC method on a frame by frame
basis. This results in high quality speech transmission at bit rates of

approximately 3.8 kb/s.

C.3 New pitch detection algorithm based on wavelet transform
This Paper Appears in :
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Time-Frequency and Time-Scale Analysis, 1998. Proceedings of the
IEEE-SP International Symposium on Pages: 165 — 168 This Conference
was Held : 6-9 Oct. 1998 ISBN: 0-7803-5073-1

Abstract:
A new pitch detection algorithm based on wavelet transform

analysis is presented. This algorithm uses a family of modulated Gaussian
wavelets adapted to the Bark scale to analyze speech signals
decomposing the input signal into different bands. Then, a maxima
detector and a new confirmation algorithm are used to extract pitch
period information. Evaluation results and comparison tests with standard

SIFT algorithm are presented.

C.4 Wavelet algorithm for the estimation of pitch period of speech
signal

This Paper Appears in :

Electronics, Circuits, and Systems, 1996. ICECS '96., Proceedings
of the Third IEEE International Conference on Pages: 471 - 474
vol.1.This Conference was Held : 13-16 Oct. 1996 Vol. 1 ISBN: 0-7803-
3650-X

Abstract:
An algorithm based on dyadic wavelet transform (DyWT) has been

developed for detecting pitch period. Pitch period is regarded as an
important feature in designing and developing automatic speaker
recognition/identification systems. In this paper, we have developed two
methods for detecting pitch period of synthetic signals. In the first
method, we estimated the pitch period using the original signal. In the
second method, pitch period was estimated from the power spectrum of
the signal. Several experiments were performed, under noisy and ideal

environmental conditions, to evaluate the accuracy and robustness of the
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proposed methodology. It was observed from the experiments that the

proposed techniques were successful in estimating pitch periods.

C.5 Pitch determination and speech segmentation using the discrete
wavelet transform

This Paper Appears in :

Circuits and Systems, 1996. ISCAS '96., Connecting the World.,
1996 IEEE International Symposium on Pages: 45 - 48 vol.2 1996 Vol. 2
ISBN: 0-7803-3073-0

Abstract:
Pitch determination and speech segmentation are two important

parts of speech recognition and speech processing in general. This paper
proposes a time-based event detection method for finding the pitch period
of a speech signal. Based on the discrete wavelet transform, it detects
voiced speech, which is local in frequency, and determines the pitch
period. This method is computationally inexpensive and through
simulations and real speech experiments we show that it is both accurate

and robust to noise.

C.6 Wavelet based feature extraction for phoneme recognition
This Paper Appears in:

Spoken Language, 1996. ICSLP 96. Proceedings., Fourth
International Conference on Pages: 264 - 267 vol.1.This Conference was
Held : 3-6 Oct. 1996, Vol. 1 ISBN: 0-7803-3555-4

Abstract:
In an effort to provide a more efficient representation of the

acoustical speech signal in the pre classification stage of a speech
recognition system, we consider the application of the Best-Basis
Algorithm of R.R. Coifman and M.L. Wickerhauser (1992). This
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combines the advantages of using a smooth, compactly supported wavelet
basis with an adaptive time scale analysis, dependent on the problem at
hand. We start by briefly reviewing areas within speech recognition
where the wavelet transform has been applied with some success.
Examples include pitch detection, formant tracking, phoneme
classification. Finally, our wavelet based feature extraction system is
described and its performance on a simple phonetic classification

problem given.

C.7 Pitch detection and voiced/unvoiced decision algorithm based on
wavelet transforms

This Paper Appears in :

Spoken Language, 1996. ICSLP 96. Proceedings., Fourth
International Conference on Pages: 1209 - 1212 vol.2. This Conference
was Held : 3-6 Oct. 1996, Vol. 2 ISBN: 0-7803-3555-4.

Abstract:
An improvement of an existing pitch detection algorithm is

presented. The solution reduces the computational load of its precedent
algorithm and introduces a voiced/unvoiced decision step to reduce the
number of errors. The efficiency of this improved system is tested with a
semi-automatically segmented speech database according to the
information delivered by an attached laryngograph signal. The results

show its periodicity detection.

C.8 Optimal wavelet representation of signals and the wavelet
sampling theorem

This Paper Appears in :

Circuits and Systems I1: Analog and Digital Signal Processing, IEEE
Transactions on Pages: 262 — 277 April 1994 Vol. 41 Issue: 4 ISSN:
1057-7130.
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Abstract:
The wavelet representation using orthonormal wavelet bases has

received widespread attention. Recently M-band orthonormal wavelet
bases have been constructed and compactly supported M-band wavelets
have been parameterized. This paper gives the theory and algorithms for
obtaining the optimal wavelet multiresolution analysis for the
representation of a given signal at a predetermined scale in a variety of
error norms. Moreover, for classes of signals, this paper gives the theory
and algorithms for designing the robust wavelet multiresolution analysis
that minimizes the worst case approximation error among all signals in
the class. All results are derived for the general M-band multiresolution
analysis. An efficient numerical scheme is also described for the design
of the optimal wavelet multiresolution analysis when the least-squared
error criterion is used. Wavelet theory introduces the concept of scale
which is analogous to the concept of frequency in Fourier analysis. This
paper introduces essentially scale limited signals and shows that band
limited signals are essentially scale limited, and gives the wavelet
sampling theorem, which states that the scaling function expansion
coefficients of a function with respect to an M-band wavelet basis, at a
certain scale (and above) completely specify a band limited signal (i.e.,
behave like Nyquist (or higher) rate samples).

C.9 Robust classification of speech based on the dyadic wavelet
transform with application to CEL P coding

This Paper Appears in :

Acoustics, Speech, and Signal Processing, 1996. ICASSP-96.
Conference Proceedings., 1996 IEEE International Conference on Pages:
546 - 549 vol. 1. This Conference was Held : 7-10 May 1996, Vol. 1
ISBN: 0-7803-3192-3.
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Abstract:
This paper describes a new algorithm for the classification of

telephone-bandwidth speech that is designed for efficient control of bit
allocation in low bit-rate speech coders. The algorithm is based on the
dyadic wavelet transform (D/sub y/WT) and classifies each unit subframe
into one of the three categories background noise/unvoiced,
transients/voicing onsets, periodic/voiced. A set of three parameters is
derived from the D/sub y/WT coefficients, each giving a decision score
that the associated class is active. Taking the history into account, a
finite-state model controlled by these parameters computes the classifier's
decision. The proposed algorithm is robust to various types of
background noise. In comparison with a classifier based on the long-term
autocorrelation function, the D/sub y/WT classifier proves to be superior.
To evaluate its performance in CELP-type speech coders, a variety of
excitation coding schemes with bit rates between 2200 and 4800 bit/s is

Investigated.

C.10 Pitch detection and voiced/unvoiced decision algorithm based
on wavelet transforms

This Paper Appears in :

Spoken Language, 1996. ICSLP 96. Proceedings., Fourth
International Conference on Pages: 1209 - 1212 vol.2. This Conference
was Held : 3-6 Oct. 1996, Vol. 2 ISBN: 0-7803-3555-4

Abstract:
An improvement of an existing pitch detection algorithm is

presented. The solution reduces the computational load of its precedent
algorithm and introduces a voiced/unvoiced decision step to reduce the
number of errors. The efficiency of this improved system is tested with a

semi-automatically segmented speech database according to the
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information delivered by an attached laryngograph signal. The results

show its periodicity detection.
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Appendix D
Efficiency measure
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Efficiency measure is very important in evaluating a technique. In
this part, the technique that is used in systems evaluation will be

discussed.

W1 Readtable("d:\dspd1iwt.vu’")

1:No Units 2Unspecified
| | | | |

W abs{Col(WH,-col(W1,2)

e L

W3: moveleft(W2,55)

(B L A T

Wa: W23

11 e L i

W5: Integ(W4)

WE: Col(Wi1,1);0verplot(col(W1,2),LGREEN);

DI TR T T T

FigureD. 1 System of efficiency measure.

Figure D.1 represents the worksheet for systems evaluation. In the
first window ‘W1’ the file contains two columns of data is read. The first
column is the markers corresponds to the optimal output (required output
from the tested system). The second column contains current output of

the system under test.

Window 2 ‘W2’ of figure D.1 contains the absolute difference
between Column 2 and column 1 in ‘W1’. In ideal output this must be

ZEro.
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Window 3 ‘W3’ of figure D.1 contains the same information in
‘W2’ shifted left by about 55 samples (~5 ms). This window is the
allowed tolerance of output.

Window 4 ‘W4’ of Figure D.1 contains results of multiplying ‘W2’

and ‘W3’. This reduces error according to the allowed tolerance.

Area under marker of ‘W4’ is calculated in ‘W5’ by integrating the
normalized ‘W4’. This area represents the total error in the system (this
area represents the total duration of error markers due to integration of

normalized curve).

Dividing it over the total period of markers averages the error area.

The efficiency is calculated by the following equation:

n= (1—@)*100% (D. 1)
Terr : Total duration of error.
T : Total period of markers.

Window 5 ‘W5’ contains the required markers overlaid with the

current markers.
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