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Abstract— An algorithm is described for the detection of
non-metallic anti-personnel (AP) land mines by using ground
penetrating radar (GPR). The algorithm combines two powerful
tools: the wavelet packet analysis and higher-order-statistics
(HOS). The use of both techniques makes detection of shallowly
anti-personnel land mines objects possible which obscured by the
return from air-soil interface.

The experimental data sources include 1GHz pulse GPR
data, and 1GHz to 4GHz stepped-frequency GPR data, from
laboratory measurements.

Index Terms— Clutter, GPR, Landmine, HOS, Wavelet Packet.

I. INTRODUCTION

GPR senses electrical inhomogeneities caused by a di-
electric contrast [1]. One key problem is how to extract
the mines scattered signals from the received data when the
contrast is very weak (i.e. when GPR used for detecting non-
metallic anti-personnel (plastic) landmine in the presence of
soil) implying that the landmine GPR signal is very small [2].
The largest contrast typically exists between the air and the
soil and therefore GPR is typically characterized by a very
large ”ground bounce”. If a landmine is buried at a shallow
depth, then the GPR, which is used to detect and localize AP
mines, will lead to several problems especially if the surface of
the soil is rough or the soil is inhomogeneous. Unfortunately,
this technology can suffer false alarm rates as high as that
of metal detectors. Thus, it is clear that signal processing of
the GPR data is needed in order to extract useful information
for the target. Signal-processing algorithms, which filter out
clutter signals and select objects to be declared as mines, is
considered the most critical part of the GPR system. There
are two distinct types of GPR: Time-domain and frequency
domain. Time domain or impulse GPR transmits discrete
pulses of nanosecond duration and digitizes the returns at GHz
sample rates. Frequency domain GPR systems transmit single
frequencies either uniquely, as a series of frequency steps, or
as a chirp. The amplitude and the phase of the returned signal
are measured, and the resulting data is converted back to the
time domain [3].

In the last twenty years, the wavelet analysis [4] and the
higher-order statistics [5] have been among the most successful
tools in the field of signal processing. The two techniques,
here, are combined together and then have been applied to

GPR data to show how such a combination can improve the
GPR detection.

In our work, the wavelet packet transform has been used
to remove the clutter from GPR data. This has been done by
thresholding the wavelet-packet-transform coefficients of the
received GPR data. The threshold level selection is based on
the higher-order statistics of the coefficients. Using a threshold
that is based on higher-order statistics has proved to be more
efficient than the conventional way of wavelet thresholding.
By combining the wavelet packet and higher-order statistics a
correct detection can be achieved.

II. GPR MEASUREMENTS

Two types of data have been used in this work. The first
data has been acquired with a bistatic-stepped frequency GPR
system at IESK, Magdeburg University, Germany. The system
consists of a network analyzer (Rohde & Schwarz), which is
connected to a computer (a PC type Pentium 4). A wooden
box with dimensions 1.1 x 1.1 x 1.1 m has been used. The
internal sides are covered by absorption material and it is filled
with sand of 0.5 m depth. The

chirp z-transform has been used to transform frequency
domain to time domain. The measurement grid covers the
area bounded by x = 27-76 cm and y= 39-89 cm with distance
between the measurements of 1 cm in both x and y directions.

The transmitting and receiving antennas are mounted on
the 2D scanning system. The measurements form a two
dimensional matrix, referred to as a B-scan. Column vector of
the B-scan matrix (image) is called an A-scan and it represents
the data. At each individual point on the basic surface of the
soil and extending it down, the antenna is used to collect this
A-scan data.

An example of A-scans in the presence and absence of a
landmine are displayed in Fig. 1.

The radar system operates in the frequency range of 1 GHz
to 4 GHz and the number of the samples is 1024 for each
A-scan.

The second GPR data has been provided by the DeTeC
laboratory of the “Ecole polytechnique fédérale de Lausanne”
(Suisse) [6] The data was acquired by a monostatic impulse
GPR system. A 1GHz antenna is used. A series of measure-
ments were taken, each measurement form a B-Scan. Each B-
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Fig. 1. A scans in the presence (dashed) and absence (solid) of a mine,
DeTeC and IESK data, respectively.

Scan is composed of 98 A-Scan, and each A-Scan is composed
of 512 samples.

In both case the PMN anti-personal landmine is used.

III. WAVELET

Time-frequency representations are used to distribute the
energy of a signal in the time-frequency plane; in such away
that relevant information can be extracted to make a good
detection. The results generally depend on the method used
as a time-frequency representation. The wavelet transforms
are pretty the same as Fourier transforms except they have
different bases.

The wavelet transform is capable of providing both time and
frequency localization simultaneously while Fourier transform
can only provide frequency representations.

The Short Time Fourier Transform (STFT) can provide a
time-frequency representation of the signal. However, STFT
does not have inverse. In other word; the original signal cannot
be reconstructed from the time-frequency map.

For GPR, we need data cleaning to remove clutter, and data
transformation to convert the data into suitable form. So we
can transform the data into wavelet domain, and choose some
significant wavelet coefficients. The chosen coefficients are
based on their higher order statistics.

Assume that the observed data x(n) is given by:

x(n) = t(n) + e(n) (1)

Contains the target signal t(n), and the clutter signal e(n),
with n = 1, 2, ..., N .

The two-dimensional wavelet transform gives the two-
dimensional wavelet packet coefficients in the form

WP x
j,s(i) = WP t

j,s(i) + WP e
j,s(i) (2)

where WP x
j,s(i), WP t

j,s(i) and WP e
j,s(i) are the wavelet

packet coefficients of x, t, and e respectively, j = 1, 2, ..., J
is the number of decomposition levels, s = 1, 2, ..., 2j is the
number of scales, i = 1, 2, ..., M , where M = N/2j and N
is the length of the signal.
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Fig. 2. The wavelet packet of DeTeC and IESK data, respectively.

The target signal, can be extracted, by thresholding the
wavelet-packet-transform coefficients, which is based on the
higher-order statistics.

IV. HIGHER ORDER STATISTIC

Dealing with non-Gaussian random processes, the notions
of higher order moments, cumulants, and their polyspectra
called higher order statistics are of paramount importance in
statistical signal processing.

If x(n), n = 0,±1,±2,±3, .. is a real stationary discrete-
time signal and its moments up to order p exist, then its pth-
order moment function is given by

mp(τ1, τ2, ..., τp−1) = E{x(n)x(n+ τ1)....x(n+ τp−1)} (3)

and depends only on the time differences τ1, τ2, ..., τp−1

τi = 0,±1,±2,±3, ..., for all i. Here E{.} denotes statistical
expectation and for a deterministic signal, it is replaced by a
time summation over all time samples (for energy signals) or
time averaging (for power signals). If in addition the signal
has zero mean, then its cumulant functions (up to order three)
are given by
second-order cumulant:

C2(τ1) = m2(τ1)

third-order cumulant:

C3(τ1, τ2) = m3(τ1, τ2)

By setting all the lags to zero in the above cumulant
expressions, we obtain the variance and skewness respectively,
Variance:

γ2 = C2(0) = E{x2(n)}
Skewness:

γ3 = C3(0, 0) = E{x3(n)}



When estimating higher-order statistics from finite data
records, the variance of the estimators is reduced by normaliz-
ing the input data to have a unity variance, prior to computing
the estimators.

Equivalently, the third order statistics are normalized by the
appropriate powers of the data variance, thus we define the
Normalized skewness:

S =
C3(0, 0)

[C2(0)]1.5
=

E{x3(n)}
[E {x2(n)}]1.5 (4)

V. PROCEDURE OF DE-NOISING AND
PERFORMANCE

For the purpose of detection, the idea is to transform the
data by wavelet and keep only target coefficients, which allows
one to get rid of the greatest part of the disturbing noise. This
classical technique is called de-noising and consists of setting
to zero all the wavelet coefficients whose magnitude is below
an appropriate threshold.

We have assumed that the received data consists of two
parts; noise, and target signals as in( 1).

In this work, the noise e(n) is assumed to be white Gaussian
stationary noise. By applying the Gaussian test to the wavelet
coefficients, All Guassian coefficients are set to zero.

A. Gaussian test

In the Gaussian test the noise is assumed to be white
Gaussian, and the noise and the target signals are stochastically
independent.

The skewness of the received data (x) can be written as [5]

S(x) = S(b) + S(t) (5)

Where S(b) and S(t) are the skewness of the clutter and
target signals, respectively.

We also assume that some of the wavelet coefficients of the
received data belong to the target signal, and some of it belong
to the noise signal. So we have target, and noise coefficients.
The problem now, how can we separate the target coefficients.
Instead, determination of the wavelet coefficients of the noise
by checking its Gaussianity using the higher-order statistics.
When the noise is white stationary, the coefficients remain
white stationary.

Our candidate is the skewness, which is the normalized
version of the third-order cumulant.

The Gaussian process has a skewness value that equals zero.
To perform a de-noising procedure on the wavelet coefficients,
all Gaussian coefficients are set to be zero. The test we present
here is based on the normalized third order cumulant, skewness
(4), which has been computed by the method of moments. In
this method, while fitting a probability distribution to a sample,
the parameters are estimated by equating the sample moments
to those of the theoretical moments of the distribution. Even
though this method is conceptually simple, and the computa-
tions are straight-forward, it is found that the numerical values
of the sample moments can be very different from those of the
population from which the sample has been drawn, especially
when the sample size is small and/or the skewness of the
sample is considerable [7].

In our work we have a limited number of data sample, so we
are not able to obtain an exact value of the skewness. Instead
of that we have an estimate value using sample averages. The
estimation of the skewness can be calculated as:

Ŝ =
1
N

N∑

N=1

(
xi − µ̂

σ̂

)3

, (6)

where µ̂ = 1
N

∑N
N=1 xi and σ̂ = 1

N

∑N
N=1(xi − µ̂)

The estimated value of the skewness is allowed to exist
in a confidence interval. Normally, the confidence interval is
calculated when the probability density function is known.
On the other hand, the probability density function of the
third-order cumulant of a Gaussian sequence is not known
analytically.

A partial solution to this problem is to use the Bienayme-
chebyshev inequality, which makes it possible to frame our
estimates for the estimator and is expressed as [8]:

Prob

(
|Ŝ − E(Ŝ)| ≤ a

√
var(Ŝ)

)
≥ 1− 1

a2

A fixed confidence percentage corresponds to a value of the
factor a = 1/

√
1− α, where α is the authorized confidence

percentage value.
Now, the skewness estimator varies between

± 1√
1− α

√
var(Ŝ), (7)

The variance of the skewness is [9]

var(Ŝ) =
1
n

{
µ6

µ3
2

− 6β2 + 9 +
β1

4
(9β2 + 35)− 3µ5µ3

µ4
2

}

(8)
where µ is the central moment, β1 = µ2

3/µ3
2 and β2 = µ4/µ2

2

In the case where the n coefficients WPj ,
e
s (i) are white and

Gaussian, the variance of the third-order cumulant is evaluated
as [9]

var(Ŝ) = 6σ6/n

where σ2 is the variance of the n noise. The variance of
skewness estimator (for σ=1) is

var(Ŝ) = 6/n (9)

The simple test for Gaussianity measure is that the skewness
varies between

± 1√
1− α

√
6/n (10)

The skewness has been framed with 90 % of confidence by
the following inequality:

− 3
10

√
6
n
≤ Ŝ ≤ 3

10

√
6
n

(11)

B. Clutter Removal

The Gaussian test algorithm has been applied to remove the
noise from GPR data. The steps of the algorithm are

1) Compute the wavelet packet coefficients of the received
data WPj ,

x
s (i) at level j, scale s = 1, 2, ..., 2j.

2) Estimate the skewness for the wavelet packet coefficents
of each scale using (6).
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Fig. 3. B-Scan for IESK data before and after applied the Gaussianity test
algorithm, respectively.
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Fig. 4. B-Scan for DeTeC data before and after applied the Gaussianity test
algorithm, respectively.

3) Compare the skewness of the wavelet packet coefficients
with interval value (10).

4) All the coefficients, which have skewness value in this
interval, have been removed.

5) For the remaining non-Gaussian coefficients a hard
threshold has been applied to further improve the SNR.
The threshold value is calculated using the following
relation:

δS = σ̄s

√
2log(N) (12)

where σ̄ = median(|WP t
j,s|)/0.6745

6) Reconstruct the target signal from the remaining coeffi-
cients.

VI. RESULTS

The skewness algorithm test consists of two parts has been
applied to both DeTeC and IESK GPR data.

The first part of the algorithm is to remove the Gaussian
noise, and the second part is used for further improvement in
SNR if necessary.

The threshold value is calculated using confidence percent-
age value α = 90% by using equations 11. The Daube-chies
wavelet has been used of order 4 and number of levels J=3.
The B-Scan of the data and the result of applying the algorithm
are depicted in Fig.3 and Fig.4.

The effect of the algorithm for clutter reduction have been
investigated. The area under Receiver Operating Characteristic
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Fig. 5. ROC curve before and after applied Gaussian test, respectively.

curve is used. Fig.5 show the ROC curves before and after
applied the algorithm, respectively. The images ( Fig.3 and
Fig.4) and ROC curves (Fig. 5) show that the detection is
improved. The surface reflection and the reflection within the
earth have been almost removed.

VII. CONCLUSION

The main purpose of this communication was the study of
skewness test of GPR data.

An algorithm for denoising GPR data has been described.
The algorithm combines two powerful tools, the wavelet
packet transform and the higher order statistics. Most of the
clutter has been removed, where the clutter has been assumed
to be white Gaussian noise. The algorithm gives good result,
which proves its validity.
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