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A multiple time scale derivative expansion scheme has been employed to reveal some aspects of
Taylor’s relaxation theory, which states that a “slightly imperfect” plasma relaxes under the
conservation of the overall magnetic helicity K toward a state of minimum magnetic energy. The
purpose of this paper is to investigate the time evolution of K on the ideal magnetohydrodynamic
(IMHD), the MHD-collision (CMHD), and resistive diffusion (RDMHD) time scales. On the ideal
MHD time scale, it is found, just as expected, that X is an invariant of motion for each single flux
tube. On the MHD-collision time scale Taylor’s conjecture is explicitly proven, namely that only the
overall K is an invariant of motion. Finally for the resistive diffusion time scale, it is found that the
time derivative is proportional to the resistivity, however, with additional terms arising from the
MHD fluctuation spectrum. © 1995 American Institute of Physics.

I. INTRODUCTION

Many theories have been presented to describe the
plasma relaxation processes. However, the most famous one
is that presented by Taylor through his work."? Taylor’s
theory states that, after an initial violently unstable phase the
plasma relaxes, under the topological constraint of helicity
conservation, K=JA-B dr=const into a quiescent, grossly
stable state of minimum magnetic energy. Since for an ideal
plasma, the magnetic field lines are frozen to the plasma, i.e.,
each field line maintains its own identity, Taylor concluded
that K represents an infinity of topological constraints, in the
sense that K is conserved for each flux tube. Furthermore, he
conjectured that for a “slightly nonideal” plasma, in the
sense that the topological properties of the field lines are no
longer preserved, the global K is the only topological invari-
ant of motion. Taylor’s theory finds further support in experi-
mental data from reversed-field pinches, e.g., from ZETA or
HBTX. In spite of the success of this theory, there remains
the important unanswered question of what is a “slightly
nonideal” plasma and how and when may such a plasma
preserve only the global K as an invariant of motion. In this
paper, this question is answered on the basis of the multiple
time scale approach presented by Edenstrasser (Part I). The
invariance properties and time evolution of the helicity inte-
gral K are investigated on the ideal magnetohydrodynamic
(IMHD), the MHD-collision (CMHD), and on the resistive
diffusion (RDMHD) time scale.

Il. THE MULTIPLE TIME SCALE EXPANSION OF THE
HELICITY

For an ideal MHD plasma the magnetic helicity integral
is conserved (locally) for each single flux tube and thus—if
the wall is identical with the outermost magnetic surface—
also (globally) over the whole plasma volume, while due to
Taylor’s conjecture for a slightly nonideal plasma it is con-
served only globally. We are thus motivated first to define the
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local magnetic helicity integral K¥ as well as the overall K,
and apply then the multiple time scale derivative expansion
scheme Eq. (13) from Eq. (13) in Part I, to obtain the explicit
expression for the time evolution on each time scale.

A. The local magnetic helicity integral K*
Based on our expansion scheme we draw the following
definition for the local magnetic helicity integral K

KY= f (Ag+ 8A,+ 8%A,)-(By+ 6B, + °B,)

X(d7y+ 6 dr+ 6 dr,), 1)

where d7=(d1y+ 6d 7 + 8 d,) is (cf. Appendix A) a vol-
ume element enclosed between two neighbouring magnetic
surfaces W=V + 8%, +&W¥,=const, created by the mag-
netic field B=B,+ 8B+ &B,. For the local magnetic helic-

ity K% ~we have the analogous expansion
K'=K{+ 6KV+ 8KY+--- , with
n n—m
k=3 [| = A |an. e
m=0 s=0

By applying the multiple time scale derivative expansion
scheme, Eq. (13) of Part I, we obtain

aK‘*: » yé aKY_,
ot o1,
n=0 s=0
oKy IKY
~ o 0o
fo ! imup
oKY
A +ooo= 2 S(TKY),, (3)
d CMHD n=0

where (TK lp),, , referring to the nth-order dimensionless time
evolution of the local K% can be written in the following
general form:
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)

The last term on the right-hand side of Eq. (4) arises on
account of the time evolution of the magnetic surfaces.

B. The global magnetic helicity integral

If the rigid wall is identical with the outermost magnetic
surface, then we obtain from the definition for the local mag-
netic helicity integral K¥ of Eq. (1) the corresponding ex-
pression for the global magnetic helicity integral K,

K=j (Ag+ 6A+ 8°Ay) -(By+ 6B, + 8°B,)d7,  (5)

where the integration is now taken over the whole volume of
the plasma. For the global helicity K we have the analogous
ordering K=K+ 6K |+ 8°K,+- , with

K.=2 f (ApBy_p)dT. ©6)
m=0

By applying the multiple time scale derivative expansion
scheme Eq. (13) of Part I, we obtain, for the time evolution,

n

oK 0K, _,
ot 20X ar,
n=0 s=0
0K K oK oK
= _0 + 65— + 52 el 3
dtg gt IMHD at CMHD ot RDMHD
=¥, S{TK),, )
n=0

where the nth-order dimensionless time evolution (7K), can
be written in the following general form:

n n—m aBn__m_x
(TK),= 2 fAm-(E —)dr
m=0 s=0 &

s

n n—m (7A‘ _
+> fB,,,- POy Y (8)
m=0 5s=0

ot

In Eq. (8), it is obvious that the plasma is assumed to be
surrounded by a rigid wall.
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lil. THE INVARIANCE OF THE HELICITY ON THE
IMHD TIME SCALE

To prove Taylor’s conjecture, we are thus motivated to
investigate the time evolution of the magnetic helicity on the
different time scales. By employing the above expansion
scheme we first show, for the IMHD time scale, the invari-
ance of both the local and the global magnetic helicity inte-
grals.

First, we verify the known invariance of the local mag-
netic helicity integral K¥ on the Alfvén time scale. By em-
ploying Eq. (4) for the nth-order dimensionless time evolu-
tion of the local magnetic helicity (TKY),, we obtain, for

n=1,
_jA 7By, B)) +fB A,
Y R T L o'\ ot
ad’TO

JKY

ot
L f +fAB 494
Gty To (Ag-By) 2, 3t

IMHD

adT(]
+j (Ag*B;+A,-By) T ©)
0

With the help of the dimensionless Maxwell’s equations Eq.
(14) of Part I, together with Egs. (C4), (C5a), and (D5) from
the Appendices, we obtain
IKY
at

=(fA0xE0-dso—2f By-E, dr,
IMHD

_J (AO'BO)“O'dSO)(QiTA‘S)il

+f B()'VXO dT(), (10)

where Ej=—uyXB, and X is the zeroth-order gauge poten-
tial function. Under the assumption that the plasma has re-
laxed to its zeroth-order equilibrium state, (i.e., j,=AB, and
uy,=uB), X, has to be a single-valued function over the
toroidal shell d 7, (cf. Appendix D), and Eq. (10) reduces to

kY|

] =0. (11)

IMHD

This means that for the IMHD time scale we have obtained
Taylor’s result, i.e., that K¥ is conserved for each single flux
tube.

Now we consider the case of the global magnetic helic-
ity integral K, assuming that the plasma is surrounded by a
rigid, perfectly conducting wall, i.e., the plasma boundary is
assumed to be identical with the outermost magnetic surface.
From Eq. (8) we obtain, for the time evolution,

9K JA (6B0+8B1 . JB
3| | on
dAg 5 A, r
. ERR™S T (12)

With the help of the dimensionless Maxwell’s equations, Eq.
(14) of Part I, together with Eq. (D5), Eq. (12), can be re-
written in the form
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JK

= =( 3€ AOXEO-dS~2J- By E, dq-)(.(),,-frAz?)’1

ot IMHD

+f By-VX, dr. (13)

The application of the boundary conditions B,-dS
=j,-dS=u,-dS=0 then yields

K il s

9 lvip

This means that the global magnetic helicity integral K is

IKY

also conserved on the IMHD time scale. Thus, we have fi-
nally arrived at the well-known results concerning the invari-
ance of the magnetic helicity integral on the IMHD time
scale.

IV. THE INVARIANCE OF THE HELICITY ON THE
CMHD TIME SCALE

First, we investigate the time evolution of the local mag-
netic helicity integral K¥ on the MHD-collision (CMHD)
time scale. The next order in our expansion scheme (4)
yields, for the time derivative on the MHD-collision
(CMHD) time scale, the expression

_f ap [P, PBu B (A dA1+¢9A p +J' o [Bo, B L (A A
) — T \ar, T or 7o "\ o, " arg 0\ 55, T arg 1T
By, B, dAy f ad 7'0 adr, ddr,

+ b | i i § R i
f [A (at. ato)+B (an o) 470t | (Ao Bl G T
ddro ad
(Ag-B;+A,;-By) 6't0 (15)

With the help of the dimensionless Maxwell’s equations, Eq. (14) of Part I, the equation can be written in the form

IKY
ot

CMHD

( 35 AOxE1~ds0—zf By-E, dfo)(n,.ma)*w

fBO-vx1 d'rg+( ngoxEo-dsl—2fB0-EO d’r]>

X(-Q,-TAﬁ)_l"'f By VX, d71+( % A1XE0'dSo_2f B;-E, dfo)(.().,-TA(S)”JrJ' B,-VX, dr,

j T ¢9d7’0 dd T " é’dv'z f T dTO &dn &

(Ag-Bg)| —— &tl (Ag-B;+A;-By) atl oty (16)
I

Under the assumption that the plasma has relaxed to its 1 {812 V.o

zeroth-order equilibrium state (i.e., j;=AB, and uy=puBy), f ByE, drp=— | & J- By- d7y=0. (18a)

Eq. (16) reduces to e o

IKY

at

=( %onEl-dso—ZfBo-El dro)
CMHD

><((2,-7-A6)"—J.B0-VX1 dry

f (Ao~ Bo)(

The application of the first-order dimensionless Ohm’s
law, Eq. (24) of Part I, to the second term on the right-hand
side (RHS) of Eq. (17), together with the assumption that the
plasma behaves along the field lines like a polytropic me-
dium, i.e., that Vp o/n,q can be considered as the gradient of
a function of n,q, Vp,o/n.o=Vf(n,), then yields

ad 7'0 adry

o

ddr,

)
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The third term on the RHS of Eq. (17), which is due to the
multiple valuedness of the gauge potential function X, (cf.
Appendix D), can be written as

f By VX, drg=— §AOXVX1-dso

o

JA
+(—°

oty
With the help of Eqgs. (C6a) and (C6b) from Appendix C, the
last term on the RHS can be either written in the form

(Q;746)'E,

A aAz
+ -dsy.  (18b)

o,
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J‘ - &d70+3d71+¢9d72
(Ao-Bo) at, a9t

=-— § (Ag-Bo)[u;-dsy— uB,-dsg

+(Q;7an0) " (§1— ABy) dsp)(Q748) 7, (18¢)

or, equivalently,

f A--B adT0+(9dT]+(9dT2
(Ao-By) at, ot drg

= fﬁ (A Bo){u; -dsy— uB, -dso

—(GHugxVpu)-dso}(Q;748) ", (18d)

where the vector function G is defined in Eq. (B13). Addi-
tional terms on the RHS of Egs. (18c) and (18d), arising
from the so far undetermined possible nonzero integration
functions g(¥,) and A(¥,) from Egs. (B10) and (B14), are,
for simplicity, not considered here.

After substituting from Egs. (18a)—(18c) into Eq. (17),
and performing the time average over the Alfvén time (7,),
we arrive at

< 5[) [A x(8A°+ A, . aAz)
= i W W e
ol 0™\ ar, oty dtg

"3(Qi7A5)~1(A0'Bo)(“1 _MBl)}

IKY
ot

-dsg—3 fﬁ (Ag-Bo)[(j1 —ABy)-dso]

X(QiTAﬁ)Al‘d50> #0. (19)

TA

For the alternative case (18d) one has to replace in the last
integral on the RHS of Eq. (19) the expression (j;—\B,) by
the one (G+uyX Vu), which is related to the compressibility
of the plasma (cf. Appendix B).

Thus, with Eq. (19) we have arrived at the conclusion
that the local K¥ is on the CMHD time scale no longer an
invariant of motion, where the violation is essentially due to
the first-order electric field, the radial first-order fluxes of
both the magnetic field and plasma particles and, moreover,
due to the compressibility of the plasma. Since the zeroth-
order quantities are not assumed to be on the IMHD time
scale in equilibrium, it follows that the RHS of Eq. (19) also
contains turbulent contributions.

Now, we investigate the time evolution of the global
magnetic helicity integral K. The next order in our expansion
scheme (8) yields, for the time derivative on the collision-
MHD time scale (CMHD), the expression
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oK
ot

9B, JB, JB, FTe
P e WP Wi IS i
CMHD Jdty aty aty at,

oA JA. By, 0B
+—l+——3)]d7+f [Al.(_u_.*)

aty ot at, g
4B, | S0 A, 2
\on | ol (20

With the help of the dimensionless Maxwell’s equations, Eq.
(14) of Part I, Eq. (20) can be brought into the form

dK
ot

=(QiTA5)_I( § AgXE,;-dS
CMHD

—2[130-1&1 dr)+fBO-vxl dr
+(Q,»TA5)_1( 3§A1xE0-ds

—2f B, E, dr)+fBl-vxo dr. (1)

Based on the above-mentioned assumptions that the plasma
is in its zeroth-order equilibrium, together with the boundary
conditions, B,-dS=j,-dS=u,-dS=0 at the perfectly con-
ducting wall, we arrive at

JK
at

=(Q,-TA5)'1( onxEl-ds—zf By-E, dr)
CMHD

+f B, VX, d7-=f B, VX, dr. 22)

If we take for the multivalued gauge potential X, the ex-
pressions shown in (D4), then we obtain

oK B 9A,
= =| ByVk —dr+ | By-V® d7 § | —
| e r, a1,
081, ) e, d! f By-V
—IE 310 -ed, o+ 0" Odr

ng Mo A1 ) a. @3
om0\ Oty | Oty | o) 7 (2]

Since «(x) is a single-valued function, it follows that the first
term on the RHS vanishes. Under the assumption that the
first-order quantities have a harmonic time dependence on ¢,
the performance of the time average over the Alfvén time
scale 7, will lead to
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dK
Jt

= fBO-VCP d7-§ = e, dd’
CMHD 6=0 91,
TA

+fB0v0dr9g e, do’
=0 Ot
Tg
¥ § 0 e
= e
" Jo=0 0, ¢
+W¥ i
? J4mo ot € ) . (24)
A

On account of the assumed perfectly conducting wall, there
is a constant toroidal magnetic flux, so that Eq. (24) takes on
the form

<aK >
df CMHD

§ Ay-e,db’ f#; 5 o, (25)
= -e — e ;
gug B =0 Oty *

TA

TA,

The RHS of Eq. (25) arises from the multiple valuedness of

K

the gauge potential X,. These difficulties may be overcome
by replacing K by the following modified form K, A

K,,,=fA-B dr— 35 A-eydayg A-ey dd. (26)
$=0 6=0

This modified global magnetic helicity integral K, is then a
gauge-independent invariant of motion on the MHD-
collision time scale. This arises from the fact that, if the
surrounding wall is a perfect conductor, then, in general, the
second term in Eq. (26) can be assumed constant.*

V. THE TIME EVOLUTION OF THE HELICITY ON THE
RDMHD TIME SCALE

Due to the resistivity on this time scale the magnetic
field lines no longer preserve their topological properties, so
it is meaningless to investigate K for each single flux tube. In
this section we therefore investigate the time evolution of the
global K only, taken over the whole plasma volume. The
third order of our expansion scheme (8) (i.e., for n=3),
yields for the time derivative on the resistive diffusion time
scale the following expression:

_[oBy, B,
=] Ayl —+ N
RDMHD oty Lo

+J'B iAo 9As A, +fA 7By B, By oBy|
"o, " o e )°7 0\ t; T Gty | 9ty | dtg)o "

dA, dA, B, JB, JB,
dr+ | Byl =—+—|dr+ | A;-| —+ —+—2|dr

9t | o, oty o, ot dr,

+jB IR | A A, OA)
N\ ot; " oty oty o1g )T

27)

With the help of the dimensionless Maxwell’s equations, Eq. (14) of Part I, we herefrom obtain

oK
ot

RDMHD

:(Q,-TAs)‘l( ngszO-dS—zf B, E, d7)+J B, VX, d7'+(Q,-7'A5)_1( f};Alel-ds

—2]1;1-1;1 d7)+f B, VX, d7+(QiTA5)_l( §;onE2-ds—2J B,-E, d7)+fB0-VX2 dr.  (28)

It may be shown that besides X, also the gauge potential X,
has to be multivalued. The difficulties related to this multiple
valuedness may again be removed by considering instead of
the usual K also on the RDMHD time scale the modified
helicity K, , defined in Eq. (26). If we assume for simplicity
a perfectly conducting wall, then those terms in Eq. (28) that
contain the gradient of a gauge potential, will not contribute
to K,,.* The application of the dimensionless second-order
Ohm’s law, Eq. (48) of Part I, to the remaining terms in Eq.
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[

(28), together with the boundary conditions B,-dS
=jn-dS=u,-dS=0, and the assumption that the plasma is
during the evolution on the RDMHD time scale in direct
contact with a perfectly conducting wall, leads to

1 [8,\12 v
fﬁAlel-ds=—— = 3€A1x .
e 5i neo

=0 (polytropic plasma), (29a)
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Since the Jacobians J,, J;, and J, are supposed to be of
order unity, d7¥ can be written in the envisaged form,

dr¥=dry+ 8dr + 8%d,, (A3)

where the volume elements d7,, d7y+ddry, and
dry+ 6d7 + 8°dT, are the volume elements enclosed be-
tween two corresponding neighboring magnetic surfaces.
Similarly, also the infinitesimal surface elements ds” can be
written in the form

ds'=[V(¥o+ 6¥,+ &3¥,) - VIXVP] ™!
XV(Wo+ 6V + 6*¥,)d8 dP
=J{VWo+ 8(V¥, —J ' VW) + PV,

— IV VW (JgJ =T VW10 AP, (A4)

Thus, also the infinitesimal surface element ds¥ can be writ-
ten in this envisaged expansion form as

dsV=dsy+ 6 ds;+ & ds,. (AS)
APPENDIX B: THE TIME EVOLUTION OF THE
MAGNETIC SURFACES

The defining equation for the magnetic flux surface, with
surface label W=V + 8¥,+ &V, =const, is given by

B-VV¥=(B,+ 6B, + 6’B,)-V(¥y+ ¥, + 5V¥,)=0.
(B1)
It simply means that the magnetic field B=B,+B;+ & ’B,
lies in the flux surface W=W,+ ¥+ 5>¥,=const every-
where. Equation (B1) determines the flux function W(x) at a
given instant. In an ideal MHD plasma, the magnetic field
lines are frozen to the plasma; it means that the topology of
the magnetic field cannot change relative to the plasma, so
that we can ignore the time evolution of the flux surfaces. In
a nonideal plasma, the situation is somewhat different. The
finite resistivity allows magnetic-field diffusion to take place,
while it also gives rise to transport processes, such as classi-
cal and neoclassical particle diffusion fluxes across the flux
surfaces. This leads to a self-consistent evolution of the mag-
netic structure of the plasma.” Thus, the purpose of this ap-
pendix is to investigate the dynamical behavior of the mag-
netic flux surfaces over the different time scales.
Under the assumption V=W (x,7(,?;,%,,¢3), the applica-
tion of the multiple time scale derivative expansion scheme
Eq. (13) of Part I, to Eq. (B1) leads to

a n n—m
- (BV®)=2 &3 2 BoVYE,,
E n=0 m=0 L s=0
(B2)

Thus, for each order of § we have a separate equation for the
time evolution of the magnetic surfaces.

8% Zeroth-order time evolution equation. The zeroth-
order equation describes the time evolution of the magnetic
surfaces on the ion-gyration period time scale. From Eg.
(B2) it follows that
v

—Le=g, (B3)

leading to 3t

d
ot (By-V¥y)=0,
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81: First-order time evolution equation (on the IMHD
time scale). For n=1, the expansion scheme (B2) yields

With the help of Maxwell’s equations, Eq. (14) of Part I, and
the zeroth-order Ohm’s law, Eq. 19 of Part I, we herefrom

obtain

v, ¥
o, 1

—t _ 1
o, 8t0) (Q,;7,8) 'V [V¥ x(uyxBy)]=0,

BO'V(
and, furthermore, with the application of Eq. (B1),

[(a\lfo a«lr) g
By-V|| —+ +(Q;748) " Nuy- VW) |=

dty Jt
(B4b)
leading to
I, oV, .
i T o = (imad) T (- VW) +£(Wo), (B4c)
1 0

where the integration flux function f(¥,) has to be put to
zero, as shown in Ref. 7, p. 192. Since the zeroth-order quan-
tities do not depend on 7, it follows that also ¥; must be
independent of ¢, in order to avoid secular terms.

Hence, we obtain from Eq. (B4c), the differential equa-
tion for the motion of the magnetic surfaces on the IMHD
time scale in the following dimensional form:

ov Vo ) dv "
== =—u- 0, le, ——=0,
9 | v dt
ith - = . +u-V B5
wit priiairriul A R (B5)

Equation (B5) implies that during the evolution of the
plasma over the IMHD time scale, the plasma and the mag-
netic flux surfaces move together, in other words, that the
field lines are frozen to the plasma.

5% Second-order time evolution equation (on the
CMHD time scale). For n=2, the expansion scheme (B2)
yields

—(B0 VB (BO VW, +B, VW) + - (Bo vy,

+Bl.vw]+32-vwo)=o. (B6a)

With the help of Eq. (B4c) and Maxwell’s equations Eq. (14)
of Part I, we herefrom obtain

ALIRA LI 2
9t, | 9t | oty
+VU,. VXE, + V¥, - VXE)(Q,7,8) =0,

B;-V —[B;-V(uy- VW)

(B6b)

and after expressing E, and E; by the zeroth- and first-order
Ohm’s law, Egs. (14) and (24) of Part I, we arrive at
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Q,r 8By V| 20 TY1 V2| p GV
(Q;749)By- o5, "o T o, [B1-V(up-V¥)]

S 172
u; XBy+uyxB; + (weTA)(é)

=—!V\I’0-Vx

VpeO

e0

X

—(Q;7ano) ' (JoXB; +j; XBy)

+V‘I’1-Vx(u0xB0)]. (B6c)
Equation (B6c) may be further simplified by taking into ac-
count the following two assumptions: (1) The plasma be-
haves polytropically along the field lines, ie.,
(Vp.o/n,0)=Vf(n,). (2) The plasma has relaxed to its
zeroth-order equilibrium state, which is defined by

Jo=A(x311,15,13)By  and  wo= u(x:t),15,23)By.

B7)

Since the term Vp,q/n,q is due to the first-order Ohm’s law
valid for the IMHD time scale, where the adiabatic law ap-
plies, assumption (1) means no restriction. Furthermore, ac-
cording to our multiple time scale procedure, one has for the
preceding time scales either to take the asymptotic limit z—o0
or to perform the time averages. Thus, the first of the equa-
tions (B7) also means no restriction. The only limitation is
the one appearing in the second equation (B7), stating that
the perpendicular rotation is of order &', an assumption
which is true for present-day large fusion devices. With the
help of these assumptions Eq. (B6c) can be rewritten in the
form

b (%o, IY1 ¥
0"\ o, T o, 0 ot
= — (By-V(u;-VWy— uB, - V¥,)+{VF¥,.V
X[(Q;7an0) "' X (jo X By +ji XBo) [1(Q;7,8) 7",
(B6d)
leading to
_l?_t2 o1, oty o-[(u;—uBy)
+(Q;7an0) " (1 —ABy)]
X(Q;748) "' +g(¥y), (B3)

where g(W,) is an arbitrary flux function. Contrary to the
IMHD case of Eq. (B4c)—this integration function on the
CMHD time scale needs not necessarily to be zero. Under
the assumption that the first-order quantities have a harmonic
to and t; dependence, we obtain, after performing the time
averages over the time scales 75 and 7,

V¥, =ipre

3—t2 == ([(u;=uB) - V¥,+(Q;7an0) ' (s

—AB) -V ](Q;748) ' +8(V0)) 1y r,-
(B9)
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Finally Eq. (B9) can be brought into the following dimen-
sional form:

v
ot

CMHD
=—8[(u;— uB,)-V¥+ny ' (j,—\B,)-V¥)]
=—[u-V¥+6ny '(ji—AB;)-V¥,]

+8(¥o)+0(5%), (B10a)
or, equivalently,
av s 5
e —6ng (j1—AB)-VV¥,+g(¥,)+0(5),
(B10b)

where u=uy+du; and Y=+ 8¥,.

Equations (B10), which describe the time evolution of
the magnetic surfaces on the CMHD time scale, can be
brought into another equivalent form in the following sense.
By inserting from the dimensionless one fluid momentum
equation from the IMHD time scale (Part I), Eq. (B6d) can
be written in the following form:

7V, a¥, 0¥,
dt, | dt, oty

BO'V(

== I BO-V(ul 'V‘I’O—/LBI 'V\Po)

”[VTO‘VX((;TIIO +(u0~V)uo) ](Q,—TAS)*l.
1

(B11)

Since uy=u(x;t,,1,,23)By, Eq. (B11) can also be rewritten in
the following way:
B 0‘If0+ oV, 4 o,
Y\ o, T 9, ot
= —{BO-V[111 'V\I’O_ [LBI 'VIIIO_G'V\I,O
—(ugXV -V} Q;726) 7",

where the vector function G(x;¢,,,,%3) is defined by

(B12)

a
V(G-V‘I’o)=V‘lf0xV(aT#). (B13)
1
Under the assumption that the first- and second-order quan-
tities show a harmonic dependence on 7, and 7;, we obtain,
after performing the time averages over the second-order

time evolution equation from Eq. (B12):

<—> =—{([(u;— uBy)-V¥,—G-V¥,
at, —

—(upXVu-V¥)](Q;748) "
+h(w0)>To,TAv

where h(W,) is again an arbitrary, not necessarily nonzero,
flux function. Furthermore, Eq. (B14) can be written in the
following dimensional form:

(B14)
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v
—37 =—[5(u1-,uB1)-V\I’0—G-V‘I’0
CMHD
—(ugXV u- V)] +h(¥), (B15a)
or, alternatively,
dv 5
}T=[G~V‘If(,+(u0xV,u,'V\I’0)]+h(‘I’O)+0(6 ).
(B15b)

Equation (B15a) shows that there are two different cases for
the time evolution of the magnetic surfaces on the CMHD
time scale.

Case 1: If the plasma is assumed to be behave like an
incompressible fluid,

V-uy=V-[u(x;t)By]=By-Vu=0,

I
ie, Vul1V¥, and <V(E—)> =0,
Vi agm
av dav
W +§(UI_MB1)'V‘I’0:—"17' =h(’\I’0)
CMHD CMHD
(B16a)

Case 2: If the plasma is assumed as a compressible fluid,
then we obtain

v

E +5(u|-V‘I-'0—,u,B1-V\I’0)

CMHD

(B16b)

=h(Vy)+8(G+tugXxVu) -V,
CMHD
From Egs. (B10b), (B16a), and (B16b), we infer that on the
MHD-collision time scale, the magnetic field lines are no
longer frozen to the plasma, essentially due to the radial
components of the first-order magnetic field and the first-
order current or equivalently due to the compressibility.
Thus, it is obvious that the compressibility not only affects
the particle density, but also the magnetic field configuration.
The important key question to be answered remains,
however, which processes may lead to such a decoupling
between the plasma and the field lines. To answer this ques-
tion, one has to keep in mind that these processes must fulfill
the following requirements. First, they have to evolve on a
time scale, which is of the order of the CMHD time scale.
Second, these processes need the compressibility for their
development, and do not depend on the resistivity. In this
sense, it was shown that the driven magnetic reconnection
process is the best candidate on the CMHD time scale.3?

~dr

APPENDIX C: THE TIME EVOLUTION OF THE
VOLUME ELEMENT d7*

In this appendix the time evolution of the volume ele-
ment d7¥ will be calculated in the following sense. The no-
tation dd/dt=0ad 7oV -9V /ot, with ddr/oV=J d& dP
stands as a shorthand writing symbolically, therefore that in-
stead of the volume integral one has only to perform the
integration over the angular variables ¥ and @ at the surface
W=const. We then formally have to deal with
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odr ddr ¥ ddr ddty ddm
— = —= + 4l +
o J¥v ot atg aty atg
ddty ddry ddr
C 2 . Rt Pt

with

A A ov A% oV A Y ov
oy 5(_0 __1)+ z(__o __1+__2)
ot

- ot, | ato o1, | ot | ot
(C2)

and

41 _ L 15 ad=1g|1- 8 22| - &2 o)l 49 d
v g 7 '

Jy 2
(C3)
By employing Egs. (B3), (B4c), (B10), (B15), and (B16), it
can be shown that &°: zeroth-order time evolution,
adT() .
aty

0; (c4)

8': first-order time evolution (on the IMHD time scale),

(Dimensionless form)

0(17'() ad’TI _ Q 5 =j 2 cs
ot TR =—(Q,;746)" (ug-dsy), (Csa)
. adr
(Dimensional form)7 =—uy-dsg; (C5b)
IMHD

and 62: second-order time evolution (on the CMHD time
scale),

(Dimensionless form)

ad To ad T od Ty,
+ +
at, ot | drg

= —[u,-dsy— uB, dsy+ (Q;7an0) !
X (j;—ABy)-dso)1(Q;748) "' +Tog(¥)d S dP,

(C6a)
or equivalently,
ddy " adr " adr, — _[uy-dsg— uB, -dso— (G
dt, | at, | oty
+ugXV ) dsgl(Q;7,8) !
+Joh(Vo)d Y dP; (C6b)

and
(Dimensional form)

adr
_a_ =—5(u1 'dSO_lLBl'dSO)+6(j1_)\B1)‘dSQ
d CMHD

F(Q,728) 08 (¥ )d D dD. (C6c)
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APPENDIX D: THE GAUGE POTENTIAL FUNCTION
X(x,1)

To evaluate in our calculation the surface integral terms
that contain the gauge potential function X, one has to be
aware of the nature of X, since for a multiply connected
region X needs not necessarily to be single valued. This ap-
pendix is devoted to the investigation of the nature of the
gauge potential function X for different orderings. Let w(x;z)
be any single-valued vector field, satisfying

VY- (Vxw)=0. (D1)
Let z(¥) be any particular point on each magnetic flux sur-
face with label W. For each point x in space, define

v(x,t)= fxdx~w, (D2)

4

where the path of integration lies on the magnetic flux sur-
face W=const. In view of (D1), it follows from Stoke’s theo-
rem that the value of ¥(x,r) is independent of the path, join-
ing z(¥) to x for all paths continuously deformable into each
other. However, not all paths are deformable into each other,
so v is a multivalued function. It can be written in the fol-
lowing general form:'

v(x;1)=B(t) k(x)+ P §9=0w'e¢ dd'+ 6 ﬁs:ow'e& de’,
Y=c Y=c
(D3)

where «(x) is some single-valued function and the loop inte-
grals are taken at the surfaces W=const in the direction of
increasing @ and 6, respectively. One of the possible choices
for w is w=A, where A is the magnetic vector potential.
Accordingly, v(x;t) can be written as follows:

v(x;1)=B(1) k(x) + DY+ 6V, (D4a)
with
V)= #ZOA-% do’ (D4b)
Yy=c
and
V=0, (A-e,do. (D4c)
Yy=c

Here \I'Z is the poloidal magnetic flux through the hole of the
toroidal flux surface W=const and ¥, is the corresponding
toroidal flux within that surface. By considering at the mo-
ment arbitrary gauge Vv for the magnetic vector potential A,
it follows that A can be replaced by A’=A~Vu, or equiva-
lently JA/dt by dA'/dt=0Al9t—VX, i.e., X=dv/dt. Accord-
ing to our multiple time scale scheme Eq. (13) of Part I, and
the dimensionless Maxwell’s equations, Eq. (14) of Part I,
the dimensionless Faraday’s law becomes
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n+1

ot n—m+1
m=0

SE,=— 2 & (Q;740)
n=0

n=0

-vx, |, (D5a)

with

a

n+1
X,,:K(X) 2 Iﬂn+l—m
m=0 mn

i1

+O| X — (¥h,,,
ot

m=0

n+1

J
+6 E T (‘pt)n+l—m

D5b)
m=0 ¢9tm (

The poloidal magnetic flux ‘Pﬁ through the torus hole is re-
lated to our poloidal flux ¥, by ¥ = W' — W, where
W is the total poloidal flux through the torus hole within
the magnetic axis. Here, we have to take into consideration
the following relation:

tot

F=—(Q,7,6) 7! %

ot axis

E-dl, (D6)
where the path of integration lies on the magnetic axis de-
fined by VW=0. After performing the above multiple time
scale scheme, we obtain for each order of & a separate equa-
tion for the corresponding gauge potential X,.

8% Zeroth-order gauge potential function X,. Taking
into account the fact that the time derivatives dldty vanish,
the zeroth-order gauge potential X, is determined by

Xg= H—B‘)—cb Q,;7,6)7! E,-dl
0= K(x) o1, (Q;71,9) Ey-dly

axis

av,
av

+[ @ 7 (D7)

dry’

where the path of integration in this case lies on the magnetic
axis V¥, =0. From Eq. (B4c) and the fact that the plasma
has relaxed to its zeroth-order equilibrium, (i.e., uy=uB, and
Jo=MABy), follows that X, is a single-valued function.

8!: First-order gauge potential function X;. Along the
same lines as for the zeroth-order case, the corresponding
expression for the first-order gauge potential X, reads simi-

larly,
X, =k(x) C9—[3"—@(0 5)*‘§ E.dl+ od—‘lj’—cb
L8 aty 7 axis av
o, T ) (D8)

where, E=E(+ JE,, dl=dl,+ dl,, and the path of integra-
tion lies on the magnetic axis defined by V¥
=VW,+6V¥,=0. After performing the time average over
the IMHD time scale 7,, and using Eq. (B9) together with
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the first-order dimensionless Ohm’s law, Eq. (24) of Part I, it
can be shown that both the second and the third terms on the
RHS of Eq. (D8) do not vanish. Thus, we conclude that the
first-order gauge potential X is a multiple-valued function.

Analogously, we may infer that also the second-order
gauge potential X, is a multiple-valued function.
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