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The plasma transport equations for a weakly collisional plasma have previously
been derived for four different time scales. This paper is devoted to the
derivation of the plasma transport equations for the two other complementary
regimes: the intermediately collisional regime (ICR) (i.e. for the case where the
transit time ;! is of the same order as the collision time v;L ot 2 7Y, and the
strongly collisional regime (SCR) (i.e. for the case of ]! » v_?) for different time
scales. It is shown that the lowest-order gyromotion is unperturbed by
collisions. On the Alfvén time scale, one merely obtains for both the
intermediately collisional case and the strongly collisional case the single-fluid
ideal MHD equations, if certain additional requirements are satisfied. On the
MHD-collision time scale, one arrives at the full set of transport equations,
where in both cases, contrary to the weakly collisional case, no turbulent terms
are found. On the resistive diffusion timescale, one ends up with the known
transport equations, with the addition of turbulent contributions.

1. Introduction

In previous work (Edenstrasser 1995), a multiple-time-scale derivative
expansion scheme was applied to the dimensionless Fokker—Planck equation
and Maxwell equations, with the plasma transport equations being derived for
the case of a strongly magnetized, weakly collisional plasma (the WCR) (i.e. for
the case where the transit time w]! is much shorter than the collision time vt
w;t < v;') for different MHD time scales. The time scales considered were the
lon-gyration, Alfvén, MHD-collision and resistive diffusion. It was shown that
the solution of the zeroth-order equations (i.e. on the ion-gyration time scale)
leads to force-free equilibria and to the ideal MHD Ohm's law. Furthermore,
the solution of the first-order equations (i.e. on the Alfvén time scale) leads to
the ideal MHD equations. On the MHD-collision time scale, the MHD transport
equations were obtained, with additional turbulent terms, where the related
transport quantities are one order larger in the expansion parameter than those
of the classical theory. Finally, on the resistive diffusion time scale, the known
transport equations, again with additional turbulent terms, were obtained.

Since these equations are valid for a high-temperature, weakly collisional
plasma, we are motivated to investigate on the basis of this multiple-time-scale
approach also the transport equations for the two other limiting regimes,
namely the intermediately collisional regime (ICR, i.e. w;' v7Y), and the
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strongly collisional regime (SCR, i.e. w;! > v;') ones. These investigations are
the subject of this paper. In this connection there also arises the question of the
range of validity of the ideal MHD equations for the different regimes, a
problem that will be discussed in a forthcoming publication.

The paper is organized as follows. In §2, the scheme of derivation is
comprehensively reviewed. In §§3 and 4, the plasma transport equations for an
intermediately collisional plasma and a strongly collisional one respectively are
presented. In §5, a brief summary and the relevant conclusions are presented.

2. The scheme of derivation

Apart from some minor changes, the plasma transport equations are derived
in §§3 and 4 in nearly the same way as in the case of a weakly collisional plasma
(Edenstrasser 1995). In order to avoid too much repetition, in this section we
explain step by step the lines along which the transport equations are derived.

First of all, one has to keep in mind that there are two types of multiple-time-
scale expansions. The first is the species-dependent multiple-time-scale ordering
in kinetic theory, and the second is the multiple-timescale ordering in
magnetohydrodynamic (MHD) theory, including also the electromagnetic field
quantities. However, these multiple-time-scale expansion schemes are not
independent of each other, since on going from the kinetic to the fluid
description, the expansion schemes from electrons and ions must merge
together into the MHD expansion scheme. Therefore in the derivation of the
transport equations they are treated together in the following sense.

(1) In kinetic theory, the following multiple-time-scale orderings are assumed
to hold:

(a) for the ICR (v;! = w}!),

il Tt =t L7 =l T LT, T, )
Vo/Qu X 0,/ Q=65
(b) for the SCR (v;' < w'),
(2)

T e oa = SR, T
ith Tap"— Qa < Ta1 = Vg < Taz = wal < Ta3 = Tacds }
w1

wa/yz = v:z/fza = aa‘

Here Q, is the Larmor frequency, 8, is the ratio of the Larmor radius (mean free
path) to the hydromagnetic length for the ICR (SCR), and 7., is the classical
diffusion time, for which we may take, for example, the cross-field heat-
conduction time (Jardin 1985). The hydromagnetic length L is defined as the
length over which the MHD variables change considerably (e.g. in the case of
a fusion device, the plasma radius). The physical conditions under which a
plasma satisfies the above time scale ordering, particularly those of the last
ordering concerning the classical diffusion time, remain to be analysed.
Furthermore, the unique time variable ¢ then has to be expanded into three
(four) formally independent time variables ¢_, for the ICR (SCR), so that we
obtain, in a standardized form,
0 0
t'—zaztam E—Z‘szat 8

n=0 n=0

(3)

an
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(ii) The Fokker—Planck equation must be brought into dimensionless form
by normalizing all physical quantities ¢ with respect to some characteristic
values (Edenstrasser 1995):

£ oo B Ec
t=— =" B== E=—_,
To I m, B’ v, B
. (4a)
v:%, V=LV, C=£5,
th a

where a refers to the particle species. Here v 4 18 the Alfvén velocity, 7, is the
maximum particle density, B is the maximum magnetic field, and v% is the
maximum thermal velocity, all values taken at a characteristic instant. Thus
the dimensionless Fokker—Planck equation reads

Lot PV VLol @ E+v Lm0, ()

where P(d,) is defined as P(8,) = 4, for the ICR and P(é,) = K6? for the SCR,
with K =v,/6,Q, = O(1). Furthermore, the following definitions are employed:

olg.) =sign(q).  a,=22= (w7, (5a)

The dimensionless factors I', in front of the collision operator, defined in
Edenstrasser (1995), are given by

==L, T,=-I1- (5b)

and in both cases are of order d,, Le.

I,=A,8,=0(1)4, (5¢)
(iii) In MHD theory, the following multiple-time-scale orderings are assumed
to hold:
(a) for the ICR,
Ty=Q7'<r=1, 87, <1,:=7,, with QYT =000) (6)
(b) for the SCR,
To=0 <7 =7, KTy =7, K1y =1,;, with QY/1,=0(8%). (7)

Here 7, 7, and 7,, are the Alfvén, MHD-collision and resistive diffusion times
respectively. The MHD collision time scale 7, defined in Edenstrasser (1995), is
given by the square root of the inverse collision rates, 7. = (y7'v;')i, and the
resistive diffusion time is given by the well-known standard expression 7,, =
#oL* /7, where 7 is the resistivity. Furthermore, each MHD time scale 1s assumed
to be situated between the corresponding kinetic ones, and 4 is defined as the
geometric mean of §; and 4,, i.e. §:= (8,8, Analogously to the kinetic theory,
the unique time variable ¢ is now expanded into three (four) formally



/pla466 Mar29 dhl—sps art AS 4 (X 3)

4 J. W. Edenstrasser and M. M. M. Kassab

independent time variables ¢, for the ICR (SCR) leading in a standardized form
to (Edenstrasser 1995)

0 0

t= anﬂt,,, == b 8" =

n=0 n

(8)

(iv) The Maxwell equations are _also brought into dimensionless form by
normalizing all physical quantities @ with respect to some characteristic values
(Edenstrasser 1995):

i=L 7=Z24 (0 ) [(un)h — umd),
J (Q;74)
(9a)
(un)d = aa‘fvfm dv,
q= % g=en, q=mn—n, n,= ffadv, (90)

where the superscript 4 indicates normalization with respect to the Alfvén
velocity by (9a). Thus the dimensionless Maxwell equations read
2
curlB=j+Q,r7, (E) B B =,
c) ot
(9¢c)

2
curlE =—-Q. 7 a—B, divE=Q.7, (< :
iTa iTaly q

A

Note that the fluid velocities, the current and the electric field are not
normalized to unity. Therefore, in the normalized form of the corresponding
expansions, the zeroth- and even the higher-order terms are assumed to be
either of order unity or zero.

In the expansion of the following step (v) the ratio v,/c is assumed to be of
order ¢ (6%) in the ICR (SCR). This assumption, which influences the expansions
of the displacement current and the charge distribution in the higher-order
equations, has to be checked and eventually modified for each special case
considered.

(v) The particle distribution function f, is expanded in the smallness
parameter d,, and both the self-consistent electric and magnetic fields in the
smallness parameter ¢ in the forms

fo= L & fun, E(B)= Y 8"E,(B,). (10)
n=0 n=0
Substitution from (3) and (10) into the dimensionless Fokker—Planck equation
(40) then yields a separate kinetic equation for each order of 0.

(vi) After taking the velocity moments for each order of the dimensionless
Fokker-Planck equation, we arrive at the corresponding two-fluid transport
equations, which, however, still have a species-dependent time and velocity
normalization and which still depend on all kinetic time variables.

(vii) Application of the expansions from (8) and (10) to the dimensionless
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Maxwell equations (9¢) yields for each order of & a separate set of dimensionless
Maxwell equations.

(viii) Since the two-fluid transport equations must be solved consistently
with the corresponding Maxwell equations, they have to be brought into a
uniquely normalized form following the same lines as in Edenstrasser (1995).

(ix) To avoid in the limit secular behaviour as {,(t,) - 0, certain terms have
to vanish. In order to get the transport equations on a slower time scale, one has
to perform the time averages over the preceding ones, for which one assumes
stationary or static equilibrium states, with (harmonic) fluctuations super-
imposed. Time-averaging over these fluctuations will then lead to turbulent
contributions in the transport equations on slower time scales. In particular, we
are thinking here (because of experimental evidence) of ideal MHD fluctuations.

To illustrate this, let us for example consider the case of two time scales ¢, and
t,, so that the physical quantities ¢ behave as

g = qolty,t2) +0 }. 1a(ty) exp (2mint,).
n=0
The equilibrium on the time scale ¢, is characterized by q,(t,) +8q,,(t,). If in the
next-order equation there appear terms quadratic in ¢, then time averaging
over ¢, will lead to turbulent contributions.

(x) The two-fluid transport equations are then brought into dimensional
form, and, with the usual simplifying assumptions (Edenstrasser 1995), one
finally arrives at the one-fluid transport equations.

3. Transport equations for an intermediately collisional plasma

For an intermediately collisional plasma (the ICR), it is assumed that the
Alfvén time and the MHD-collision time are of the same order of magnitude.
This, however, also implies the relations v;! < 7, < v;'and ;' < 7, < w;'. The
latter is satisfied for most plasmas, and is only violated for very low-4 plasmas
with £ < 4m,/m, (see equation (30) of Edenstrasser 1995). For the first of these
inequalities to be violated, an analogous relation must hold, of the form g <
dm,/m;F(T?/n), where F(T*/n) is smaller than unity in many cases of interest.
In contrast to the case of a weakly collisional plasma, there exist only three
distinct time scales, since the Alfvén and MHD-collision time scales are
combined into a single time scale. The time scales considered are thus the ion-
gyration, Alfvén (collision) and resistive diffusion ones. Examples of plasmas
satisfying these intermediate collisional requirements are interplanetary
plasmas, the earth’s ionospheric plasma and plasmas in early fusion devices
with temperatures well below 1 keV.

After performing expansions in the smallness parameters 6, and d respectively
for the particle distribution functions f, and the electromagnetic quantities, and
applying the multiple-time-scale derivative expansion scheme to the dimen-
sionless Fokker-Planck equation

Levov i+ LEosac, ()
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we obtain separate equations for each order in 4, :
af, of,

E 5%:+a(q,)(aan+vao). éfv":O, (12a)
o e 9.

oL %:-Fa{—a:‘{—v. Vf,o+0(¢,) (@, E,+vxBy). 3v1

A 9
+a-(qa) (al;) (aaEl+v X Bl) -';:,0 = AaCaO(fzzO’fﬂO)’ (12b)

o 0fu O @

2. Jab al a2 ¥

0z 6tu2+5tal +5t,o +v.Vf, +0(g,)(@,E,+vxB,). =

+U(Qz) (éf) (agE1+VXBl).%{-g’(qa)(_sé(aaEz_*_vaz). éf;.,() _ Aa Cal(fzoyfm)_
SZA (12y)

In this case 4, is the ratio of the particle Larmor radius or the plasma

macroscopic (hydromagnetic) length.
Comparing the dimensionless Fokker-Planck equations (12) with those in the
case of a weakly collisional plasma (the WCR), we see that

(i) the zeroth-order equation is the same for both cases;

(i) the first-order equation (12b) differs from that for the WCR in the presence
of the zeroth-order collision operator on the right-hand side;

(ili) in contrast to the WCR, the first-order equation (12b) describes not only
the time evolution of the particle distribution function on the transit time
scale, but also that on the collision time scale;

(iv) the second-order equation (12¢) now describes the time evolution of the
particle distribution function on the classical diffusion time scale.

3.1. The zeroth-order equations (the ion-gyration time scale)

In solving the zeroth-order equations, we are only interested in the stationary
case, i.e. in the solution in the asymptotic limit as ¢,,— 2. Since the zeroth-
order Fokker-Planck equation (12a) is identical to that of the WCR-case, the
stationary solution is expected to be the same as well, and may be defined as
follows (Edenstrasser 1995): in the limit as ¢, co,

foo— drifted Maxwellian, (13a)
Ey+u,xB, =0, (13b)
Jox By =0, (13¢)
where j, is defined by
Jo = Q74 [(un)f— (un)). (13d)

Thus in the limit as ¢, - o0, one obtains the force-free equilibria and Ohm’s law
of ideal MHD. It may be remarked that (12a) also allows other stationary
solutions. However, since having the zeroth-order distribution function i
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given by a drifted Maxwellian is to crucial in solving the hierarchy of equations,
we may postulate it a priori. That the leading-order distribution function
indeed has to be a drifted Maxwellian is shown in the appendix.

3.2. The first-order equations (the Alfvén or collision time scale)

Starting with the first-order Fokker—Planck equation (12b), and following the
derivation scheme outlined in §2, we first obtain the following dimensional two-
fluid equations:

F
%+v.(pa0 u,) =0, (14a)

0 1
Pao ot oo+ Poo(Ugg- V) Uyg + V0 —g, {81 [nal E, +Z (nua)y x Bo:!

+n¢06[E1+%(nu)ao xBlJ} —R,, (14b)

0
&[(%pao + %pao u::o) o+ V(%pmo +%pa0 u:O) u:xO]

= qa[(nu)ao‘aEI+8a(nu)a1'E0]+EcaO‘ (140)

By combining (145) and (14c), under the assumptions that the specific heat
ratio y = $ and u,, x B, ~ u,y x B, ~ u, X B, we obtain the transport equation
for the internal energy and the heat balance equation in the equivalent forms

d _ 0 _ . _
E(piopﬂ) = E(Piopoy)‘*'uo-v(l’iopo') = gponio: (14d)

d d 1 .
a(peop?) = E(peop0_7>+u0'v(pcop;y) = :%po—'szo*’JJo-v(peopo_y)y (146)
0

where the frictional force R, the collisional exchange £, and the particle
heating energy @, are defined by

R, =3d,m, 7, A, Q, V5V, = P Veo(Ugo—Uy0) = =Ry, (15)
3

E.o= Epeo Veo(Tﬂo_glo)'*'uio-Ruo: (16)

QtzO = Ecao_uaO'RzzO’ (17)

where p,, is the zeroth-order mass density of the electron fluid and v,, is the
zeroth-order collision rate of the electrons. In comparison with the two-fluid
transport equations for the weakly collisional case, it turns out that (14) differ
from those obtained on the Alfvén time scale on account of the collision terms
on the right-hand side as well as from those for the MHD-collision time scale
because of the absence of the turbulent terms and of the first-order heat flux
vector and pressure tensor. We further infer that in the case of an intermediately
collisional plasma one does not in general arrive at the two-fluid equations of
ideal MHD. This would be true, apart from the heat balance equation for the
electron fluid, if one assumes a slowly flowing plasma with [u;—u,| < v, and
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equal zeroth-order temperature profiles of electrons and ions. If one furthermore
assumes a static zeroth-order equilibrium then one also arrives at the heat
balance equation of ideal MHD for the electron fluid.

With the help of the usual simplifying assumptions (i.e. m,/m; < 1, (pu), =
(8,/8,)" (pu),,, and u,, = (8,/8,)i" u,,), we finally arrive at the one-fluid transport
equations, where ¢ is related to the Alfvén (collision) time scale:

%-FV.(,DO u,) =0, (18a)
0 1. .
Pog; o +po(1,- V) uo‘*‘vpo“é\;(h xB,+j,xB,) =0, (18b)

15} _ 1.
gt‘(Pop;Y)'*'uo-v(Popo_y) = —§P07Re0'(ueo_u'o)'*"gn_.]o-v(peop;y)- (18¢)
0

In the light of (18), it turns out the introduction of moderate collisions leads
to violation of plasma adiabaticity on the Alfvén time scale, this violation being
essentially due to the work done by the frictional forces. Note that the fluid
velocities are not normalized to unity, but with respect to the Alfvén velocity,
so that in the slowly flowing case the zeroth-order fluid velocities have to
vanish. Similarly, it can be shown that the first-order Maxwell’s equations are
written in the following dimensionless form:

curl B, =j, (19a)
divB, =0, (190)
cwrlE; = —Q;7, 8233, (19¢)
ot,
. EAY EAY
o=y [(;) <un>a—(§) (un)ﬁ], (194)
PAY EAY
¢ = (6_) "u‘(};) N, = 0. (19e)

For the normalizations used and for the definition of (un)4, the reader is
referred to Edenstrasser (1995). Equations (19) are similar to those of ideal
MHD. Thus it can be concluded that the time evolution of the electromagnetic
fields is still ideal in nature on the Alfvén (collision) time scale for the ICR.
Furthermore, it can be shown that the first-order Ohm’s law can be written in
the following dimensional form:

%jOXBl +j1XBo+lReo_vpeo_ (20)

1
E, =——(u,xB,4+u, xB
1 C( 0 i i ul 0)+ eneo 6 enzo

Again the first-order Ohm'’s law is different from that obtained for the WCR on
account, of the zeroth-order electron frictional force R,,. The criterion whether
or not the Hall term can be neglected is given by (27) in Edenstrasser (1995).
It should be remarked that the first-order Ohm’s law (20) is only needed to
eliminate the first-order electric field in the two-fluid equations. In (19¢) there
enters only the zeroth-order electric field subject to the IMHD Ohm’s law.
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(22¢)

With the usual s1mphfy1ng assumptions (i.e. m,/m, < 1, (pu), = (8,/6,)}"
(pu);, and u, = (8,/4,)"" u,,), we finally end up with the one-fluid transport

equations, where t is related to the resistive diffusion time:

3” +V.(ou) = (23a)

pgt +p(u.V)u+V. P—~]xB 0, (23b)

en en

. .
a(p,p-o=spﬂ[Q,—v.q,—(n.w(u ’)]+—’— Vip.p”),  (23¢)

d
E(Pip_’) =3p7[€—V.q,—(II.V)u]. (234d)

Thus the known plasma transport equations for the resistive diffusion time
scale (cf. e.g. Freidberg 1987) are obtained, with additional turbulent terms
arising from the time averaging over the preceding time scales. Furthermore,
note that the higher-order moments I, R,, q,, and £, are clearly defined in
terms of the zeroth- and first-order distribution functions f,, and f,,. If
analogously to f_,, f,, can also be expressed in terms of the fluid variables, as
expected, then the higher-order moments will also be functions of the fluid
variables, like the zeroth-order frictional forces and the zeroth-order collisional
energy exchange energy, R , and E,,, given in (15)}(17). Similarly, one can
show that the second-order Maxwell equations can be written in the
dimensionless form

curl B, =j,, (24a)

divB, =0, (24b)

curlE, = —Q,-TAé(aa? +68}t3 ) (24c)

== (3, TA[ (un) 12—— n);‘z], (24d)
6

For the normalization used and for the definition of (un)4, the reader is again
referred to Edenstrasser (1995). Furthermore, it may be shown that the second-

order Ohm’s law can be written in the dimensional form

IJoXB +4 Ji X B, 3+, % B,
en

|
E, =~ (0 X By + oy X B, +u, X By)

Me Oy €M, 0; en,, c

Mo O; €N,y

H&liReo_vpeo+iRe1_’V- P, 1<nel 1jox By +j, XB0>’ (25)

Again the second-order Ohm’s law is different from that obtained for the WCR
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on account of the first-order electron frictional force R,,. Note that this Ohm'’s
law also includes several turbulent contributions arising from the time
averaging of the MHD fluctuation spectra over the preceding time scales.

4. The transport equations for a high-collisional plasma
In this regime just as for a wealkly collisional plasma there exist four different
time scales, although here the Alfvén and the MHD-collision time scales are
interchanged. For a strongly collisional plasma (the SCR), it is assumed that the
MHD-collision time is much shorter than the Alfvén time (i.e. 7, < 7,). This
assumption, however, may only be violated for low-# plasmas satisfying the
relation,
1 : %

m,\! 258wl T

el - o 2
Fed (m,) Z%¢* In Al*n? =

Examples of plasmas satisfying the strong-collision requirement are inter-
galactic and interstellar plasmas.

Expanding the particle distribution functions /. and the electric (magnetic)
field in the smallness parameters 0, and ¢ respectively, together with the
application of the multiple-time-scale derivative expansion scheme to the
dimensionless Fokker—Planck equation

O—f“—&-é‘iv.Vf,+a(q1)(azE+va).G—f“=é‘aAaCa, (27)
ot cv
leads to a separate kinetic equation for each order of 6,:
af. 9.
0. a0 a0 _ '
6.‘1' atao_*_a.(Qa) (a’aE0+va0)‘ av O) (280)
0.0 | Of. of, 85\ of,
; 0 al al 4 0
Gt et o) @Bty x By Lot ot (¥) (0. 4 v By Lo

=4, Cao(fao:fpo): (280)

o, e , O, of, DAY
2. Jao al a2 22 9%
a2: 2, + o, + o, +Vv.Vf +0(g,)(a,E;+vxB,). v T o(q,) (6

%) ) 7]
X (a, E;+vx B1)-%+0’(q¢)a_ﬂ(aa E,+vxB,). éfzo =A, 0, faovfﬂl)» (28¢)

W, W O, OF of
3. —Ja0 al Ja2 a3 Of as
% o, o, o, TV Wato(@) (@ E+vxB). 22

iﬂ i 6f12 619 afal
+o(q,) (6) (a, E,+vx Bl)_W+U(qa)a—a(ar1E2+v % BZ)'W

+(§f)!(aaE3+VXB3)‘% =A,C, (28d)

In this case &, is the ratio of the particle mean free path or the plasma
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macroscopic (hydromagnetic) length. The second-order collision operator
Cos(fa0:Sp25fa1:f41) 18 derived analogously to the first-order one, C,;(f,0.f5n) in
(53) of Edenstrasser (1995).

In comparison with the weakly collisional plasma, the following differences

are apparent.
(i) The zeroth-order equation (28a) is the same for both cases.

(ii) The first-order equation (285), which describes the time evolution of the
distribution function on the collision time scale for a strongly collisional
plasma (SCR), differs from the corresponding equation for a weakly
collisional plasma on account of the disappearance of the free-flow term
v.Vf,. Thus it can be concluded that the spatial variation of the
distribution function takes place on a time scale slower than the MHD-
collision time scale. Furthermore, the zeroth-order collision operator

appears on the right-hand side.

(iii) The second-order equation (28¢), which describes the time evolution of the
particle distribution function on the transit time scale for the SCR is
different from the corresponding equation for the WCR on account of the
first-order collision operator on the right-hand side.

(iv) The third-order equation (28d), which describes the time evolution of the
particle distribution function on the classical diffusion time scale, is
different from the corresponding one for a weakly collisional plasma on
account of the second-order collision operator on the right-hand side.

After performing the velocity moments for each of the dimensionless
Fokker-Planck equations (28) and proceeding with the derivation scheme
outlined in §2, we obtain a separate set of plasma transport equations for each
order of 4.

4.1. The zeroth-order equations (the ion-gyration timescale)

In solving the zeroth-order equations, we are only interested in the stationary
case, i.e. In the solution for the asymptotic limit as ¢, — c0. Since the zeroth-
order Fokker—Planck equation (12a) is identical to that obtained for the WCR,
the stationary solution is also epected to be the same, namely the force-free field
equilibria and the ideal MHD Ohm’s law (cf. (13)). Thus it can be concluded
that the lowest-order gyro-motion is unperturbed by collisions, provided that
the particle collision frequency v, is much smaller than the gyro-frequency Q,
(Hinton & Hazeltine 1976).

4.2. The first-order transport equations (the MHD-Collision time scale)
Starting with the first-order Fokker—Planck equation (285), and following the
general derivation scheme, we first obtain the following dimensional two-fluid
equations:

apao _ O

ot : (29a)

d 1 1
Pao ot U0~ ¢ {aa [nal E, +z (nu),, x Bo:, + 7, 6[}31 +; (nu),, X Bl]} =R,
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(290)

0
( %Pao +%pa0 uio) = qa[(nu)ao . 6El + 8a(nu)a1 o EO] +Eca0‘ (29 C)

at
By combining (29b) and (29¢), and assuming that the specific heat ratio y =3
e

and u, x B, = u;; x B, = u, x B;,, we obtain the transport equation for th
internal energy and the heat balance equation in the equivalent forms

0
_ai(PmpE’) = 3067 Qs0» (294)

d
?(peop(;l) = 307,05 (29e)

where the frictional force R,,, the collisional energy exchange £, and the
particle heating term Q,, are given by (15), (16) and (17) respectively. It is
worth noting that, in contrast to the WCR, the above two-fluid equations do
not contain turbulent contributions. Furthermore, because of the absence of the
convective terms, one concludes that the space dependence of the plasma
parameters n,, u,, and 7, is governed by slower evolution processes.

With the usual simplifying assumptions (i.e. m,/m; < 1, (pu), = (6,/8,)*"
(pu);n, and u, = (8;/4,)1"u,,), we finally arrive at the one-fluid transport
equations, where ¢ is related to the MHD-collision time:

% =0, (30a)
0 1 3
poauo"az(hXBo‘*‘JoXBﬂ =0, (300)
d .
éz(pop;y) =—300" Ry (10— y). (30¢)

Thus, on the MHD collision time scale, we have, apart from the heat balance
equation, arrived at the ideal MHD equations. For a slowly flowing plasma with
Uy < vy, the right-hand side of (30¢) vanishes. Similarly, one can show that the
first-order Maxwell equations can be written in the following dimensionless
form:

curl B, =j,, (31a)
divB, =0, (31b)
0B,
— =0, (31¢)
ot,
. 8.\ S\
=7, [(5_') (un)ﬁ—(a—f) (un)f{', (31d)

1

EAY 8,
9= (6_—) nu_(g) Mgy = 0. (3Le)

1
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Moreover, the first-order Ohm’s law can be written in the following dimensional

form:
+15,2+1J0XB1+J1XBO. (32)

1
E, = —2(u, X B
1 c(uox 1Hu; xBy) Jen, ¢ en,

Again the first-order Ohm'’s law is different from that obtained for the SCR on
account of the zeroth-order electron frictional force R,, as well as the absence
of the zeroth-order electron pressure gradient Vp,,.

4.3. The second-order transport equations (the Alfven time scale)
Following the general scheme of derivation outlined in §2, we analogously
arrive at the following second-order two-fluid transport equations in dimen-
sional form:

95—;9+v- (P)gg =0, (33a)

0 1
3 (pu)yo+ V. (pu ® u),,+Vp,,—q, 02 {[naZ E, +E {(nu),y> x Bo]

+(3) (raBrr to xB) + 2 n Byt o x By} = 0, Rut, (330

a

d 85\t
520+ V(4 +10%) o= g B )0 Bt () C(nu B

)

where ¢ is now related to the Alfvén time. Furthermore, the first-order frictional
fore R, and the first-order collisional energy exchange E,_, are given by (21f)
and (21g) respectively. Note that (33) contain non-vanishing time-averaged
quadratic terms, which are essentially turbulent contributions. By adding the
zeroth- and first-order equations to (33) and by taking into account our
expansion scheme of the physical quantities up to the second order, we formally
obtain the following two-fluid transport equations:

+8—ﬂ(nu)ao.E2} =4, E,,, (33c)

a

%+\7.(pu)‘x =0, (34a)
ot
Ju, 1
Pa”a—t'*‘Pa(Ua-V)Ua'*VP,—qa naE+z(nu)z xB| =R, (34b)
a 3 3 4 2 5 1 2
a(ipa-*'fpua) +V.[(3p,+3pud)u]—g,(nu), . E=E_. (34c¢)

In comparison with the two-fluid transport equations for the weakly collisional
case, it turns out that (33) differ from those obtained on the Alfvén time scale
on account of the first-order collision terms on the right-hand side and the
turbulent terms, as well as from those obtained for the MHD-collision time scale
on account of the first-order collision terms and the absene of the first-order
pressure tensor and the first-order heat flux. It can further be inferred that in
the case of a strongly collisional plasma one does not in general arrive at the two-
fluid equations of ideal MHD.



