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Abstract

This paper is devoted to clarify the discrepancy between the experimentally
found, rather wide and theoretically predicted, very restricted range of
validity of the ideal MHD (IMHD) equations. In the first part of the paper,
the standard derivation for a collision-dominated plasma is critically
reviewed, leading to even stronger limitations, than those known in the
literature. In the second part of the paper, the validity range of the IMHD
equations on the Alfvén timescale is, based on a multiple timescale
approach, analysed for different collisional regimes. It turns out that the
IMHD equations are unrestricted valid for a (strongly magnetized) weak-
collisional plasma. For an intermediate- and high-collisional plasma, the
adiabaticity is violated essentially due to the work done by the friction
forces. However, for both collisional regimes the full set of IMHD equa-
tions is obtained for the slow-flowing case, i.e., for plasmas with a magnetic
Mach number of the relative velocity |#; — u, |/v, < 1.

1. Introduction

The development of magnetic fusion as a source of elec-
tricity requires the solution of a number of challenging
physics as well as technological problems. The physics prob-
lems are traditionally separated into three basic areas: equi-
librium and stability, heating, and transport. The goal is the
discovery of magnetic geometries which are capable of
stably confining a sufficiently high density plasma at a suffi-
ciently high temperature for a sufficiently long time to
produce net thermonuclear power.

Ideal magnetohydrodynamics (IMHD) is the most basic
single-fluid model for determining the macroscopic equi-
librium and stability properties of a magnetized plasma. The
model describes how magnetic, inertial, and pressure forces
interact within an ideal, perfectly conducting plasma in an
arbitrary magnetic geometry. There is a general consensus
that any configuration of a magnetically confined fusion
plasma must satisfy the equilibrium and stability limits set
by IMHD. If not, catastrophic termination of the plasma on
a very short timescale (compared to experimental times) is
the usual consequence [1]. Thus the role of IMHD in mag-
netic fusion is to determine the magnetic geometry which
possesses attractive equilibrium and stability properties for
fusion reactors.

In the literature (cf. e.g. Refs [1]-[4]), it is claimed that
the basic requirement for the validity of the IMHD is that
both the electrons and ions are collision dominated.
However, this condition cannot be satisfied for plasmas of
fusion interest. It is worth pointing out that other models
also exist attempting to improve the reliability of IMHD.

* On leave from the Dept. of Eng. Physics, Cairo University (Fayoum
branch), Egypt.

Physica Scripta 53

One such model is the guiding centre fluid model (the
double adiabatic theory) in which the pressure is allowed to
be anisotropic and its validity conditions should be ques-
tioned in the collisionless regime where the behaviour is not
fluid-like along the field lines. The second model is the
guiding centre plasma model. Here the perpendicular
motion is fluid-like, while a one dimensional kinetic equa-
tion governs the parallel motion. These models, however,
are in general far more difficult to handle than IMHD. The
third model is the collisionless MHD model which rep-
resents the simplifying limit of the latter one for incompress-
ible motions [1].

Contrary to the statements to be found in the literature of
the last decades (cf e.g. Refs [1]-[4]), in Ref. [5] the IMHD
equations have been obtained, on the basis of a multiple
timescale approach, for the Alfvén timescale for the case of a
high-temperature, weak-collisional fusion plasma (WCR), i.e.
for the case where the particle transit time w, ' is much
shorter than the particle collision time v, !. This result, in
fact, paved the way for further work on the validity range of
the IMHD model. As a natural extension of this work, the
plasma transport equations have been derived for the two
other limiting regimes, namely, for the intermediate-
collisional (ICR) (ie. w; ' ~ v, '), and the high-collisional
(HCR) (ie. w; ' > v; ') ones [6]. The main object of this
paper is to investigate the conditions under which the trans-
port equations on the Alfvén timescale become for different
collisional regimes identical to those of IMHD.

This paper is organized according to the following
scheme. In Section 2, the standard validity conditions are
critically reviewed. In Section 3, the validity conditions
of IMHD are investigated for the weak- (WCR), the
intermediate- (ICR), and the high-collisional (HCR) regimes.
In Section 4, a brief summary and the relevant conclusions
are presented.

2. Review of the standard IMHD validity conditions

In a huge amount of literature (cf. e.g. Refs [1]-[4]), it is
stated that the basic requirement for the validity of the
IMHD model is that both the electrons and ions are
collision-dominated. This, however, would imply that the
IMHD model is not applicable for the case of a high-
temperature, weak-collisional fusion plasma. But on the
other hand, there is an overwhelming experimental evidence
that the equilibrium and gross stability behaviour of fusion
plasmas is governed by the IMHD equations. This is consis-
tent with the results of a multiple timescale expansion
scheme applied to a weak-collisional fusion plasma [5],
where on the Alfvén timescale the IMHD equations have
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been obtained. This fact has motivated us to analyse the
standard IMHD validity conditions and compare them with
the results obtained from the multiple timescale approach.

Starting from the standard two-fluid plasma transport
equations (cf, e.g. Refs [1]-[4]), one arrives under some
simplifying assumptions at the single-fluid equations in
dimensional form:

fa_/r)+v-(pu)=0, W
ou .
P APVt Vp—jx B= -V T, (1)
3 d . 5j J
= e p Y= ==V ——"-
5075 {Qﬁ“ V-, VP
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en
3 d,
P 3 Pl = {0 - TVe—V - g}, ad

where the total pressure tensor P is defined by P = pl
+ 1 =(p. + p)l + (I, + II). Furthermore, the other
higher order moments R,, ¢,, and Q, (« refers to particle
species) represent the friction force, the particle heat flux
vector and the collisional energy exchange, respectively. By
employing the momentum equations for both the electrons
and ions, one further obtains the following generalized
Ohm’s law (cf., Refs [3] and [4]):
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Under certain conditions the terms on the r.h.s. of egs
(1b—d) and of Ohm’s law (2) may be neglected, so that one
ends up with the IMHD equations. In order to find out the
necessary conditions under which the r.h.s.-terms can be
neglected, we first bring these equations into a dimension-
less form. The dimensionless physical quantities S are
obtained by normalizing the physical quantities S with
respect to some characteristic values, e.g.,
I=t/tp, 8 =ufvy, T,= 2T /m v?2,
E_ = E/UA Bmax ) n= n/nmax’ (33)

J=Jlimaxs Wit jogy = (U] = e[n|t; — | 1nay,  (3b)

(ui - ue) = ("i - "c)/U::ax &= (ui - ue)/ ; U —u, |max! (30)
- l

V:lpV:l—‘:V,+lpvp, (3d)
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where Ui, : = |u; — U, |y Tefers to the maximum value of

max *

the relative velocity (that is, e.g., for the case of a fusion
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plasma usually the measured value at the magnetic axis),
and [(l) stands for the characteristic length along
(perpendicular to) the magnetic field lines. Furthermore, 7, ,
Ua, Vs Mmay»> and B, are maximum values of the Alfvén
time, the Alfvén velocity, the particle thermal velocity, the
particle density, and the magnetic field, respectively, all
values are taken at a characteristic instant of the discharge.
Furthermore, Q... and v,,,,, stand for the calculated value
of the Larmor and the particle collision frequency at the
same characteristic instant. The higher order moments II,,
R,, g, and Q, are still undefined and have to be expressed
by some approximations by the single fluid MHD variables.
This was done by Braginskii in his famous work [7] under
the assumption of a strongly collisional and strongly mag-
netized plasma. The condition for collision dominance to be
valid can be written in the form [1],

1

_ RS < =1 _
w, v, =03v a1, ie vl<o]l, )

where w, is the transit frequency of species « and a is the
hydromagnetic length of the plasma (the plasma radius).
Furthermore, a strongly magnetized plasma is defined by
the condition

0, = (w,/Q) = (r/a) < 1, Q)

where r,, is the Larmor radius of species a. Now we replace
the higher order moments II,, R,, ¢,, and Q, by the
approximating expressions given by Braginskii [7] for the
case of a strongly magnetized plasma (ie., Q ;' > 1),
perform the normalization procedure, omit for convenience
the overbar by the dimensionless quantities, and finally
obtain:

2.1. The dimensionless momentum equation

0
P a—':+p(u * V)u + a(AVp, + Vp) — boj x B
=—coV -1, —d,V - IL, ©)

where the dimensionless factors (i.e., ay, by, ... etc.) in front

of the dimensionless quantities are given by
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Tc me -
A=(t,Q)> 1, A= l:?i]max, K= E’ g = [KkA4 3]1/28“
fo= A% and Awm e ®)
Va

Physica Scripta 53




716  J. W. Edenstrasser and M. M. M. Kassab
have been employed, where w, and Q, are the transit fre-
quency and the gyro-frequency, respectively.

In order that the terms on the r.h.s. can be neglected, we
have to require that the coefficients of the anisotropic part
of the pressure tensor on the r.h.s. are much smaller than the
coefficient by the isotropic part on the Lh.s., ie. dy < a,

(av) P <1, or v, ©)

Thus we have arrived at the rather stringent requirement
that the ion-ion collision time is much shorter than the
Alfvén time. On account of the relation w; ! <1, < ;!
(cf.,, eq. (30) of Ref. [5]) this condition is consistent with the
high-collisionality requirement of eq. (4) v;! < w;! and
with the result obtained in the standard derivation (cf, e.g.,
Ref. [1]-[3]), which reads v; * < ;1.

2.2. The dimensionless electron heat-balance equation

3 d,
3P 3 PP = vl — w)? — bipeve

x (T, — A7'T) — ¢,V * n, T(u; — uy),
T: B
—d,V, T b —w) + €V, et
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(10)

where the dimensionless factors (i.e., a;, by, ..
of the dimensionless quantities, are given by

. etc.) in front
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A

Furthermore, b is a unit vector along the field lines. The
subscript t (p) stands for the component which is tangential
(perpendicular) to the magnetic field lines.

Note, that on the r.h.s. we have replaced the Alfvén veloc-
ity normalization by the maximum relative velocity, so that
all field variables are normalized to unity. The resulting
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ratio A= (U, /v,), however, is not taken into account in
the standard derivation of the IMHD equations, where it is
assumed that the fluid velocity would be of the order of the
ion thermal velocity [1], ie, u~ vi,. This assumption,
however, is not justified, since from an experimental point of
view it follows for example A = O(1) for a tokamak and
A = 0(9) for a stellarator. The ratio A may be denoted as
the magnetic Mach number of the relative velocity.

Taking into account the requirement of a strongly mag-
netized, collision-dominated plasma, expressed by egs (4)
and (5), it turns out that, under the assumption that [1,/],]
and A are of order unity, the following conditions

Uie

A= [ﬂ] <1, (12a)
Ua

e A=x(tyv,) €1, (12b)

must be satisfied simultaneously in order to neglect all the
r.hs.-terms of eq. (11). From eq. (9), it turns out that eq.
(12b) leads to the further very restricting requirement,

1< (14 ) < (my/m )17, (13)

Now let us consider the case where the conditions (12) are
not fulfilled. If the fluid velocities are in the leading order
parallel to the magnetic field and, furthermore, if also the
electron pressure is in the leading order a flux function (cf.
Ref. [8]), then the terms by the coefficients ¢, and d; will be
negligible. The electron heat-balance equation then reads in
dimensional form:

3 .d
3P g (PPt = povilu. — w) — % Peve

i

5j J
T, — T+ =% s W — = Vi,
2 (T g VE—=oRy,. (1)

2.3. The dimensionless ion heat-balance equation

3 d, _ N n?T,
EPyd_t{P pi} = ayp vl T, — 4 17;)+bzvz'EV1Ti
T
eV i mV
;T

+d,V, b X V, T, — e, T1;:Vu, (15)
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where the dimensionless factors (i.e., a,, b,, ... etc.) in front
of the dimensionless quantities, are given by

ay = e A~ [kA" 3]V A, (16a)
l 2

by =¢g E?A[—‘] s (16b)
IF

¢, =& EA, (16c)

dy = &8 A, (16d)

e, =[gA]" L (16e)

Similarly, it may be easily shown that besides the conditions
(5) and (9) also both of the above conditions eqs (12-13)
must be satisfied, in order that the r.h.s.-terms of eq. (15) can
be neglected.
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If the conditions of egs (12) are not fulfilled, then the ion-
heat balance equation is written in dimensional form:

2 7 = T~ T (17

2.4. The dimensionless Ohm’s Law

nE +u x B)=a3ba—]£+b3V . {n<u®£)+n<fl®u)}

—C3n £®£>+d3Vpi+e3V'l'Ii

gaV - Ik — (18)

where the dimensionless factors (i.e., as, by, ...
of the dimensionless quantities, are given by,

— 3 V= hyj x B +i3R.,
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It may be immediately be seen that all the terms on the
r.hs. of eq. (18) can be neglected, if — just like in the case of
the heat balance equations — besides eqs (5) and (9) also
eqs (12) are satisfied.

If the slow-flow condition (12a) is not fulfilled then Ohm’s
law reads in dimensionless form:

nWE +ux B)y=Aj x B. (20)

If the condition (12a) is not satisfied, thus in conclusion we
arrive at the following set of single-fluid transport equations
in dimensional form:

ou
pal+V (pu) = 0, (21a)
ou .
pa—Ier(u-V)u-i-Vp—]xB:O, (21b)
3 ,d 3 .7 _
= —u =gt L gy 21
P PP =R )+ {p7p}  (210)

E+uxB=LxB (21d)
en
Summarizing, the following assumptions and conditions
have been employed in the derivation of this set of equa-
tions:

7

(a) high-collisionality: v; ! < @, ! or almost equivalently,
Vil <y,

(b) strong magnetic field: 6, = ¢, ¢, = 0,/Q, < 1,

(c) small inverse electron Hall coefficient: ¢, = v,/Q, < 1.
In order that the r.h.s. of eqs (21c—d) can be neglected, i.e.
that one arrives at the single-fluid IMHD equations, one
has further to require the slow-flow condition (12a), A <1,
where A is the magnetic Mach number of the relative veloc-
ity. The further restricting condition (12b), or equivalently
the second inequality of eq. (13), does not influence the
single-fluid IMHD equations, but would be required in
order to arrive at the two-fluid IMHD equations.

On account of the required small inverse electron Hall
coefficient v./Q,, the coefficient iy in eq. (18) can be
neglected, so that no additional requirements concerning the
resistivity appear.

Based on our dimensionless treatment, it is now clear that
the high-collisionality condition is no longer the key condi-
tion for the validity of the IMHD equations since also the
above conditions (b) and (c) are equally important. As the
actual condition, however, appears the slow-flow condition
A<l

The above derivation was based on the classical transport
equations, derived for a collision-dominated plasma by Bra-
ginskii [7] and therefore no statements can be extrapolated
concerning the validity range of the IMHD equations for
other collisional regimes. For this reason, we believe that
the old argumentation concerning the relation between the
validity range of the IMHD model and fusion plasmas,
which was drawn by Freidberg [1], is not an adequate one.
Our belief has been supported by the results obtained within
the frame of the multiple timescale approach [5].

These conclusions, together with the results obtained in
[6] have motivated us to investigate the validity conditions
of the IMHD, on the basis of the multiple timescale
approach, for two different collisional regimes, namely for
the intermediate- and the high-collisional regimes.

3. The ideal MHD equations in the frame of the multiple
timescale approach

From the experimental evidence it follows that the overall
equilibrium and stability behaviour of a strongly magne-
tized plasma is essentially governed by the stability limits set
by the IMHD equations. If these stability requirements are
not satisfied, a violent termination of the discharge on a
very short timescale — usually in the order of the Alfvén time
— will be the consequence.

Thus in the following subsections we investigate the
requirements under which the plasma transport equations
become for different collisional regimes on the Alfvén time-
scale identical to those of IMHD, where the relevant equa-
tions are taken over from the general treatment of the
multiple timescale expansion schemes of Refs [5] and [6].

For an easier reading it is remarked that the lower
indices, appearing in the following notations denote the
order in the multiple timescale expansions of Refs [5] and
[6]. This means that all physical quantities g are expanded

in the form
Zéqntla lz; 3) 6 vV e 1’ (22)

q(ty, tp, t3) =
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where the t,’s have — depending on the collisional regime
considered — different meanings.

3.1. The validity conditions of the IMHD equations for the
case of a Weak-Collsional Plasma (WCR): w; ' < v, !

In this case, we have according to Ref. [5] the timescale
ordering 7, < 7, < 7,4, Where 7,, 7., and 7,4 denote the
Alfvén, MHD-collision, and resistive diffusion timescales,
respectively. Since we are here only interested on processes
occurring on the Alfvén timescale, we have to put t; =
ta:=1t and disregard the dependence on the slower time-
scales t, and ¢5 of eq. (22).

From eqs (22) and (23) in Ref. [5], we infer that a weakly
collisional plasma is on the Alfvén timescale subject to the
IMHD equations, both in the single-fluid as well as in the
two-fluid description.

The corresponding first-order Ohm’s law of eq. (24) in
Ref. [5], which is not that of ideal MHD, is only needed in
the two-fluid description to express the first-order electric
field by other quantities.

In the single-fluid description, however, due to the applied
multiple timescale derivative expansion scheme one ends up
with the ideal equations in their dimensional form

%+V-(pu)0=0,

= (23a)

Ou o, .
POT:+P0("0'V)"0+VP0“Z(.IOX31 +Jji x By) =0,

(23b)

3 d,  _
5 Pbg; tho o} =0, (23¢)

1 0B,
1E,= — - —, 23d
curl E, P (23d)
|

E, + - ¥ X B, =0, (23e)
Jo = curl By, (23f)
do =i — Mo = 0. (23g)

The appearance of the expansion parameter 6 by the
Lorentz-force is due to the fact that the leading order mag-
netic field has, according to Ref. [5], to be a force-free one,
ie., jo X By = 0. This fact can immediately be seen, if the
Lorentz-force is expanded according to eq. (22), leading to
Jx B=jox By +d(jo X By +j; x Bp).

If one disregards the force-free requirement and further-
more drops the zeroth-order subscripts then eqs (23) become
identical to the standard form of the ideal MHD equations.
In conclusion we thus arrive at the statement that a WCR-
plasma is on the Alfvén timescale governed by the IMHD
equations.

It may be remarked that on the intermediate MHD-
collision timescale there one ends up with a set of non-ideal
transport equations, as documented by eqgs (52) in Ref. [5].

3.2. The validity conditions of the IMHD equations for the
case of an Intermediate-Collisional (ICR) Plasma:
w; vt

According to Ref. [6], we have in this case to consider the
timescale ordering 7, = 7, < 7,4. Thus, in eq. (22) we have
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to put t; =t, =t,=1t The dependence on slower time-
scales is not considered.

Following the derivation scheme outlined in Ref. [6], it
turns out that the plasma transport equations on the Alfvén
timescale are written in the following dimensional form:

8
T2V (pog) =0, (242)
)
Po E uy + poly * V)ug + Vp,
—6(1/c)jy x By +jo X By) =0, (24b)

0 _ el
% {Popo} +uo* V{popo '}

= —3po "R * (o — i) + (1/eng)jo * Vi{peo o 7} (240)

In the light of eqs (24), it turns out that the introduction
of moderate collisions leads on the Alfvén timescale to the
violation of the plasma adiabaticity, where this violation is
essentially due to the work done by the friction forces. Note
that, if we consider the expansion for the Lorentz force from
above, then this set of equations become identical to eqs
(21), derived by the standard theory for a high-collisional
plasma.

Similarly, in Ref. [6] it is shown that the first-order
Maxwell’s equations (on the Alfvén timescale) are written in
the following dimensionless form:

curl B, =j,, (25a)
div B, =0, (25b)
0B,
curl E; = curl (B, X ug) = — (Q;749) T (25¢)
1
) 8.2 5.2
Ji = TA){[E;] (m‘)ﬁ e l}‘i] (”")1:1 },
(), = nouly + nyuly, (25d)
6i 1/2 69 1/2
4= |:5-e:| Ny — I:Ej| ne =0, (25¢)

where ¢, in eqs (25) is related to Alfvén time. The upper
index ( )* in eq. (25d) denotes normalization with respect to
the Alfvén velocity. From the above equations we infer that
the introduction of moderate collisions leaves the ideal
behaviour of the magnetic field lines on the Alfvén timescale
unchanged. The behaviour of the plasma itself, however, is
nonideal, due to the violation of the adiabatic nature of the
energy-balance eq. (24c). Thus the validity of the IMHD
equations requires that the rh.s. of eq. (24c) can be
neglected.

From eq. (24c), we infer that this is the case if the condi-
tion (12b) is satisfied, ie., jlenvy, = O() or equivalently
(u; — u.)/vpy ~ O(0). This further implies for the validity of
the IMHD equations in the case of an intermediate-
collisional plasma the requirement:

Jjo=0 and wu—u,=0. (26)
3.3. The validity conditions of the IMHD equations for the
case of a High-collisional (HCR) Plasma: v; ' < w;

In this case, the MHD-collision and Alfvén timescales are

interchanged, so that we have to consider the timescale ord-
ering 7, < 74 < T4. This implies that in eq. (22) we have to
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put t; = 1. and t, = 74. In order to get the transport equa-
tions on the Alfvén timescale, one first has to perform the
time-average over the shorter timescale t; and can then put
t, = 15 == t. The dependence on ¢, again is not considered.

In Ref. [6] it is shown that the application of the multiple
timescale approach to a suitable high-collisional plasma
leads to a set of transport equations, which are formally
identical to those of eqs (21), arising from the standard deri-
vation. Here, however, one has to be aware of the following
definitations and expansions:

d 0

T +uy+ V (tis related to Alfvén time), (27a)

(27b)

j(B) = 5'7.,,(B,.)1 P, D, = Pos Do> Up>»

n

R, (u,—u) =R (g — ;) + Ry * (0 — o).

M

1]

0
(27¢)

In this case, just as in the case of the standard derivation of
egs (21), it durns out that the violation of the plasma adia-
baticity is mainly due to the first-order work done by the
friction forces.

For completeness, it may be further shown (cf. Ref. [6])
that the dimensionless Maxwell’s equations read

(282)
(28b)

curl B, =j,,
div B, =0,
0B, 0B,

curl E, = curl (B, x up) = — (74 52){5{- + ?}, (28¢)
2 1

P m{[g—j(un)a — B—j{unr:z}, (284)
0. )
gz= |:6_::|”i2 - [g::l"ez =0, (28e)

where t, and t, are related to both the MHD-collision and
Alfvén timescale respectively. To get rid of the f;-
dependence of the MHD-collision timescale, we may assume
a harmonic dependence and perform the time averaging.
Equations (28) show that despite of the high-collisionality
the magnetic field lines preserve their ideal behaviour on the
Alfvén timescale. From eqs (27) together with the energy-
balance equation (21c) we infer that the slow-flow condition
(12a) must be satisfied in order that the IMHD equations
are valid for the case of the high-collisional regime (HCR).

4. Summary and conclusions

In Section 2, the standard derivation of the IMHD equa-
tions for a collision-dominated plasma (with v; * < 7,) has
been critically reviewed, where the slow-flow condition A =
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|u, —u,|/vy <1 turns out to be essential in order that the
adiabaticity is conserved.

Based on a multiple timescale approach of [5] and Ref.
[6], in Section 3 the validity of the IMHD equations on the
Alfvén timescale is investigated for different collisional
regimes. It turns out, that the continuity and momentum
equations of IMHD are valid independently from the col-
lisional regime considered.

Furthermore, it turns out that also the ideal behaviour of
the magnetic field lines remains unrestricted valid. In the
ICR- and HCR-regime, however, the adiabaticity is vio-
lated, essentially due to the work done by the friction forces,
arising from the leading-order relative-flow along the field
lines. In order that the adiabaticity is conserved, the slow-
flow condition |u; — u,|/vy ~ O(6) has to be fulfilled. In
terms of the applied expansion, this implies (u;p — u.0) = 0
and j, = 0.

In the HCR-regime the only difference to the standard
derivation arises in the disappearance of the Hall-term in
Ohm’s law, when the slow-flow condition is not satisfied.
This is due to the fact that the magnetic field is in leading-
order force-free, i.e.,j, X By = 0.

The outcome of this paper, namely that the momentum
equation and Ohm’s law of the IMHD are valid indepen-
dently from the collisional regime considered, is consistent
with the experimental results, where it is found that the
equilibrium and stability behaviour of a strongly magne-
tized plasma is over a wide range of parameters governed by
the IMHD equations.
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