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Abstract

In this thesis and through a quantitative analysis, the cubic and quintic nonlinear
Schrodinger equations had been solved approximately using two independent
techniques, the Perturbation technique and the Picard approximation technique.
At first, a lemma proved that the solution exists as a power series in the
perturbation parameter (€). Then, the approximate solution was obtained up to
the third order using both techniques according to the computation limits in
Mathematica 5.1 code. Both homogeneous and non-homogeneous cases had
been studied showing the effect of the complex nonhomogenity and under the
effect of complex initial conditions. Comparisons were made under the results of
the two techniques for a lot of case studies which showed semi-identical results.
The solution was obtained under finite time interval T. Then, a T-study was
obtained under increasing T values to study the stability of the solution which
showed that instability has high chances, when the parameter of dissipation (y)
vanishes.

We used a computer with core 2Duo processor 3 GHz, 3 GB RAM to perform all
calculations for both Cubic (homogeneous and non-homogeneous) and Quintic
Nonlinear Schrodinger Equations.
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Chapter 1 Schrodinger Equations, Types and Applications

1.0 Introduction

The Schrodinger Wave Equation, developed by the Austrian theoretical

physicist Erwin Schrodinger in 1925, defines the quantum mechanical
characteristics of the electrons orbiting the nucleus and can be used to define the
positions of the protons and neutrons within the “gravitational potential well of
attraction” of the nucleus. The Schrodinger Wave Equation assumes the particle
and wave duality characteristic of the electrons, protons, and neutrons.
It defines the total energy of the system analyzed. In words, the Schrodinger wave
equation states that the kinetic energy (energy of motion of the particle) plus the
potential energy (stored energy within the particle) equals the total energy of the
particle. The Schrodinger wave Equation, therefore, provides a quantum
mechanical approach to evaluate the total energy of the proton or neutron in the
nucleus or the electron orbiting the nucleus. It is a spatial dependent and time
dependent differential equations.

Analytical solutions of the time-independent Schrodinger equation can be
obtained for a variety of relatively simple conditions. These solutions provide
insight into the nature of quantum phenomena and sometimes provide a
reasonable approximation of the behavior of more complex systems (e.g., in
statistical mechanics, molecular vibrations are often approximated as harmonic
oscillators). Many of the more common analytical solutions include, the free
particle, the particle in a box, the finite potential well, the Delta function
potential, the particle in a ring, the particle in a spherically symmetric potential,
the quantum harmonic oscillator, the hydrogen atom or hydrogen-like atom, the
ring wave guide and the particle in a one-dimensional lattice (periodic potential).

The one dimensional nonlinear Schrodinger equation (NLS) emerges as a
first order model in a variety of fields — from high intensity laser beam
propagation to Bose-Einstein condensation to water waves theory. The NLS is
completely integrable, hence solvable, in one dimension on the infinite line or
with periodic boundary conditions. The realization that the integrable structure
might not persist under small perturbations led to the investigation of the forced
and damped NLS [Cazenave and Lions, 1982].



1.1 Nonlinear Schrodinger Systems: Continuous and discrete

The Nonlinear Schrodinger (NLS) equation is a prototypical dispersive
nonlinear partial differential equation (PDE) that has been derived in many areas
of physics and analyzed mathematically for over 40 years. Historically the essence
of NLS equations can be found in the early work of Ginzburg and Landau
[Ginzburg and Landau, 1950] and Ginzburg [Ginzburg, 1956] in their study of the
macroscopic theory of superconductivity, and also of Ginzburg and Pitaevskii
[Ginzburg and Pitaevskii, 1958] who subsequently investigated the theory of
superfluidity. Nonetheless, it was not until the works of Chiao et al [Chiao, 1964]
and Talanov [Talanov, 1964] that the wider physical importance of NLS equation
became evident, especially in connection with the phenomenon of self-focusing
and the conditions under which an electromagnetic beam can propagate without
spreading in nonlinear media. In the general situation, an optical beam in a
dielectric broadens due to diffraction. However, in materials whose dielectric
constant increases with the field intensity, the critical angle for internal reflection
at the beam's boundary can become greater than the angular divergence due to
diffraction and as a consequence the beam does not spread and can, in some
situations, continue to focus into extremely high intensity spots.

Starting from the electromagnetic wave equation in the presence of
nonlinearities and assuming a linearly polarized wave propagating along the z -
axis, after a suitable rescaling of the dependent and independent variables, one
can derive for the propagation of the electromagnetic field the NLS equation in
standard non-dimensional form

0,0+ DAY+ 2P| %Y =0 (1.1)

Where 1 is proportional to the slowly varying complex envelope of the
electromagnetic field, z is the propagation variable, and A, denotes the Laplacian
with respect to the transverse coordinates.

Beside the fact that NLS systems have direct applications in many physical
problems, the importance of the NLS equation is also due to its universal
character [Benney and Newell, 1967]. Generally speaking, most weakly nonlinear,
dispersive, energy-preserving systems give rise, in an appropriate limit, to the NLS

2



equation. Specifically, the NLS equation provides a "canonical" description for the
envelope dynamics of a quasi-monochromatic plane wave propagating in a
weakly nonlinear dispersive medium when dissipation can be neglected.

Mathematically, the NLS equation attains broad significance since, in one
transverse dimension; it is integrable via the Inverse Scattering Transform (IST)
which is a nonlinear Fourier Transform. It admits multisoliton solutions, it has an
infinite number of conserved quantities, and it possesses many other interesting
properties.

There has been a vast amount of literature involving the NLS equation over
the years, but recently there has been additional interest, mainly due to the
developments in nonlinear optics and soft-condensed matter physics. In the
optical context, the experimental developments involving localized pulses in
arrays of coupled optical waveguides [Eisenberg, 1998] have drawn attention to
discrete NLS models (where the fields are substituted by appropriate finite
differences). Related problems involving NLS equations on a lattice background
[Efremidis, 2003] have also generated considerable interest. The vector
generalization of the NLS equation has been also proved to be particularly
valuable from the point of view of nonlinear optics. On the other hand, the
experimental realization of Bose-Einstein condensates (BECs) and their mean field
modeling by the so-called Gross-Pitaevskii [Pethick and Smith, 2002] equation
which, like optical pulses on a lattice background, is an NLS equation with an
external potential, has opened new avenues for the study of NLS-type equations.

The following sections elucidate some of the physical and the mathematical
aspects of NLS systems, both continuous and discrete, scalar and vector, in one or
more spatial dimensions.

1.1.1 Scalar (1+1)-dimensional systems

The nonlinear propagation of wave packets is governed by Nonlinear
Schrodinger-type systems in such diverse fields as fluid dynamics [Ablowitz and
Segur, 1981], nonlinear optics [Agrawal, 2001], magnetic spin waves [Zvedzin and
Popkov, 1983]and [Chen, 1994], plasma physics [Zakharov, 1972] etc.



For example, the Nonlinear Schrodinger equation describes self-
compression and self-modulation of electromagnetic wave packets in weakly
nonlinear media. Hasegawa and Tappert [Hasegawa and Tappert, 1973] first
derived the NLS equation in fiber optics, taking into account both dispersion and
nonlinearity. Detailed derivations can be found in texts [Hasegawa and Kodama,
1995].

The Nonlinear Schrodinger equation in "standard" form is given by

iq,+qet 2lql°q=0 (1.2)

In these notations, the focusing case is given by the (+) sign in equation
(1.2), and it corresponds to anomalous dispersion. The defocusing case is
obtained when the dispersion is normal, and it corresponds to the (-) sign in
equation (1.2).

The Nonlinear Schrodinger equation possesses soliton solutions, which are
exact solutions decaying to a background state. The focusing (+) NLS equation
admits so-called "bright" solitons (namely, solutions that are localized travelling
"humps"). A pure one-soliton solution of the focusing Nonlinear Schrodinger
equation has the form

q(z,t) = nsech[n(t + 2&z — ty)] e~10=D (1.3)
where 8(z,t) = &t + (§2 —n?)z + 6,.

It is worth noting that in nonlinear optics and many other areas of physics
solitary waves are usually called solitons, despite the fact that they generally do
not interact elastically. Indeed today, most physicists and engineers use the word
soliton in this broader sense.

The defocusing (-) NLS equation does not admit solitons that vanish at
infinity. However, it does admit soliton solutions on a nontrivial background,
called "dark" and "gray" solitons. A dark soliton is a solution of the form

q(z,t) = qo tanh(qqt) e240°2 (1.4)

A gray soliton solution is



q(z,t) = goe?9*?[cosa + i sina tanh[sinaq,(t — 2qocosaz — to)]] (1.5)

Importantly, the solution of the nonlinear Schrodinger equation for both
decaying initial data and for data which tend to constant amplitude at infinity
were obtained by the method of the Inverse Scattering Transform (see below for
a brief description) by [Zakharov and Shabat, 1972]and [Zakharov and Shabat,
1973].

One of the most remarkable properties of soliton solutions is that
interacting scalar solitons affect each other only by a phase shift, that depends
only on the soliton powers and velocities, but of which are conserved quantities.
Thus, when two soliton collisions occur sequentially, the outcome of the first
collision does not affect the second collision, except for a uniform phase shift.

In the context of small-amplitude water waves, the nonlinear Schrodinger
equation was derived by Zakharov [Zakharov, 1968] for the case of infinite depth
and Benney and Roskes [Benney and Roskes, 1969] for finite depth. Basically, the
nonlinear Schrodinger equation is obtained from the Euler-Bernoulli equations for
the dynamics of an ideal (i.e., incompressible, irrotational and inviscid) fluid under
the assumption of a small amplitude quasi-monochromatic wave expansion.

Finally, it should also be mentioned that Ablowitz et al [Ablowitz, 1997]and
[Ablowitz, 2001] have shown that, in quadratically nonlinear optical materials,
more complicated nonlinear Schrodinger -type equations can arise.

1.1.2 Vector (1+1)-dimensional systems

In many applications, vector NLS (VNLS) systems are the key governing
equations. Physically, the VNLS arises under conditions similar to those described
by NLS whenever there are suitable multiple wave trains moving with nearly the
same group velocity [Roskes, 1976]. Moreover, VNLS also models systems where
the electromagnetic field has more than one component. For example, in optical
fibers and waveguides, the propagating electric field has two polarized
components transverse to the direction of propagation.

iu, +ug + (Jul> + [v[»Hu=0 (1.6)
iv,+ v+ (Jul? +|v|Hv=0 (1.7)



The dimensionless system in equations (1.6) and (1.7) was considered by
Manakov [Manakov, 1974] as an asymptotic model governing the propagation of the
electric field in a waveguide. where z is the normalized distance along the
waveguide, t is a transverse coordinate and (u, v)T (the superscript T denotes
matrix transpose) are the transverse components of the complex electromagnetic
field envelope. Manakov was able to integrate the above Vector Nonlinear
Schrodinger system by the IST method.

Subsequently, Menyuk [Menyuk, 1987] showed that in optical fibers with
constant birefringence, the two polarization components (u, v)Tof the complex
electromagnetic field envelope orthogonal to direction of propagation along a
fiber satisfy asymptotically the following non-dimensional equations

d
i(uz + Su;) + - Uee + (lul? + alvlz))u =0 (1.8)

d
i(vz —6v) + > Ve + (alul? + Ivlz))v =0 (1.9)

where 6 represents the group velocity "mismatch" between the components u
and v, d is the group velocity dispersion and « is a constant depending on the
polarization properties of the fiber.

The physical phenomenon of birefringence implies that the phase and
group velocities of the electromagnetic wave are different for each polarization
component. It is important to realize, however, that the derivation of the above
equations assumes that certain nonlinear (four-wave mixing) terms are neglected.
In the general case, i.e. when 6 # 1, the vector Nonlinear Schrodinger system is
unlikely to be integrable. However, in a communications environment, due to the
distances involved, not only does the birefringence evolve, but it does so
randomly and on a scale much faster than the distances required for
communication transmission. In this case, Menyuk [Menyuk, 1999] showed, after
averaging over the fast birefringence fluctuations, the relevant equation is the
above but with &« =1 and 6 = 0 that is, it reduces to the integrable Vector
Nonlinear Schrodinger system derived by Manakov, which therefore attains
broader relevance.



As indicated above, the Manakov system (1.8) and (1.9) is integrable, and it
possesses vector soliton solutions. In the focusing case that is, with a plus sign in
front of the cubic nonlinear terms. These are bright solitons whose shape is the
same as that of the bright solitons of the scalar NLS equation, multiplied by a
constant polarization vector. Unlike scalar solitons, however, the collision of
solitons with internal degrees of freedom (e.g. vector or matrix solitons) can be
highly nontrivial: even though the collision is elastic, in the sense that the total
energy of each soliton is conserved, there can be a significant redistribution of
energy among the components. It has been shown by Soljacic et al [Soljacic, 1998]
that the parameters controlling the energy switching between components
exhibit nontrivial transformation of information. This set forth the experimental
foundations of computation with solitons. Despite the vector nature of the
problem, one can show that the multisoliton interaction process is nevertheless
pair-wise and the net result of the interaction is independent of the order in
which such collisions occur. This interaction property can be related to the fact
that the map determining the interaction of two solitons satisfies the Yang-Baxter
relation [Ablowitz, 2004].

The defocusing vector nonlinear Schrodinger equation(VNLS) (1.8) and (1.9)
with a (-) sign in front of the nonlinear terms admits "dark-dark soliton" solutions;
i.e., solitons which have dark solitonic behavior in both components, as well as
"dark-bright" soliton solutions, which contain one dark and one bright component
[Kivshar and Turitsyn, 1993]. Although the mathematical properties of VNLS have
been investigated for decades, the IST for the vector system under non-vanishing
boundary conditions has been developed only recently.

1.1.3 Scalar multidimensional systems
The nonlinear Schrodinger equation in two spatial dimensions,
i, + AP +2[Y|2Y =0, X=(x7y)€R? (1.10)

has been investigated shortly after the early studies on the one-dimensional

equation. Note that in optics, the transverse Laplacian, here simply indicated by A

, describes wave diffraction. Remarkable early direct numerical simulations and

scaling arguments by Kelley [Kelley, 1965] indicated that wave collapse could

occur. Vlasov [Vlasov, 1971] showed that for a purely cubic nonlinearity in a self-
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focusing nonlinear medium, the phenomenon of wave collapse takes place and
the light beam blows up in a finite time. The proof that a finite-time singularity
can occur in Eq. (1.10) is remarkably straightforward [Vlasov, 1971] and it is based
on the virial theorem, see also [ Ablowitz and Segur, 1979]. One can also prove
rigorously [C Sulem and P L Sulem, 1999] that, for initial conditions for which the

Hamiltonian
H=J (1ol - (3) pl*) dx (111)

is negative, there exists a time t, such that the quantity flV?,bIzdx becomes
infinite as t approaches ty, which in turn implies that Y valso becomes infinite as
t =ty (blowup in finite time). It is worth mentioning that near blowup the
solution displays universal scaling properties.

Results are also available for the more general Nonlinear Schrodinger
equation in dspatial dimensions and with generic power nonlinearity:

Y, + Mgy + 2|92 =0, X €R? (1.12)
where A4 is the Laplacian d -dimensional.

The first proof of global existence of solutions to the focusing nonlinear
Schrodinger equation in the sub-critical dimension was given by Ginibre and Velo
[Ginibre and Velo, 1979]. There are many references to this interesting subject;
see for example [Papanicolau, 1994], [Sulem C. and Sulem PL. , 1999] and [Merle
and Raphael, 2004].

Finally, we mention the Zakharov system for Langmuir turbulence in
plasmas, where the mean field obeys a dynamical equation [Zakharov, 1972].

1.2 Nonlinear Schrodinger equation: Types and solutions

In general there are two types of solutions of the Schrodinger equation:
travelling waves and standing waves. Linear superpositions of travelling waves are
used to form wave packets describing the motions of “free” particles while
standing waves (superpositions of waves travelling in opposite directions) are
used to describe the states of particles bound in potential wells, e.g. of electrons
in atoms, molecules and solids and of protons and neutrons in atomic nuclei.
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The nonlinear Schrodinger equation (NLS) is also the second nonlinear
partial differential equation (PDE) whose initial value problem was discovered to
be solvable via IST method[Ablowitz Clarkson, 1991], [Emmanuel, 2008].

In the last ten decades, there are a lot of NLS problems depending on additive or
multiplicative noise in the random case [Debussche and Menza, 2002] or a lot of
solution methodologies in the deterministic case.

Wang M. and et al [Wang and et al, 2007] obtained the exact solutions to
NLS using what they called the sub-equation method. They got four kinds of exact
solutions of the equation.
ou 1 0%u

Lat+ 5 352 >+ alul"u+ Blul*u=0 (1.13)

for which no sign to the initial or boundary conditions type is made.

Xu L. and Zhang J. [Xu and Zhang, 2007] followed the same previous
technique in solving the higher order NLS:
ou 1 0d%u 03%u ou , 0u

.___ - 2 . 2 _
b a +ﬁ’|u|u+l£a3+l5|u|ua + iyu? % =0 (1.14)

Sweilam N. [Sweilam, 2006] solved

 0u  0%u
i oo+ o+ qlulPu=0,t>0,Ly <x < Ly (1.15)

with initial condition u(x,0) = g(x) and boundary conditions u,(Ly,t) =
u,(Ly,t) = 0 which gives rise to solitary solutions using variational iteration
method.

By using the extended hyperbolic auxiliary equation method [Zhu, 2007] in
getting the exact explicit solutions to the higher order Nonlinear Schrodinger
equation (NLS):

Ps

. B1 B>
lq; — 5 5 Gt + V1|CI|2 lEQttt + ﬁQtttt - V2|CI|4CI (1.16)

Without any boundary conditions Sun J. and et al [Sun and et al, 2007] solved the
Nonlinear Schrodinger equation (NLS) :



0 d
i—+ T-l_ Clll/)l l/) =0 (117)

with the initial condition ¥ (x,0) = ¥,(x) using Lie group method.

By using coupled amplitude phase formulation, Parsezian K. and Kalithasan B.
[Parsezian and Kalithasan, 2007] constructed the quartic anharmonic oscillator
equation from the coupled higher order Nonlinear Schrodinger equation (NLS).

Two-dimensional grey solitons to the NLS were numerically analyzed by
Sakaguchi H. and Higashiuchi T. [Sakaguchi and Higashiuchi, 2006].

The generalized derivative NLS was studied by Huang D. and et al [Huang
and et al, 2007] introducing a new auxiliary equation expansion method.

El-Tawil A. and El-Hazmy A. [El-Tawil and El-Hazmy, 2007], [EI-Tawil and EI-
Hazmy, 2009] introduce a perturbative technique to solve the cubic nonlinear

schrodinger equation(CNLS):

— + 2 + elul’u+yu=0,(tz) €[0,T]x [0 1.18
J— R = (0.0) .
l a’atz glulu u ,\0, Z ) [, ) ( )

where u(t, z) is a complex valued function which is subjected to:

initial conditions: u(t,0) = f,(t) + i f,(t),a complex valued function and
boundary conditions : u(0,z) = u(T,z) = 0. with proving that the solution —if
exist- of (1.18) should be a power series in €.

The nonlinear Schrodinger equation can be solved numerically by using
split-step Fourier transform (SSFT); [Ismail, 2008], [Molleneauer and Gordon,
2006], [Ruiyu, Lu, Zhonghao, Wenrui and Guosheng, 2004].

1.3 Outline of Thesis

In chapter 2, we solve cubic homogeneous nonlinear Schrodinger equation (2.1)
by using two different methods; perturbation and Picard approximation in
sections (2.1), (2.2) and (2.4) respectively. We introduce the methodology by
using many case studies; constant, sinusoidal and exponential for initial
conditions function, for each method. In section (2.6), we also compare between
two methods with the same initial conditions on the same graph. At the end of
this chapter; section (2.7), we introduce T study for both methods, each method
separately, at different values of time; 10, 20 and 60.
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In chapter 3, we solve cubic non homogeneous nonlinear Schrodinger equation
(3.1) by using the same two methods illustrated in chapter 2; perturbation and
Picard approximation in sections (3.1), (3.2) and (3.4) respectively. We introduce
the methodology by using many case studies; constant, sinusoidal and
exponential with many combinations between non homogeneous terms and
initial conditions functions, for each method. In section (3.6), we also compare
between two methods with the same initial conditions and non homogeneous
part on the same graph. At the end of this chapter; section (3.7), we introduce T
study for both methods, each method separately, at different values of time; 10,
20 and 60.

In chapter 4, we solve quintic homogeneous nonlinear Schrodinger equation
(QNLS) (4.1) by using two different methods; perturbation and Picard
approximation in sections (4.1), (4.2) and (4.4) respectively. We introduce the
methodology by using many case studies; constant, sinusoidal and exponential for
initial conditions function, for each method. In section (4.6), we also compare
between two methods with the same initial conditions on the same graph. At the
end of this chapter; section (4.7), we introduce T study for both methods, each
method separately, at different values of time; 10, 20 and 60.

In chapter 5, we introduce the thesis summary and conclusions.

11



Chapter 2 Homogeneous Nonlinear Cubic Schrodinger Equations

2.0 Introduction

In this chapter, a perturbing nonlinear Schrodinger equation is studied under
limited time interval, complex excitation, complex initial conditions and zero
Neumann conditions. The perturbation and Picard approximation method
together with the eigenfunction expansion and variational parameters methods
are used to introduce an approximate solution for the perturbative nonlinear case
for which a power series solution is proved to exist. Using Mathematica, the
solution algorithm is tested through computing the possible orders of
approximations. The method of solution is illustrated through case studies and
figures.

In this chapter, a straight forward solution algorithm is introduced using the
transformation from a complex solution to a two coupled equations in two real
solutions, eliminating one of the solutions to get separate independent and
higher order equations, and finally introducing a perturbative approximate
solution to the system.

2.1 The Non-linear case
Consider the homogeneous non-linear Schrodinger equation:

_0u(t,z)+ 0%u(t, z)
"Toz T YT a2

(t,z) € (0,T)x (0, ) (2.1)

+ elu(t,2)|*u(t,z) +iyu(t,z) =0,

where u(t, z) is a complex valued function which is subjected to:

[.Cs.:u(t,0) = fi(t) + if,(¢t), (2.2)
B.Cs.:u(0,z) = u(T,z) = 0. (2.3)
Lemma (2.1)

The solution of equation (2.1) with the constraints (2.2), (2.3) is a power series in
€ if exists.
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Proof
At € = 0 (u(t,z) = uy(t, z)), the following linear homogeneous equation is got:

. 0ug(t, 2) 0%uy(t, z)
| g —

e a—> +iyuy(t,z) =0, (t,z) € (0,T)x (0,0) (2.4)
u(t,z) = Yo(t,z) + i po(t,z) (2.5)
By following Appendix (A), the linear Schrodinger equation (2.4) has the following
solution:

- nm
Po(t,z) = e* z Ton(2) sin (=), (2.6)
n=0
- nm
Bo(t,2) = €7 ) 1u(Dsin ()t @7)

n=0

where Ty,,(z) and t4,(2) can be calculated as illustrated in the general linear
case, (Appendix (A), equations (A.12), (A.13) respectively).

By following Pickard approximation, equation (2.1) can be rewritten as:

_6un(t,z)+ 0%u,(t, z)
Tz YT a2

+iyu,(t,z) = —¢lu,_,(t, 2)|*u,—1(t,z),n = 1 (2.8)

atn = 1, the iterative equation (2.8) takes the form

Ouy(t,z)  0%*uy(t,z)
l + «a

0z 0t2 + yul(t’ Z) = —sluo(t, Z)lzuO(t; Z) = Ekl(t,Z) (29)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

Pi(t,2) = €77 ) (Ton(2) + Tin(2)(@sin (O (2.10)
n=0

B1(6,2) = €7 ) (ton(2) + eT1n(2)@sin (O, 211)
n=0
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uy (t,2) =91(t,2) + i P1(t,2), (2.12)
=u; O+ gy, @, (2.13)

where u; @ =y,

At n = 2, the following equation is obtained:

0u,(t,z) 0%u,(t, z)
l +

b a S iy (t,7) = —ehu (6,2 (6,2)

= ¢k,(t,z) (2.14)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

U (t,2) = u, O + eu, W + 620, + 34,3 + gy, (2.15)
where u,(® = u, . Continuing like this, one can get:
Uy (t,2) = u, @ + eu,® + 2u,@ + &3y, 4. Femm om0, (2.16)

where m(n) is an increasing polynomial in n. Asn — o, the solution (if exists)
can be reached as u(t, z) = lim,_,.. u,(t, z). Accordingly the solution is a power
series in .

According to the previous lemma, one can assume the solution of equation (2.1)
as the following:

[0e]

u(t,z) = Z enu (t,2) (2.17)

n=0
Let u(t,z) = Y(t,z) + i ¢p(t, z),y,¢: arereal valued functions. The
following coupled equations are got:

ap(t,z)  0%Y(t,z)

9z @« —— 53—+ @+ oY~ v, (2.18)
(e, 920(t,
lp(gi 2 - « —?EZ D_ e+ ¢%)d — v, (2.19)

where Y(t,0) = f,(t), ¢(t,0) = f,(t), and all corresponding other I.Cs. and
B.Cs. are zeros.

As a third order perturbation solution, one can assume that:
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Y(t,z ) =Po+ ey + 2P, + 33, (2.20)
G(t,z )= o+ ey + 2P, + ¢, (2.21)

where Y, (t,0) = f;(t), ¢o(t,0) = £,(t), and all corresponding other I.C. and
B.C. are zeros.

Substituting from equations (2.20) and (2.21) into equations (2.18) and (2.19) and
then equating the equal powers of €, one can get the following set of coupled

equations:
0 , 0% ,
oY, (¢, 0%, (t,
T
09, (t, 02y, (¢,
% = a %— s + (Yo’ + hodo”), (2.24)
oY (t, 0%¢(t,
% =~ % — YY1 — (¢03 + (Po‘l’oz): (2.25)
09, (t, 0%y, (t,
%Z) =a % -y, + (31/J02¢1 + 2Yopop1 + 1/J1¢02)» (2.26)
oY, (¢, 0%¢,(t,
%Z) =—a % — vy, — (3¢02¢1 + 20001 + ¢11/’02); (2.27)
6(]53(1:, Z) _ 621/)3(t1 Z)
Tz Y Tae V%

+ (31 o + 3o W, + Pao” + 21 oy + Yoy

+ 2o do2) (2.28)
alpS(ti Z) _ 62¢3(t1 Z)
Tz YT e M

- (3¢12¢0 + 3P0 P + P20’ + 2011 + Poths”

+ 2¢ooth2) (2.29)

and so on. The prototype equations, to be solved, are:
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8¢i(t,z) - azl/)i(t,Z)

o St G, 21 (2.30)
alpi(ti Z) aqui(t,z) .
= At Gy, 021 (2.31)

where Y;(t,0) = 8;, f1(t), ¢;(t,0) = 8;4 f>(t), and all other corresponding

conditions are zeros. G;; ,G,; are functions to be computed from previous
steps.

By following the solution algorithm described in Appendix (A) for the linear case,
the following final results are obtained.

2.2 The order of approximations

The following final expressions can be used to obtain different order of
approximations.

2.2.1 The zero order approximation
The zero order approximation is the linear case illustrated in Appendix (A).

2.2.2  The first order approximation

uy (t,2) = uo(t,2) + e(P1(t,2) + i p1(t,2)) (2.32)
By following Appendix (A), for n=1, we can find that:
- nm
Wt = e Y T(sin G (233)
n=0
- nm
¢,(t,z) =e7 7 z 71,(2)sin (T)t ) (2.34)
n=0

from equations (2.24) and (2.25), we can see that:

Gi1 = e_zyz(l/’o3 + ¢0¢02) (2.35)
Gy = e—Zyz(_ ¢03 - ¢01/J02) (2.36)
in which,
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Ti,(z) = A11(2)sin B,z + (Clz + Bll(z)) cos 3,2, (2.37)
T10(2) = A1,(2) sin B,z + (C14, + B, (z)) cos 8,2, (2.38)

where C;, = —B11(0) and C;4, = —B;,(0) . The rest constants A;;, B11,
Ai, ,B1, can be calculated in similar manner as illustrated in Appendix (A).

The absolute value of the zero order approximation can be got using

luy (t, 2) |7 = up(t, 2)1* + 2e(Wop1 + Po1) + 52(1/112 + ¢12) (2.39)

2.2.3 The second order approximation

Uy (t,2) =uy(t,2) + €2( P, (t, 2) + i P,(t, 7)) (2.40)

By following Appendix (A), for n=2, we can find that:

Y,(t,z) =e ¥ Z}TZn(z)sin (%)t, (2.41)
p,(t,z) =e7 " ZOTZn(Z)sin (g)t, (2.42)

from equations (2.26) and (2.27), we can see that:

Gz = €722 (3 Y1 + 2odobs + P16h°) (243a)
Gop = e 2V (=3¢ Py — 201 — P1Po°) (2.43b)
in which

Ty, (z) = Ay1(2) sin B,z + (sz + B21(z)) cos 8,2, (2.44)
Ton(2) = Ay, (2) sin Bz + (C24 + Bzz(z)) cos f3,z, (2.45)

where C;, = —B,4(0) and C,4 = —B,,(0) . The rest constants A,;, Byq,
A, ,B,, can be calculated in similar manner as illustrated in Appendix (A).

The absolute value of the zero order approximation can be got using

lu (t, 2)1% = lug(t, 2)1? + 262 (o, + Pod2) + 23 (W1, + D1 ¢,)
+ (Y, + ¢,°) (2.46)
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2.2.4  The third order approximation

us(t,2) = uy(t,2) + €3(Ps3(t,2) + i Pp3(t,2)) (2.47)

By following Appendix (A), for n=3, we can find that:

Ys(t,z) =e7 7 Z(:) T3, (z)sin (nTﬂ)t, (2.48)
Ps(t,z) =eV? ZO T3, (2)sin (g)t ) (2.49)

from equations (2.28) and (2.29), we can see that:

Gz = e—2y2(3¢02¢1 + 3P0 P, + Pago” + 29ePods + Yoy

+ 2¢Y0¢oP2) (2.50)
Gz = €7 2V%(= 3¢ P1 — 30 P2 — Patho” — 2¢1op1 — Poths” —
2¢0otp2) (2.51)
in which
T3n(z) = A31(2) sin Bz + (Cs; + B31(2)) cos iz, (2.52)
T3,(2) = A3,(2) sin B,z + (6’34 + B32(Z)) cos 8,2, (2.53)

where (3, = —B34(0) and (3, = —B3,(0) . The rest constants Az, Bsq,
Az, , B3, can be calculated in similar manner as in Appendix (A).

The absolute value of the zero order approximation can be got using

lusz(t, 2)1% = luy(t, 21> + 283 (WPoy3 + Podz) + 2e* (P13 + D1 ¢3)
+ 2> (P13 + Po3) + 56(1/’32 + (1532) (2.54)

2.3 Case Studies
To examine the proposed solution algorithm, some case studies are illustrated.
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2.3.1 Casestudy1

Taking the case  fi(t) = pq, fo(t) = p, where p; & p, are constants and
following the algorithm, the following selected results for the first, second and
third order approximations are got:

Fig. (2.1) the first order approximation of |u(1)| ate =0,y =0and

a,p1, P, =1, T = 10 with considering only ten terms on the series (M=10)

Fig. (2.2) the first order approximation of |u(1)| ate =02,y =0and a,pq, p =
1,T = 10 with considering only ten terms on the series (M=10)
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Fig. (2.3) the first order approximation of |u(1)| ate =0.2,y=0and a,pq,p, =
1, T =10,M = 10 for different values of z.

jul |
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N b O

z
10 20 30 40 S50 60

Fig. (2.4) the first order approximation of |u(1)| ate =02,y =0and a,pq,pr =
1, T =10,M = 10 for different values of t.

Fig. (2.5) the second order approximation of |u(2)| ate =02,y =0and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10)
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Fig. (2.6) the second order approximation of |u(2)| ate =0.2,y =0and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (2.7) the second order approximation of |u(2)| ate = 0.2,y =0and
a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (2.8) the third order approximation of |u(3)| ate =0.2,y =0and
a, p1, P2 = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.9) the third order approximation of |u(3)| ate =02,y =0and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (2.10) the third order approximation of |u(3)| ate =0.2,y =0and

a,p, P2 =1,T =10,M = 10 for different values of t.
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Fig. (2.11) comparison between first, second and third order approximation at
e=02,y=0anda,p,p,=1,T=10,M =10,z = 20.
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comparison between first, second and third order approximations at

Fig. (2.12)
e=02,y=0anda,py,p,=1,T=100M =10,t =4.
Note: with constant initial conditions we calculated till third order which takes

around 2 days continuously and we cannot calculate more since the machine

gives “MATHEMATICA KERNEL OUT OF MEMORY”.
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Fig. (2.13) the first order approximation of |u(1)| ate =02, a,p1,p, =1,T =

10,y = 1 with considering only ten terms on the series (M=10).
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Fig. (2.14) the first order approximation of |u(1)| ate = 0.2,y = 1and
a,p,p, =1,T =10,M = 10 for different values of t.

Fig.(2.15) the second order approximation of |u(2)| ate =0.2,y =1and
a,p1, P> =1, T = 10, with considering only ten terms on the series (M=10).

[ |

Fig.(2.16) the second order approximation of |u(2)| ate =02,y =1and
a,p1,p2 =1, T = 10,M = 10for different values of z.
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Fig.(2.17) the second order approximation of [u®| ate = 0.2,y = 1 and
a,p,pz =1,T =10,M = 10 for different values of t.
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Fig.(2.18) comparison between first and second order approximations at
e=1ly=1anda,p,p,=1,T=100M =10,z = 2.

— — uZ

Fig.(2.19) comparison between first and second order approximations at
e=1ly=1anda,p;,p, =1, T =100M =10,t = 2.
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Note: with constant initial conditions and y exist we calculated till second order
which takes around 3 days continuously and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY” .

2.3.2 Case study 2

Taking the case f;(t) = p,e~ ¢, f,(t) = p,e~t where p; & p, are constants and
following the algorithm, the following selected results for the first and second

order approximations are got:

iy
ST

Fig.(2.20) the first order approximation of [u| ate = 0,y = 0 and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).

Fig. (2.21) the first order approximation of |u(1)| ate =0.2,y =0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig.(2.22) the first order approximation of |u(1)| ate =0.2,y=0and
a,pi,pr =1,T = 10,M = 10 for different values of z.
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Fig. (2.23) the first order approximation of |u(1)| ate =0.2,y =0and
a,p, P2 =1, T =10,M = 10 for different values of t.

Fig. (2.24) the second order approximation of |[u(®|ate = 1, y = 0 and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.25) the second order approximation of |u(2)| ate = 0.2, y =0and
a,p,p, =1,T =10,M = 10 for different values of z.
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Fig.(2.26) the second order approximation of |u(2)| ate = 0.2, y =0and
a,p,p,=1,T =10,M = 10 for different values of t.

[u]
1.4t -
1.2 /rj -
j_.
S h — ud
0.8 Y. S
0.6} /j . — —ul

0.4 r /,.// \ e

nz \

t

Fig.(2.27) comparison between zero, first and second order approximations at
e=02,y=0anda,p,p,=1T=10M =10,z =10.
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Note: the calculations for second order takes 3 and half day and we can not

calculate more orders since the machine gives “MATHEMATICA KERNEL OUT OF
MEMORY” .
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Fig.(2.28) the first order approximation of |u(1)| ate =0.2, y=1and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig.(2.29) the first order approximation of |u(1)| ate =0.2,y=1and
a,p, Pz =1, T = 10,M = 10 for different values of z.

29



Fig. (2.30) the first order approximation of |u(1)| ate =0.2,y =1and
a,p,p, =1,T =10,M = 10 for different values of t.

Note: the calculations for first order takes 3 days and we can not calculate more
orders since the machine gives “MATHEMATICA KERNEL OUT OF MEMORY” .

2.3.3 Case study 3

mm

Taking the case f;(t) = pq, fo(t) = p,sin (T) t where p; & p, are constants

and following the algorithm, the following selected results for the first, second
and third order approximations are got:

Fig.(2.31) the first order approximation of |u(1)| ate =0,y =0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.32) the first order approximation of |u(1)| ate = 0.2,y =0 and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.33) the first order approximation of [u| ate = 0.2, y = 0 and

a,p,p, =1,T =10,M = 10 for different values of z.
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Fig. (2.34) the first order approximation of [u| ate = 0.2, ¥ = 0 and
a,p,p, =1,T =10,M = 10 for different values of t.
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Fig.(2.35) the second order approximation of |u(2)| ate=1, y=0and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
|2 |

588588

2 4 6 8 10
Fig. (2.36) the second order approximation of |u(2)| ate =0.2,y =0and

a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (2.37) the second order approximation of |u(2)| ate = 0.2, y =0and
a,p,p,=1,T =10,M = 10 for different values of t.
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Fig. (2.38) the third order approximation of |u(3)| ate =0.2, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (2.39) the third order approximation of |u(3)| ate=1,y=0,and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.40) the third order approximation of |u(3)| ate=0.2, y=0and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (2.41) the third order approximation of |u(3)| ate=0.2, y=0and
a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (2.42) the third order approximation of |u(3)| atz=10,y =0, and
a,p, P2 =1, T =10,M = 10 for different values of t.
U3 |

Fig. (2.43) the third order approximation of |u(3)| att=4,y =0,and a,py, 0, =
1, T =10,M = 10 for different values of z.
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Fig. (2.44) comparison between first, second and third order approximations at

e=02,y=0anda,p,p,=1,T=10,M = 10,z = 20.
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Fig. (2.45) comparison between first, second and third order approximations at
e=02,y=0anda,p,p,=1,T=10,M = 10,t = 2.
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Fig. (2.46) the first order approximation of |u(1)| ate =0.2,y =1, and

a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.47) the first order approximation of |u(1)| ate =02, a,p1,0, =1,T =
10, M = 10 for different values of z.
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Fig. (2.48) the first order approximation of |u(1)| ate =02,y =1,and
a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (2.49) the second order approximation of |u(2)| ate =0.2,y =1, and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (2.50) the second order approximation of |u(2)| ate =0.2,a,p1,0, =1,T =
10, M = 10 for different values of z.

[m]

1.5

Fig. (2.51) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p,p, =1,T =10,M = 10 for different values of t.

Fig. (2.52) comparison between first and second order approximation at
e=1,y=1and a,p1,p, =1, T =10,M =10,z = 2.
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[a]

Fig. (2.53) comparison between first and second order approximation at
e=1,y=1and a,p,p,=1,T=10,M =10,t = 2.

Note: we cannot calculate further than second order since the machine gives
“MATHEMATICA KERNEL OUT OF MEMORY” .

2.4 Picard Approximation

To validate our previous results, in the absence of the exact solution, let us follow
another approximation technique. The Picard approximation is considered in this
section.

Solving equation (2.1) with the same conditions (2.2) and (2.3) and following the
Picard algorithm which puts the nonlinear terms in the right hand side of the
equation evaluated at the previous step, which means that we solve the linear
case iteratively [Zwillinger, 1997].

Let u(t,z) = Y(t,z) + i ¢p(t, z),Y,¢: arereal valued functions. The
following coupled equations are got:

dp(t,z)  9*Y(t,z)

9z @« —— 53—+ e+ oY~ v, (2.55)
NP (t, 3% ¢(t,
¢§Z 2= %- e@W?+ ¢ — v (2.56)

Where ¥ (t,0) = f,(t), ¢(t,0) = f,(t), and all corresponding other I.Cs. and
B.Cs. are zeros.
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8¢i(t,z) - azl/)i(t,Z)

- S Hy iz (2.57)
0;(t, 0%¢;(t,
—wla(z g —d(;‘t(z Dby, iz (2.58)

where Y, (t,0) = f;(t), ¢;(t,0) = f,(t), and all other corresponding conditions
are zeros. H,;, H,; are functions to be computed from previous steps.

2.4.1 Picard order of approximations

2.4.1.1 Zero order approximation
The zero order approximation is the linear case illustrated in Appendix (A).
2.4.1.2 First order approximation

0uq(t, 2) N 0%u,(t, z)
' 0z @ Jdt?

(t,z) € (0,T)x (0, ) (2.59)

+ elug (t, 2)[Pug (L, 2) + i yuy(t,z) =0,

with initial condition u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. By following Appendix (A), the linear Schrodinger
equation (2.59) has the following solution:

u(t,2) = P+ i g, (2.60)
= nm

Y,(t,z) =e V% T, (z)sin (—)¢, (2.61)
- nm

P,(t,z) =e7 7 Ty (2)sin ()t (2.62)

1 nz:;) 1 T

Hip = e™22e(hy” + Podo’) (2.63)

Hyy = — 3_2y25(¢03 + ¢01/)02) (2.64)

in which,

T,(z) = A;1(z)sin B,z + (C1z + Bll(z)) cos f3,z, (2.65)
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T10(2) = A1, (2) sin B,z + (C14, + B, (z)) cos 8,2, (2.66)

where the constants and variables A1, ,Cy5, B11, A12,Ci4,B1, canbe
calculated in similar manner as illustrated in Appendix (A).

The absolute value of the first order approximation is:
lu, (8,212 = ¥, + ¢,° (2.67)
2.4.1.3 Second order approximation

 0u,(t, 2) + 0%u,(t, z)
Yoz o

(t,2) € (0,T)x (0, ) (2.68)

+ eluy (¢, 2)[Puy (8, 2) + i yuy(t, 2) = 0,

with initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger
equation (2.68) has the following solution:

U(t,z) = Yo+ iz, (2.69)
- nm
Y,(t,z) =e Y T,,(z)sin (—)¢, (2.70)
2 nz:(:) 2 T
- nm
p,(t,z) =e7 Ty, (2)sin (—)t (2.71)
2 ; 2 T
Hy, = 3_2)/25(1/%3 + Y1¢,°) (2.72)
Hyy = —e %¢(d:° + ¢11p,?) (2.73)
in which,
T,,(z) = Ay1(2) sin B,z + (sz + 321(2)) cos 3z, (2.74)
Ton(2) = Ay, (2) sin B,z + (624 + Bzz(z)) cos 3z, (2.75)

where the constants and variables A,; ,C55, By, Ay, ,Cs4,B55, canbe
calculated in similar manner as illustrated in Appendix (A).

The absolute value of the second order approximation is:
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lus (6, 2)12 = P,° + @57 (2.76)
2.4.1.4 Third order approximation

_6u3(t,z)+ 0%u5(t, 2)
Tz T T o

(t,z) € (0,T)x (0, ) (2.77)

+ eluy (t, 2)1%uy (¢, 2) + iyus(t,z) =0,

with initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger
equation (2.77) has the following solution:

uz(t,z) = Y3+ i3, (2.78)
- nm
Ys(t,z) =e Y T3, (z)sin (—)¢, (2.79)
3 nZ:(:) 3 T
- nm
Ps(t,z) =e7V? T3, (2)sin (—)t (2.80)
3 ; 3 T
Hi3 = e—Zyzg( 1/J23 + l/)2¢22) (2.81)
Hi, = —e™2¥7%¢( ¢2° + ¢2¢22) (2.82)
where,
T3,(z) = A3;(2) sin B,z + (C32 + B31(z)) cos 8,2, (2.83)
T3,(2) = A3,(2) sin B,z + (6’34 + B32(Z)) cos 8,2, (2.84)

where the constants and variables A3, ,C3,, B3, A3, ,C34,B3, canbe
calculated in similar manner as illustrated in Appendix (A).

The absolute value of the third order approximation is:
lus(¢,2)1% = P3° + @3 (2.85)

2.5 Case studies, Picard

To examine the proposed solution algorithm, some case studies are illustrated.
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2.5.1 Case study 1

Taking the case f;(t) = pq, f>(t) = p,sin (g t) where p; & p, are constants

and following the algorithm, the following selected results for the first and second
order approximations are got:

Fig.(2.54) the first order approximation of |u(°)| ate=0,y=0 and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10)

Fig. (2.55) the first order approximation of |u(1)| ate =0.2,y =0 and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1)
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Fig. (2.56) the first order approximation of |u(1)| ate =0.2,y =0 and

a,p1,pr =1, T =10,M = 1 for different values of z.
jul |

12
10

N A OO O

10 20 30 40 5 60°
Fig. (2.57) the first order approximation of |u(1)| ate =0.2,y =0 and
a,p, P =1, T =10,M = 1 for different values of t.

Fig. (2.58) the second order approximation of |u(2)| ate =0.2,y =0 and

a, p1, P> = 1, T = 10 with considering only one term on the series (M=1)
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Fig. (2.59) the second order approximation of |u(2)| ate =0.2,y =0 and
a,p,p, =1,T =10,M = 1 for different values of z.

U2 |

12
10

N b OO

z
10 20 30 40 S0 60

Fig. (2.60) the second order approximation of |u(2)| ate =0.2,y =0 and
a,p,p, =1,T =10,M = 1 for different values of t.

| U2

P P P N . . e
-1 -0.5 1

Fig. (2.61) the second order approximation of |u(2)| at t =2,y =0 and
a,p,pr =1,T =10,M = 1 and t = 2 for different values of z.
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Fig. (2.62) the second order approximation of |u(2)| atz=15,y =0 and
a,p,pr =1,T =10,M = 1 and z =5 for different values of t.
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/
10
/
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/
2 4 6

Fig. (2.63) comparison between first and second order approximations at
e=02,y=0anda,py,p,=1,T=100M =1,z =05.

Fig. (2.64) the first order approximation of |u(1)| ate=1,y=1anda,pi,p, =
1,T = 10 with considering only one term on the series (M=1)
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Fig. (2.65) the first order approximation of |u(1)| ate =0.2, y=1 and

a,p1,p2,=1,T =10,M = 1 for different values of z.
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0.75  \
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0.25
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t-4
. t-5

1

Fig. (2.66) the first order approximation of |u(1)| ate =0.2,y = 1and

= z
2 3 4 5

a,p1,p, =1, T =10,M = 1 for different values of t.

Fig. (2.67) the first order approximation of |u(2)| ate =0.2and a,pq, 05,7 =

L7
LT

1,T = 10 with considering only one term on the series (M=1)
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0%/ — N

Fig. (2.68) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p,p, =1,T =10,M = 1 for different values of z.

U2 |
1.75
1.5
1.25 1\,
1\

0.75 NS
0.5 \§§

0 - 25 \\\\\1:3:,,S -

Fig. (2.69) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p,p, =1,T =10,M = 1 for different values of t.

U
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0.008 % \
\
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0.006 y \ —u
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0.004 /
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0.002 | / \
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Fig. (2.70) comparison between first and second order approximations at
e=02y=1anda,p;,p, =1,T=10M =1,z =5.
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Fig. (2.71) comparison between first and second order approximations at
e=02y=1and a,p,p,=1,T=10,M =10,t = 3.

2.5.2 Case study 2

Taking the case f;(t) = p,e7t, f,(t) = pye~t where p; & p, are constants and
following the algorithm, the following selected results for the first and second

order approximations are got:

SR
fff‘&

0.1
s
0.08 l’qrm @
g S
0.0z 3 *\“*’

Fig. (2.72) the first order approximation of |u(1)| ate =0.2,y =0 and
a, p1, P2 = 1,T = 10 with considering only one term on the series (M=1)
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Fig. (2.73) the first order approximation of [uV|ate =1,y = 0and a, py, p, =
1, T = 10 with considering only one term on the series (M=1)

jul |
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0.04 Ry N ~z-10
P NN z=20
0.02 /, TN ~ - z=40
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Fig. (2.74) the first order approximation of [u| ate = 0.2,y = 0 and
a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (2.75) the first order approximation of [u| ate = 0.2,y = 0 and
a,p,p, =1,T =10,M = 1 for different values of t.

49



&fiﬁ
A7 ay
- ,.-.cq;!’\{.. CRL,
0.1 RSN
0.08 s AR TRIAR
e LIRS Sy
ol A Qe
0o 5.?’
0 |
'{.’
\4__‘;".'?
o
oY

Fig. (2.76) the second order approximation of |u(2)| ate =0.2,y =0and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1)
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Fig. (2.77) the second order approximation of |u(2)| ate =0.2,y =0 and
a,p1, P2 =1, T = 10,M = 1 for different values of z.
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Fig. (2.78) the second order approximation of |u(2)| ate=0.2,y=0and
a,p, P2 =1,T =10,M = 1 for different values of t.
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Fig. (2.79) comparison between first and second order approximations at

e=02,y=0anda,p,p, =1,T=100M =1,z = 2.
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Fig. (2.80) comparison between first and second order approximations at

e=02,y=0anda,p,p,=1,T=10,M =1,t = 3.
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Fig. (2.81) the first order approximation of |u(1)| ate =0.2 ,y=1and
a,p1, P2 = 1,T = 10 with considering only one term on the series (M=1)
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Fig. (2.82) the first order approximation of |u(1)| ate =0.2,y=1and
a,p, P2 =1, T =10,M = 1 for different values of z.
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Fig. (2.83) the first order approximation of |u(1)| ate =02,y =1and
a,p, P2 =1, T = 10,M = 1 for different values of t.
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Fig. (2.84) the second order approximation of |u(2)| ate=1,y =1and
a, p1, P2 = 1,T = 10 with considering only one term on the series (M=1)
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Fig. (2.85) the second order approximation of |u(2)| ate=0.2,y=1and
a,p, P2 =1, T = 10,M = 1 for different values of z.
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Fig. (2.86) the second order approximation of |u(2)| ate =0.2,y=1and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (2.87) comparison between first and second order approximations at
e=02,y=1anda,p;,p, =1,T=100M =1,z =5.
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Fig. (2.88) comparison between first and second order approximations at
e=02,y=1anda,p;,p,=1,T=10M =1,z=5.

2.5.3 Case study 3

Taking the case f;(t) = pq, fo(t) = p, where p; & p, are constants and following
the algorithm, the following selected results for the first and second order

approximations are got:

Fig. (2.89) the zero order approximation of |u(°)| ate =0,y =0 and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10)
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Fig. (2.90) the first order approximation of |u(1)| ate=0,y=0 and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=1)
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Fig. (2.91) the first order approximation of |u(1)| ate =0.2,y =0 and

a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (2.92) the first order approximation of |u(1)| ate=0.2,y=0and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (2.93) the second order approximation of |u(2)| ate=1,y=0 and
a, p1, P2 = 1,T = 10 with considering only one term on the series (M=1)
|2 |

14
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10

N b O O

Fig. (2.94) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (2.95) the second order approximation of |u(2)| ate = 0.2,y = 0and

a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (2.96) comparison between first and second order approximations at
e=02,y=0anda,p;,p, =1,T=10,M =1,z =5.
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Fig. (2.97) the first order approximation of |u(1)| ate=0.2,y=1 and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1)
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Fig. (2.98) the first order approximation of |u(1)| ate =02,y =1 and
a,p1, P2 =1, T = 10,M = 1 for different values of z.

57



_t-2
~ t-3

t-4
___t-5

= 4
1 2 3 4 5

Fig. (2.99) the first order approximation of |u(1)| ate=0.2,y=1 and
a,p,p, =1,T =10,M = 1 for different values of t.

Fig. (2.100) the second order approximation of [u®|ate = 0.2,y =1 and
a,p1, P> = 1, T = 10 with considering only one term on the series (M=1)

Fig. (2.101) the second order approximation of |u(2)| ate=1,y=1 and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1)
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Fig. (2.102) the second order approximation of |u(2)| ate =0.2,y=1and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (2.103) comparison between first and second order approximations at
e=02,y=1and a,p,p, =1, T=10,M =1,z = 4.
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Fig. (2.104) comparison between first and second order approximations at
e=02,y=1and a,p1,p, =1,T=10,M =1,t = 3.
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2.6 Comparison between Perturbation & Picard Approximation

We are here giving both perturbation and Picard results in the same graph for
some selected cases.

2.6.1 Case Study 1

Taking the case f; (t) = pq, f2(t) = p, where p, & p, are constants, the
following selected results are obtained.

\ —— ulPic

/ N — - - ulPer

Fig. (2.105) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2, y=0anda,py,p, =1, T =10,z =5.

[u|
10
8 /ﬁ\
/ \
Ve A -
6 y \ —— ulPic
/ AN
AN

4 K .

) \ - ulPer
2t /., \

/ N\
\

Fig. (2.106) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =0anda,p,, 0, =1, T =10,z = 5.
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Fig. (2.107) comparison between Picard approximation and Perturbation method
forfirstorderat e =1,y =0anda,p,,p, =1, T = 10,t = 3.

U]

1.5 -~
1.25 7 \
1 / N — W2Pic
0.75 / .

0.5 7 \ - - wPer
0.25

Fig. (2.108) comparison between Picard approximation and Perturbation method
for second orderat ¢ =0.02,y =0anda,p;,p, =1, T =10,z =5.
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Fig. (2.109) comparison between Picard approximation and Perturbation method
for secondorderate = 0.2,y =0and a,p,,p, = 1,T = 10,t = 3.
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Fig. (2.110) comparison between Picard approximation and Perturbation method
for firstorderate = 0.2,y =1landa,p;,p, =1, T =10,z = 5.
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Fig. (2.111) comparison between Picard approximation and Perturbation method
forfirstorderate =1,y =1anda,p;,p, =1, T =10,z = 5.
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Fig. (2.112) comparison between Picard approximation and Perturbation method
for firstorderate = 0.2,y =1and a,p1,p, =1, T = 10,t = 3.
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Fig. (2.113) comparison between Picard approximation and Perturbation method
for secondorderate = 0.2,y =1landa,py,p, =1, T =10,z = 5.
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Fig. (2.114) comparison between Picard approximation and Perturbation method
for secondorderate =1,y =landa,py,p, =1, T = 10,t = 3.

2.6.2 Case Study 2

Taking the case f;(t) = p;, fo(t) = p,sin (%t) where p; & p, are constants,

the following selected results are obtained.
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Fig. (2.115) comparison between Picard approximation and Perturbation method
for firstorderate = 0.2,y =0and a,p1,p, =1, T =10,z = 5.
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Fig. (2.116) comparison between Picard approximation and Perturbation method
for firstorderate = 1,y =0and a,pq,p, =1, T =10,z = 5.
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Fig. (2.117) comparison between Picard approximation and Perturbation method
for firstorderate = 0.2,y =0and a,p1,p, =1, T =10, t = 3.
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Fig. (2.118) comparison between Picard approximation and Perturbation method
forfirstorderate =1,y =0and a,p1,p, =1, T =10, t = 3.
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Fig. (2.119) comparison between Picard approximation and Perturbation method
for secondorderate = 0.1,y =0and a,p,,p, =1, T =10, z =5.

Ul

Fig. (2.120) comparison between Picard approximation and Perturbation method
for secondorderate = 0.2,y =0and a,p1,p, =1, T =10, t = 3.
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Fig. (2.121) comparison between Picard approximation and Perturbation method
for firstorderate =1,y =1anda,p4,p, =1, T =10, z = 4.
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Fig. (2.122) comparison between Picard approximation and Perturbation method
for firstorderate = 0.2,y =1and a,p1,p, =1, T =10, t = 3.
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Fig. (2.123) comparison between Picard approximation and Perturbation method
for secondorderate = 0.2,y =1anda,p;,p, =1, T =10, z = 4.
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Fig. (2.124) comparison between Picard approximation and Perturbation method
for secondorderate = 0.2,y =1and a,p;,p, =1, T =10, t = 3.

2.6.3 Case Study 3

Taking the case f;(t) = p,e~%, f,(t) = pye ¢ where p; & p, are constants, the
following selected results are obtained.
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Fig. (2.125) comparison between Picard approximation and Perturbation method
for firstorderate = 0.1,y =0and a,p1, 0, =1, T =10, z = 5.
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Fig. (2.126) comparison between Picard approximation and Perturbation method
for first orderate = 0.2,y =0and a,p,,p, = 1, T =10, t = 3.
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Fig. (2.127) comparison between Picard approximation and Perturbation method
for first orderate =1,y =0anda,p,p, =1, T =10, t = 3.

2.7 T - Study

We are here examining the behavior of Perturbation method and Picard
Approximation against different values of T through case studies on the same
graph.

2.7.1 Case Studies, Perturbation

2.7.1.1 Case study 1

Taking the case f;(t) = p4, f>(t) = p, where p; & p, are constants and
following the algorithm, the following selected results for the first and second
order approximations are got:

Ul T study
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10
7.5
5

2.5

— ulT10
——-- ulT20
— — ulTeo

0 20 30 40 5 6 °

Fig.(2.128) the first order approximation of |u(1)| ate =0.2,y=0and
a,p1, P2 = 1,M = 10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig.(2.129) the first order approximation of |u(1)| ate = 0.2,y = 0and
a,p, P2 =1,M = 10,z = 10 for different values of T =10, 20 and 60

respectively.

Ul T study for second order

Fig. (2.130) the second order approximation of |u(2)| ate=1,y=0and

a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.131) the first order approximation of |u(1)| at e=1,y=1and
a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (2.132) the first order approximation of |u(1)| at e=0.2,y=1and
a,pi, P2 =1,M = 10,z = 10 for different values of T =10, 20 and 60
respectively.

16IlJITstudy for second order
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Fig. (2.133) the second order approximation of |u(2)| at e=0.2,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.

2.7.1.2 Case study 2

Taking the case f;(t) = p1e7 %, f,(t) = pye~t where p; & p, are constants and
following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (2.134) the first order approximation of |u(1)| at e=0.2,y =0and

a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.135) the first order approximation of |u(1)| at e=0.2,y=0and

a,p1,p2 =1,M =10,z = 10 for different values of T =

respectively.
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Fig. (2.136) the first order approximation of |u(1)| at e=1,y=1and

a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (2.137) the first order approximation of |u(1)| at e=0.2,y =1and
a,p1, P2 =1,M = 10,z = 10 for different values of T =10, 20 and 60
respectively.

/Ul T study for second order
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0.4

0.02

Fig. (2.138) the second order approximation of |u(2)| at e=0.2,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.

2.7.1.3 Case study 3
Taking the case f;(t) = p;, fo(t) = p,sin (g t) where p, & p, are constants

and following the algorithm, the following selected results for the first, second
and order approximations are got:
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Fig. (2.139) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.140) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1,p, =1,M =10,z = 10 for different values of T =10, 20 and 60

respectively.
Ul T study for second order

1
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Fig. (2.141) the second order approximation of |u(2)| at e=0.2,y=0and
a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.142) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.143) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p, =1,M =10,z = 10 for different values of T =10, 20 and 60

respectively. U
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Fig. (2.144) the second order approximation of |u(2)| at e=0.2,y=1and

a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.

74



2.7.2 Case Studies, Picard
2.7.2.1 Case study 1

Taking the case fi(t) =py, fo(t) = p, where p, & p, are constants and
following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (2.145) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1,p2 =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.146) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (2.147) the first order approximation of |u(1)| at e=0.2,y=1and
a,p, P2 =1,M = 1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (2.148) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1, P2 =1,M = 1,z = 10 for different values of T =10, 20 and 60 respectively.

Ul T study for second order
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Fig. (2.149) the second order approximation of |u(2)| at e=0.2,y=1and
a,pr, P =1,M = 1,z = 5 for different values of T =10, 20 and 60 respectively.
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2.7.2.2 Case

study 2

Taking the case f;(t) = py, fo(t) = p,sin (gt) where p, & p, are constants

and following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (2.150) the first order approximation of |u(1)| at e=0.2,y=0and

a,pi1,p, =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (2.151) the first order approximation of |u(1)| at e=0.2,y =0and

a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

2.7.2.3

Case study 3

Taking the case fi(t) = pe7 5, fo(t) = p,e~t where p; & p, are constants and
following the algorithm, the following selected results for the first and second

order approxima

tions are got:
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Fig. (2.152) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1, P2 =1,M = 1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (2.153) the second order approximation of |u(2)| at e=0.2,y=0and
a,p1, P =1,M = 1,z = 5 for different values of T =10, 20 and 60 respectively.
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Fig. (2.154) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Chapter 3 Non-Homogeneous Nonlinear Cubic Schrodinger Equations

3.0 Introduction

In this chapter, a perturbing nonlinear non-homogeneous Schrodinger equation
is studied under limited time interval, complex initial conditions and zero
Neumann conditions. The perturbation and Picard approximation methods
together with the eigenfunction expansion and variational parameters methods
are used to introduce an approximate solution for the perturbative nonlinear case
for which a power series solution is proved to exist. Using Mathematica, the
solution algorithm is tested through computing the possible orders of
approximations. The method of solution is illustrated through case studies and
figures.

In this chapter, a straight forward solution algorithm is introduced using the
transformation from a complex solution to a coupled equations in two real
solutions, eliminating one of the solutions to get separate independent and
higher order equations, and finally introducing a perturbative approximate
solution to the system.

3.1 The non- linear case
Consider the non-homogeneous non-linear Schrodinger equation:

~ou(t, z) 0%u(t,z)
S PR P
=F (t,z)+ i F,(t,z), (t,z) € (0,T) x (0,0) (3.1)

+ elu(t, 2)|?u(t,z) +iyu(t, z)

where u(t, z) is a complex valued function which is subjected to:

[.Cs.:u(t,0) = fi(t) + if,(¢), (3.2)
B.Cs.:u(0,z) = u(T,z) = 0. (3.3)
Lemma (3.1)

The solution of equation (3.1) with the constraints (3.2), (3.3) is a power series in
€ if exists.
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Proof

At e = 0 (u(t,z) = uy(t, z)), the following linear non-homogeneous equation is

got:
. duy(t, z) 0%uy(t,z) .
i T+ a T-l_ iyue(t,z) = F,(t,z) + i F,(t, 2),
(t,z) € (0,T) x (0,0) (3.4)
uO(t!Z) = wo(t,Z)‘l‘ i¢0(t,Z) (35)
By following Appendix (A), equation (3.4) has the following solution:
— nm
Po(t,z) =e1? z Ton(z)sin ()1, (3.6)
n=0
¢ nm
Bolt,2) = e ) 1o (@sin ()t (37)
n=0

where Ty,,(2z) and 74, (2) can be calculated as illustrated in the general linear
case, (Appendix (A), equations (A.12), (A.13) respectively).

By following Pickard approximation equation (3.1) can be rewritten as:

C0u,(t,z) N 0%u,(t, z)
YTz RRF TS
=F(t,z) + i F,(t,2) — elup,_1(t, 2)|*u,_1(t,z),n > 1 (3.8)

+ i yu,(t, z)

At n = 1, the iterative equation takes the form

o0uy(t,2) N 0%u,(t, z)
"oz o
= Fl(t; Z) + L FZ(tJ Z) - €|u0(t, Z)|2u0(t' Z) = gkl(t ,Z) (39)

+ i yu,(t, 2)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

Pi(t,2) = e ZO(TOn@) + el (2)sin (O, (3.10)
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< nmw
B1(¢,2) = €7 ) (ton(2) + eTin(2))sin (O, (3.1D)
n=0

u (t,z) =y.(t,z) + i p,(t,2), (3.12)
=u; O+ gy, M, (3.13)

where u; (@ =y,

at n = 2, the following equation is obtained:

C0u,(t,2) N 0%u,(t, z)
' T oz MNP T
=F(t,z) + i F,(t,z) — elu (¢, 2)|?u (8, 2z) = k,(t,2) (3.14)

+iyu,(t,z)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

U (t,2) = u,O + gu, W + 20, + 34,3 + g4y, ™, (3.15)
where ul(o) = uy . Continuing like this, one can get:

Uy (t,2) = U, @ + gu,® + £2u,@ + 3y, 4. .+ em g, MM (3.16)

where m(n) is an increasing polynomial inn.As n — oo, the solution (if exists)
can be reached as u(t,z) = lim, .. u,(t, z). Accordingly the solution is a
power series in €.

According to the previous lemma 3.1, one can assume the solution of equation
(3.2) as the following:

oo

u(t,z) = Z e"u,(t,z) (3.17)

n=0
Let u(t,z) = Y(t,z) + i ¢p(t, z),y,¢: arereal valued functions. The
following coupled equations are got:

09 (t,2) _ . 0%y (t, 2)

9z oz TEWT+ dNY —yd — Fi(t,2), (3.18)
dY(t, 02 (t,
lpgz 2 a —(gg 2 eW?+ 9o — v + Fr(t, 2), (3.19)

where Y(t,0) = f,(t), ¢(t,0) = f,(t), and all corresponding other I.Cs. and
B.Cs. are zeros.
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As a third order perturbation solution, one can assume that:

Y(t,z ) =P+ ey + 2P, + 33, (3.20)
d(t,z)=do+ eps + 29, + 3¢3, (3.21)

Where ¥, (t,0) = f1(t), ¢o(t,0) = f,(t), and all other corresponding I.Cs. and
B.Cs. are zeros.

Substituting from equations (3.20) and (3.21) into equations (3.18) and (3.19) and
then equating the equal powers of €, one can get the following set of coupled

equations:
0 ) 0% )
% =a % — Yo — Fi(t, 2), (3.22)
0 ) 0% ,
% =—a %tz) — yyY, + F,(t,2), (3.23)
¢4 (t, 0%, (¢,
% = a % — Yo, + (¢03 + 1/)0¢)02), (3.24)
oY, (t, 02, (t,
% = —a % — yyY, — (¢03 + ¢01/J02): (3.25)
0, (t, 02, (¢,
% =a % — yp, + (31/)021/J1 + 2¢ohopy + ¢1¢02); (3.26)
oY, (¢, 02, (t,
% =—-a % — Yy, — (3¢02¢1 + 20001 + ¢11/102)' (3.27)
a¢3(t' Z) _ azlp3(t' Z)
oz ¢ ot?2 R

+ (31 o + 30 P2 + Pao” + 201 Pod1 + Yoy

+ 2o doh2) (3.28)
al/)3(tJ Z) _ azd)B(tr Z)
Tz YT M

- (3¢12¢0 + 3¢’y + Patho” + 2¢19os + Py ”

+ 2¢ooth2) (3.29)
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and so on. The prototype equations to be solved are:

a¢i(t' Z) _ azlpi(t' Z)

> @ — 5+ Gy, 021 (3.30)
alpi(ti Z) az(pi(ti Z) .
T = T + GZi , i=>1 (331)

where 1;(t,0) = 6;of1(t), ¢;(t,0) = 8;,f>(t), and all other corresponding
conditions are zeros. G4;, G,; are functions to be computed from previous steps.

By following the solution algorithm described in Appendix (A) for the linear case,
the following final results are obtained.

3.2 The order of approximations

The following final expressions can be used to obtain different order of
approximations.

3.2.1 The zero order approximation
The zero order approximation is the linear case illustrated in Appendix (A).

3.2.2  The first order approximation

uy (t,2) = uo(t,z) + e(P,(t,2) + i p1(t,2)) (3.32)
Following Appendix (A), for n=1, we can find that:

= onm
Y,(t,z) =e ¥ Z;)Tln(z)sm (T)t (3.33)
¢,(t,z) =e7 7 Zorln(z)sin (?)t (3.34)

From equations (3.24) and (3.25), we can see that:
Gi1 = e 2" (Po° + Yoto”) (3.35)

Gy1 = e—Zyz(_ Po° — ¢0¢02) (3.36)
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in which
Ti1,(z) = A11(2) sin B,z + (Clz + Bll(z)) cos Bz, (2.37)

T1,(2) = A1, (2) sin B,z + (Cl4 + B, (Z)) cos f3,z, (2.38)

where C;, = —B11(0) and C;4, = —B;,(0) . The rest constants A;;, By,
Ai, ,B1, can be calculated in similar manner as illustrated in Appendix (A).

The absolute value of the zero order approximation can be got using

luy (t, 2) |7 = up(t, 2)|* + 261 + Po1) + 52(1/112 + ¢12) (3.39)

3.2.3 The second order approximation

Uy (t,2) = uy(t,2) + €2( P2 (t, 2) + i P5(t, 7)) (3.40)

By following Appendix (A), for n=2, we can find that:

Y,(t,z) =e™V* Z(:)Tm(z)sin (nTn)t (3.41)
p,(t,z) =eV? Z()TZn(z)sin (g)t (3.42)

From equations (3.26) and (3.27), we can see that:

Gz = €72V%(31 Py + ooty + Y1607 (3.43)
Gaz = €7 (=3¢0 d1 — 200t — P19o”) (3.44)
in which

Tyn(z) = A31(2) sin Bz + (Caz + By1(2)) cos Bz, (2.45)
Tyn(2) = Ay (2) sin Bz + (Cq + By3(2)) cos Bz, (2.46)

where C;, = —B,4(0) and C,4 = —B,,(0) . The rest constants A,;, Byq,
A,, ,B,, can be calculated in similar manner as illustrated in Appendix (A).

The absolute value of the zero order approximation can be got using
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lu (t, 2)1% = lus (t,2)1% + 2o, + PoP2) + 283 WY1, + P1¢2)
b e + 627) (347)

3.3 Case Studies
To examine the proposed solution algorithm, some case studies are illustrated.
3.3.1 Casestudy1

Taking the case F,(t,z) =p;, Fo(t,z) =0 and f;(t) =0,f,(t) = 0, p, is
constant and following the algorithm, the following selected results for the first
and second order approximations are got:

jul |

Fig. (3.1) the first order approximation of |u(1)| ate =0.2,y =1and
a,p, = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.2) the first order approximation of |u(1)| ate=1,y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.3) the first order approximation of |u(1)| ate =0.2,y =1and
a,p;1 =1,T =10,M = 1 for different values of z.
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Fig. (3.4) the first order approximation of |u(1)| ate =0.2,y =1and
a,pp =1, T =10,M = 1 for different values of t.
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Fig. (3.5) the second order approximation of |u(2)| ate = 0.2,y = 1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).

10
Fig. (3.6) the second order approximation of |u(2)| ate=1,y=1anda,p; =
1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.7) the second order approximation of |u(2)| ate =0.2,y =1and
a,p;1 =1, T =10,M = 1 for different values of z.
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Fig. (3.8) the second order approximation of |u(2)| ate =02,y =1and
a,pp =1, T =10,M = 1 for different values of t.
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Fig. (3.9) comparison between first and second approximationsate = 0.2,y = 1
anda,p; =1,T=100M=1,z=3.
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Fig. (3.10) comparison between first and second approximationsate = 0.2,y =
landp; =1, T=100M =1t =3.
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Note: we calculated till second order only taking M=1 for both first order and
second order and we cannot calculate more since the machine gives
“MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.2 Case study 2

Taking the case F,(t,z) = p,sin (%)t, F,(t,z) =0and f;(t) =0, £,(t) = 0,
p1 is constant and following the algorithm, the following selected results for the
first and second order approximations are got:

Fig. (3.11) the first order approximation of |u(1)| ate=1,y=1and a,p; =
1,T = 10with considering only one term on the series (M=1).
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Fig. (3.12) the first order approximation of |u(1)| ate =02,y =1and
a,p, =1, T =10,M = 1 for different values of z.
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Fig. (3.13) the first order approximation of |u(1)| ate =0.2,y =1and
a,p;1 =1,T =10,M = 1 for different values of t.

Fig. (3.14) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p, = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.15) the second order approximation of |u(2)| ate =0.2,y =1and
a,p;1 =1,T =10,M = 1 for different values of z.
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Fig. (3.16) the second order approximation of |u(2)| ate =02,y =1and
a,pp =1, T =10,M = 1 for different values of z.
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Fig. (3.17) comparison between first and second approximationsate = 0.2,y =1
anda,p; =1,T=100M=1,z=3.

|u ]

Fig. (3.18) comparison between first and second approximationsate = 0.2,y =1
anda,p; =1, T=100M =1t =4.

91



Note: we calculated till second order only taking M=1fory = 0 and y = 1 for
both first order and second order respectively and we cannot calculate more
since the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.3 Case study 3

Taking the case F,(t,z) = pie” % F,(t,z) =0 and f,(t) = 0,f,(t) = 0, p; is
constant and following the algorithm, the following selected results for the first
and second order approximations are got:

Fig. (3.19) the first order approximation of |u(1)| ate =02,y =1and
a,p; = 1,T = 10 with considering only one term on the series (M=1)

Fig. (3.20) the first order approximation of |u(1)| ate=1,y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1)

92



jul |
0.08 .

- ~
7 ~
7 INN
0-% //// \1\\\
7 N\
7 \
0.4 /’/ \)
/ \Y
y/ \
0.02 Y \
//
/

Fig. (3.21) the first order approximation of [u| ate = 0.2,y = 1 and

a,p;1 =1, T =10,M = 1 for different values of z.
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Fig. (3.22) the first order approximation of [u| ate = 0.2,y = 1 and

a,p1 =1, T =10,M = 1 for different values of t.

Fig. (3.23) the second order approximation of |u(2)| ate=1,y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1)
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Fig. (3.24) the second order approximation of |u(2)| ate = 0.2,y =1and

a,pp =1, T =10,M = 1 for different values of z.
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Fig. (3.25) the second order approximation of |u(2)| ate = 0.2,y =1and

a,p;1 =1, T =10,M = 1 for different values of t.
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anda,p, =1,T=100M=1,z=3.
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Fig. (3.26) comparison between first and second approximationsate = 0.2,y =1



o o o oo o o

Fig. (3.27) comparison between first and second approximationsate = 0.2,y =1
and a,p1 =1, T=100M =1,t =4.

Note: we calculated till second order only taking M=1 y = 1 for both first order
and second order respectively and we cannot calculate more since the machine
gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.4 Case study 4

Taking the case F;(t,z) = p;, F»(t,z) = 0and f;(t) = p,e™t, f,(t) = 0 where
p1 & p, are constants and following the algorithm, the following selected results
for the first and second order approximations are got:

Fig. (3.28) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.29) the second order approximation of |u(2)| at €=0.2, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).

|2 |
0.4
0.3
0.2

0.1

2 4 6 8 10 t
Fig. (3.30) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (3.31) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p, P2 =1, T = 10,M = 1 for different values of t.
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Fig. (3.32) comparison between first and second approximationsate = 0.2,y =

landa,pq,p, =1, T=10, M =1,z = 3.
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Fig. (3.33) comparison between first and second approximations ate = 0.2,y =
landa,p,p, =1, T=100M =1, t = 4.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.5 Case study 5

Taking the case F;(t,z) = p; sin (g) t, F,(t,z) =0 and f;(t) = p,, fo(t) =
0 where p; & p, are constants and following the algorithm, the following
selected result for the first and second order approximations are got:
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Fig. (3.34) the first order approximation of [u|at £ =0.2, y = 1 and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).

Fig. (3.35) the second order approximation of |u(2)| at e=1, y=1and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (3.36) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p1,p, =1,T =10,M = 10 for different values of z.

98



1 2 3 4 5
Fig. (3.37) the second order approximation of |u(2)| ate = 0.2,y =1and

a,p, P2 =1,T =10,M = 10 for different values of t.
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Fig. (3.38) comparison between first and second approximationate = 0.2,y =1

anda,py,p =1, T =10, z = 3.
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Fig. (3.39) comparison between first and second approximationate = 0.2,y =1
and a,p1,p, =1, T =10, t = 4.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.
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3.3.6 Case study 6

Taking the case F;(t,z) = pie™t, F,(t,z) = 0and fi(t) = p,e™t, fL(t) = 0
where p; & p, are constants and following the algorithm, the following selected
results for the first and second order approximations are got:

e
2R

Fig. (3.40) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).

ZZ L7
L

Fig. (3.41) the second order approximation of |u(2)| at e=1, y=1and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (3.42) the second order approximation of |u(2)| ate =02,y =1and

a,p,pr =1, T = 10,M = 10 for different values of z.
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Fig. (3.43) the second order approximation of |u(2)| ate = 0.2,y =1and
a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (3.44) comparison between first and second approximations at e = 0.2,y =

landa,pq,p, =1, T =10, z =3.
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Fig. (3.45) comparison between first and second approximations ate = 0.2,y =
landa,pq,p, =1, T =10, t = 4.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.7 Case study 7

Taking the case F,(t,z) = p;sin (g) t, F,(t,z) =0 and fi(t) = p,e’t,
f>(t) = 0 where p; & p, are constants and following the algorithm, the following
selected results for the first and second order approximations are got:

FIATS
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Fig. (3.46) the first order approximation of |u(1)| at £e=0.2, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.47) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p,pr =1, T =10,M = 1 for different values of z.
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Fig. (3.48) the first order approximation of |u(1)| ate =0.2,y =1and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (3.49) comparison between first and second approximationsate = 0.2,y =
landa,pq,p, =1, T =10, z = 3.
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Fig. (3.50) comparison between first and second approximations at e = 0.2,y =
landa,pq,p, =1, T =10, t = 3.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.8 Case study 8

Taking the case F;(t,z) = p;, F,(t,z) =0 and f;(t) = p, sin (g) t, fr(t) =
0 where p; & p, are constants and following the algorithm, the following
selected results for the first and second order approximations are got:

Fig. (3.51) the first order approximation of |u(1)| at €=0.2, y =0and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.52) the first order approximation of |u(1)| at e=1, y=0and

a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.53) the first order approximation of [uV| ate = 0.2,y = 0 and
a,p, P2 =1, T =10,M = 1 for different values of t.
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Fig. (3.54) the second order approximation of |u(2)| at e=0.2, y=0and

a, p1, P2 = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (3.55) the second order approximation of |u(®| ate = 0.2,y = 0 and
a,p,p, =1,T =10,M = 10 for different values of z.
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Fig. (3.56) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (3.57) comparison between first and second approximationsate = 0.2,y =

Oand a,p1,p, =1, T =10, z =3.
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Fig. (3.58) comparison between first and second approximationsate = 0.2,y =
0Oand a,p1,p, =1, T =10, t = 3.

Fig. (3.59) the second order approximation of [u(®|at ¢ =02, y =1
anda, p1,p, = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (3.60) comparison between first and second approximationate = 0.2,y =1
and a,p1,p, =1, T =10, z = 3.
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Fig. (3.61) comparison between zero, first and second approximations at
e=02,y=1anda,p;,p, =1, T =10, t =3.

Note: we calculated till second order only taking M=10 and M=1 for y = 0 and
Y = 1 for both first order and second order respectively and we cannot
calculate more since the machine gives “MATHEMATICA KERNEL OUT OF

MEMORY”.

3.3.9 Case study 9

Taking the case F,(t,z) = pe”t, F,(t,z) =0 and f;(t) = p,sin (g) t,
f>(t) = 0 where p; & p, are constants and following the algorithm, the following
selected results for the first and second order approximations are got:

Fig. (3.62) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.63) the first order approximation of |u(1)| ate = 0.2,y = 1and
a,p1,p2 =1, T = 10,M = 1 for different values of z.
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Fig. (3.64) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p, P2 =1, T =10,M = 1 for different values of t.
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Fig. (3.65) comparison between first and second approximationsate = 0.2,y =

landa,pq,p, =1, T =10, z = 3.
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Fig. (3.66) comparison between zero, first and second approximations at
e=02y=1anda,p;,p,=1 T =10, t =4.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.3.10 Case study 10

Taking the case F,(t,z) = p, sin (g) t,F,(t,z) = 0and f;(t) = p, sin (g) t,
f2(t) = 0 where p, & p, are constants and following the algorithm, the following
selected results for the first and second order approximations are got:

Fig. (3.67) the second order approximation of |u(2)| at e=1, y=1and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (3.68) the second order approximation of |u(2)| ate =0.2,y =1and
a,p,pr =1, T = 10,M = 10 for different values of z.
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Fig. (3.69) the second order approximation of |u(2)| ate =02,y =1and
a,p, P2 =1, T =10,M = 10 for different values of t.
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Fig. (3.70) comparison between first and second approximationsate = 0.2,y =

landa,pq,p, =1, T =10, z =3.
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Fig. (3.71) comparison between zero, first and second approximations at
e=02y=1anda,p;,p,=1 T =10, t =4.

Note: we calculated till second order only taking M=1 for y = 1 for both first
order and second order respectively and we cannot calculate more since the
machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.4 Picard Approximation

To validate our previous results, in the absence of the exact solution, let us follow
another approximation technique. The Picard approximation is considered in this
section.

Solving equation (3.1) with the same conditions (3.2) and (3.3) and following the
Picard algorithm which puts the nonlinear terms in the right hand side of the
equation evaluated at the previous step, which means that we solve the linear
case iteratively.

Let u(t,z) = Y(t,z) + i ¢p(t, z),Y,¢: arereal valued functions. The

following coupled equations are got:

0p(t,z) . 02y (t, z)

0z ot2 + e+ Y — v - Fi(t,2) (3.48)
oY(t, 02¢(t,
w;i 2= —‘Sg D_ eW?+ ¢ — vp + F,(t,2) (3.49)

Where y(t,0) = f,(t), ¢(t,0) = f,(t), and all corresponding other I.C. and B.C.
are zeros.

6¢i(t,z) - azl/)i(t,Z)

» et Hi 021 (3.50)
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Yt z) o 02¢;(t,2)
0z dt2
where ;(t,0) = f,(t), ¢;(t,0) = f,(t), and all other all corresponding

conditions are zeros. H;; ,H,; are functions to be computed from previous
steps.

+ Hy , i=1 (3.51)

3.4.1 Picard order of approximations
34.1.1 Zero order approximation

The zero order approximation is the linear case illustrated in Appendix (A).

34.1.2 First order approximation
ou,(t, z 0%u,(t, z
i %) + «a % + elug(t, 2)|%ug(t, z) + i yu,(t, 2)
=F (t,z)+ i F,(t,z),(t,z) € (0,T) x (0, o) (3.52)

With initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u1(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger equation
(3.52) has the following solution:

u(t,2) = P+ iy (3.53)
Y,(t,z) =e 1 Z;)Tln(z)sin (nTn)t (3.54)
¢,(t,z) =e7 7 Zorln(z)sin (?)t (3.55)
Hy; = —e"Fi(t,z) + e_zyzf(lpo3 + Yoo (3.56)
Hy, = eV F,(t,2) — e_zyzf(d)o3 + ¢01/J02) (3.57)
in which
Ti,(z) = A11(2)sin B,z + (Clz + Bll(z)) cos 3,2, (2.58)
T1n(2) = Az sin Bz + (Cy4 + B12(2)) cos Bz, (2.59)
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Where the constants and variables A;;,C;>, By;, 412,C14,B12 can be
calculated in similar manner as illustrated in Appendix (A).

The absolute value of the first order approximation is:
lu, (6,2)1> = ¥i° + ¢,° (3.60)
3.4.13 Second order approximation

_0u,(t,2) N 0%u,(t, z)
: 0z * ot?
=F (t,z) + i F,(t,z),(t,z) € (0,T) x (0, ) (3.61)

+ elu (¢, 2)1Puy (8, 2) + i yuy(t, 2)

with initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger equation
(3.61) has the following solution:

u,(t,z) = Y, + i ¢, (3.62)

By following Appendix (A), for n=2, we can find that:

Y,(t,z) =e Y i T,,(z)sin (n_n)t (3.63)
n=0 " T

p,(t,z) =e7 " ZOTZn(Z)sin (g)t (3.64)
Hi, = —eV?Fi(t,z) + e_zyzf(l/hg + P11%) (3.65)
Hy, = €e""Fy(t,2) —e e(¢1” + ¢131°) (3.66)
in which

Ty, (z) = Ay1(2) sin B,z + (sz + BZl(z)) cos 8,2, (2.67)
Ton(2) = Ay, sin B,z + (C24 + BZZ(Z)) cos 3,2, (2.68)

where the constants and variables A,;,C,,, By1, Ay,,C4,B,, can be
calculated in similar manner as illustrated in Appendix A.

The absolute value of the second order approximation is:
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lua(6,2)1% = P.° + @57 (3.69)
3.5 Case Studies, Picard

To examine the proposed solution algorithm, some case studies are illustrated.

3.5.1 Casestudy1

Taking the case F;(t,z) = p;e ! ,F,(t,z) =0and f1(t) =0, f,(t) = 0, p; is
constant and following the algorithm of Picard Approximation, the following
selected results for the first and second order approximations are got:

Fig. (3.72) the first order approximation of |u(1)| ate=0.2, y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).

Fig. (3.73) the first order approximation of |u(1)| ate=1, y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.74) the first order approximation of |u(1)| ate =02,y =1and
a,p; =1,T =10,M = 1 for different values of z.
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Fig. (3.75) the first order approximation of |u(1)| ate =02,y =1and
a,pp =1, T =10,M = 1 for different values of t.

Note: we calculated till first order at y = 1 and we cannot calculate more since
the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.5.2 Case study 2

Taking the case F;(t,z) = p; sin (g) t,F,(t,z) =0and f,(t) =0, f,(t) = 0,
p, is constants and following the algorithm of Picard Approximation, the
following selected results for the first and second order approximations are got:
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Fig. (3.76) the first order approximation of |u(1)| ate =0.2, y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).

100
Fig. (3.77) the first order approximation of |u(1)| ate=1, y=1and
a,p; = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.78) the first order approximation of [u| ate = 0.2,y = 1 and
a,p;1 =1,T =10,M = 1 for different values of z.
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Fig. (3.79) the first order approximation o

f|u(1)| ate = 0.2,y = 1and

a,p;1 =1, T =10,M = 1 for different values of t.

Note: we calculated till first order at y =

1 and we cannot calculate more since

the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

3.5.3 Case study 3

Taking the case F;(t,z) = p;,F,(t,z) =0 and f;(t) = p,, fo(t) = 0 where

p1 & p, are constants and following the
following selected results for the first and

lul |

algorithm of Picard Approximation, the
second order approximations are got:

Fig. (3.80) the first order approximation of |u(1)| ate=1, y=0and

a,p1,p2, = 1,T = 10 with considering on

ly one term on the series (M=1).
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Fig. (3.81) the first order approximation of [u| ate = 0.2,y = 0 and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig. (3.82) the second order approximation of |u(2)| ate =0.2, y=0and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=10).

|2 |

Fig. (3.83) the second order approximation of |u(2)| ate =0.2,y =0and
a,p,pr =1, T = 10,M = 10 for different values of z.

119



ul

0.6 / \ /

0.4
0.3
0.2 S
0.1 Y

2 4 6
Fig. (3.84) comparison between first and second approximations at € =

0.002,y =0and a,p,p», =1, T =10, z = 20.
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Fig. (3.85) comparison between first and second approximationsate = 0.2,y =
Oanda,py,pp =1, T =10, t = 4.

3.5.4 Case study 4

Taking the case F,(t,z) = pye”t, F,(t,z) =0 and fi(t) = p,e”t, fL,(t) = 0
where p; & p;, are constants and following the algorithm of Picard
Approximation, the following selected results for the first and second order

approximations are got:
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Fig. (3.86) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.87) the first order approximation of |u(1)| ate =02,y =1and
a,p1,p, =1,T =1,M = 1 for different values of z.
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Fig. (3.88) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p,p, =1,T =1,M = 1 for different values of t.

Note: we calculated till first order at y = 1 and we cannot calculate more since
the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.
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3.5.5 Case study 5

Taking the case F,(t,z) = p;sin (g) t, F,(t,z) =0 and fi(t) =p,e’t,

fo(t) = 0 where p; & p, are constants and following the algorithm of Picard

Approximation, the following selected results for the first and second order
approximations are got:
U2 |
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Fig. (3.89) the second order approximation ofglu(z)ilat e=0.2,y=0and

a,p, P =1,T =1, M = 10 for different values of t.
| U2 |
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0.1

Fig. (3.90) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p,p, =1,T =1,M = 10 for different values of t.

Fig. (3.91) the first order approximation of [u|at e =1, y = 1 and
a, p1,p2, = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (3.92) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p,p, =1,T =1,M = 1 for different values of z.
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Fig. (3.93) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p,p, =1,T =1,M = 1 for different values of t.

3.5.6 Case study 6

Taking the case F;(t,z) = p1,F,(t,z) = 0 and f;(t) = p, sin (g) t,Lbt)=20
where p; & p, are constants and following the algorithm of Picard
Approximation, the following selected results for the first and second order

approximations are got:
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Fig. (3.94) the first order approximation of |u(1)| at £e=0.2, y=0and

a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).

Fig.(3.95) the first order approximation of |u(1)| at e=1, y=0and

a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig.(3.96) the first order approximation of [uM| ate = 0.2,y = 0 and @, py, p, =
1, T =1,M = 1 for different values of t.
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Fig.(3.97) comparison between first and second approximationsate = 0.2,y =0

anda,py,po =1, T =10, z = 20.
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Fig.(3.98) comparison between first and second approximationsate = 0.2,y =0
anda,p,po =1, T =10, t = 4.

Fig.(3.99) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (3.100) the first order approximation of |u(1)| ate =0.2,y =1and
a,p,p, =1,T =1,M = 1 for different values of z.
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Fig.(3.101) the first order approximation of |u(1)| ate =0.2,y =1and
a,p, P2 =1,T =1, M = 1 for different values of t.

3.5.7 Case study 7

Taking the case F;(t,z) =pe”t, F,(t,z) =0 and f,(t) = p, sin (g) t
, f2(t) = 0 where p; & p, are constants and following the algorithm of Picard
Approximation, the following selected results for the first and second order
approximations are got:
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Fig.(3.102) the first order approximation of |u(1)| at e=0.2, y=1and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig.(3.103) the first order approximation of |u(1)| ate =02,y =1and
a,p, P2 =1, T =1,M = 1 for different values of z.
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Fig.(3.104) the first order approximation of |u(1)| ate =0.2,y =1and
a,p,p, =1,T =1,M = 1 for different values of t.
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3.6 Comparison between Perturbation & Picard Approximation

We are here giving both perturbation method and Picard approximation results in
the same graph for some selected cases to compare between the two methods.
3.6.1 Casestudyl

Taking the case F,(t,z) = py, F,(t,z) = 0and f;(t) = p,, f5(t) = 0, the

following results are obtained.
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Fig.(3.105) comparison between Picard approximation and Perturbation method

for firstorderat e = 0.2,y =0anda,p,,p, =1, T =10,z = 5.
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Fig. (3.106) comparison between Picard approximation and Perturbation method

for firstorderat e =1,y =0anda,p,, 0, =1, T =10,z = 5.
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Fig. (3.107) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =0anda,py,p, =1, T = 10,t = 3.
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Fig. (3.108) comparison between Picard approximation and Perturbation method
for firstorderat ¢ = 0.2,y =0and a,p,,p, =1, T = 10,t = 3.
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Fig. (3.109) comparison between Picard approximation and Perturbation method
for second orderat ¢ =0.2,y =0anda,p,,p, =1, T =10,z =5.
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Fig. (3.110) comparison between Picard approximation and Perturbation method
forfirstorderat € = 0.2,y =1 and a,p,p, =1, T =10,z = 5.
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Fig. (3.111) comparison between Picard approximation and Perturbation method
forfirstorderat e =1,y =1 and a,p,p, =1, T =10,z =5.
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Fig. (3.112) comparison between Picard approximation and Perturbation method
for firstorderat € =0.2,y =1 and a,p4,p, =1, T =10,t = 3.

3.6.2 Case study 2

Taking the case F;(t,z) = pie” %, F,(t,z) = 0and f,(t) = p,, f>(t) = 0, the
following results are obtained.
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Fig. (3.113) comparison between Picard approximation and Perturbation method
for first orderat e = 0.2,y =1 and a,py,p, =1, T =10,z =5.
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Fig. (3.114) comparison between Picard approximation and Perturbation method
forfirstorderat e =1,y =1 and a,py,p, =1, T =10,z =5.
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Fig. (3.115) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2,y =1 and a,p;,p, =1,T =10,t = 3.
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Fig. (3.116) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =1 and a,p, 0, =1,T =10,t = 3.

3.6.3 Case study 3

Taking the case F,(t,z) = p; sin (g) t, F,(t,z) = 0and f;(t) = p,, f,(t) = 0O,

the following results are obtained.
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Fig .(3.117) comparison between Picard approximation and Perturbation method
for firstorderat € =0.2,y =1 and a,p;,p, =1,T =10, z=5.
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Fig. (3.118) comparison between Picard approximation and Perturbation method
forfirstorderat e =1,y =1 and a,p,p, =1, T =10, t = 3.

3.6.4 Case study 4

Taking the case F;(t,z) = pe” %, F,(t,z) = 0and f;(t) = pye7¢, f>(t) = 0, the
following results are obtained.
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Fig. (3.119) comparison between Picard approximation and Perturbation method
for firstorderat e = 0.2,y =1 and a,py,p, =1, T =10, z=5.
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Fig. (3.120) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2,y =1 and a,p,p,=1,T =10, t = 3.

3.6.5 Case study 5

Taking the case F;(t,z) = p; sin (g) t, F,(t,z) = 0and f,(t) = p,et, fo(t) =

0, the following results are obtained.
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Fig. (3.121) comparison between Picard approximation and Perturbation method
forfirstorderat € =0.2,y =1 and a,p;,p, =1,T =10, z=5.
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Fig. (3.122) comparison between Picard approximation and Perturbation method

forfirstorderat e=1,y =1 and a,p1,p, =1,T =10, t = 3.
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3.6.6 Case study 6

Taking the case F;(t,z) = p;e~t, F,(t,z) = 0and f;(t) = p, sin (g) t,fo(t) =
0, the following results are obtained.
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Fig. (3.123) comparison between Picard approximation and Perturbation method
for firstorderat e=1,y =1 and a,p,p, =1,T =10, z=5.
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Fig. (3.124) comparison between Picard approximation and Perturbation method
for firstorderat € = 0.2,y =1 and a,pq,p, =1, T =10, t =3.

3.6.7 Case study 7

Taking the case F,(t,z) = p, sin (%), F,(t,z) = 0and f;(t) = p, sin (g) t
, [(t) = 0, the following results are obtained.

134



U]

1 =
0.8 g \
0.6 — ulPic
0.4
--- ulPer
0.2

L
2 4 6 8 10
Fig. (3.125) comparison between Picard approximation and Perturbation method
for firstorderat e =0.2,y =1 and a,p;,p, =1, T =10, z=5.
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Fig. (3.126) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =1 and a,p,,p, =1,T =10, t =3.

3.7 T-Study

We are here examining the behavior of Perturbation method and Picard
Approximation against different values of T through case studies on the same

graph.

3.7.1 Case Studies, Perturbation

3.7.1.1 Case study 1

Taking the case F;(t,z) = p1,F,(t,z) =0, fi(t) = p,, f>(t) = 0 and following
the algorithm, the following selected results for the first and second order

approximations are got:
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Fig.(3.127) the first order approximation of |u(1)| at €e=0.2,y=0and
a,p1, P2 = 1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (3.128) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1,p2 =1,M =10,z = 10 for different values of T =10, 20and 60 respectively.
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Fig. (3.129) the second order approximation of |u(2)| at ¢e=0.2,y=0and
a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig.(3.130) the second order approximation of |u(2)| ate =0.2,y =0and

a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (3.131) the first order approximation of |u(1)| ate=1,y=1and

a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig.(3.132) the first order approximation of |u(1)| at e=0.2,y=1and

a,p1, P2 =1,M = 10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (3.133) the second order approximation of |u(2)| at e=0.2,y=1and
a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (3.134) the second order approximation of [u®|at e =1,y = 1 and
a,pr, P2 =1,M = 10,z = 10 for different values of T =10, 20 and 60
respectively.

3.7.1.2 Case study 2

Taking the case F;(t,z) = Sin (g t),Fz(t, z) =0,f(t) = p,, fo(t) = 0and
following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (3.135) the first order approximation of |u(1)| at e=02,y=1and
a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.136) the first order approximation of |u(1)| ate=1,y=1and
a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.137) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p2 =1,M =10,z = 10 for different values of T =10, 20and 60 respectively.
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Fig. (3.138) the second order approximation of |u(2)| at e=0.2,y=1and
a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.

3.7.1.3 Case study 3

Taking the case F,(t,z) = p,e”t, F(t,z) =0,f,(t) = p,e” 5, f,(t) = 0 and
following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (3.139) the first order approximation of |u(1)| at e=02,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.140) the first order approximation of |u(1)| at e=0.2,y=1and
a,pr, P2 =1,M = 10,z = 10 for different values of T =10, 20and 60 respectively.
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Fig. (3.141) the second order approximation of |u(2)| ate=1,y=1and
a,p1, P2 =1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.142) the second order approximation of |u(2)| at e=02,y=1and
a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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3.7.1.4

Case study 4

Taking the case F,(t,z) = p; sin (g t),FZ(t, z)=0,fi(t) =p,e 5, ()= 0

and following the algorithm, the following selected results for the first and second

order approximations are got:
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Fig. (3.143) the first order approximation of |u(1)| at e=0.2,y=1and

a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (3.144) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p, =1,M =10,z = 10 for different values of T =10, 20 and 60

respectively.
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Fig. (3.145) the second order approximation of |u(2)| ate=1,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.146) the second order approximation of |u(2)| at e=0.2,y=1and
a,p1, P2 =1,M = 10,z = 10 for different values of T =10, 20 and 60
respectively.

3.7.1.5 Case study 5
Taking the case F;(t,z) = p;e t, F,(t,z) =0, f1(t) = p, sin (? t),fz(t) =0

and following the algorithm, the following selected results for the first and
approximation are got:
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Fig. (3.147) the first order approximation of |u(1)| at e=0.2,y=1and

z

a,p1,p2 =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.148) the first order approximation of |u(1)| ate=1,y=1and
a,p1,p2 =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.149) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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3.7.1.6 Case study 6
Taking the case F,(t,z) = p, sin (g t),FZ(t, z) =0, fi(t) = p, sin (g t),

f>(t) = 0 and following the algorithm, the following selected results for the first

approximation are

got:
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Fig. (3.150) the first order approximation of |u(1)| at ¢
a,p, P2 =1,M = 1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.151) the first order approximation of |u(1)| at e=02,y=1and
a,pi1,p, =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.1.7 Case study 7
Taking the case F;(t,z) = p,, F,(t,z) = 0,f,(t) =0, f,(t) = 0 and following
the algorithm, the following selected results for the first and second order

approximations are got:
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Fig. (3.152) the first order approximation of |u(1)| ate=1,y=1and
a,p;1 =1,M = 1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.153) the first order approximation of |u(1)| at e=0.2,y=1and
a,p;1 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (3.154) the second order approximation of |u(2)| ate=1,y=1and
a,p;1 =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.155) the second order approximation of |u(2)| at e=0.2,y=1and
a,pp =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2 Case Studies, Picard

3.7.2.1 Casestudy1

Taking the case F;(t,z) = p1, F,(t,z) =0, f,(t) = p,, f,(t) = 0 and following
the algorithm, the following selected result for the first and second order
approximations are got:

U T study
10

—— ulT10

N A~ OO

— — ulTe0

y4

20 40 60 30 100

uM|at £e=0.2,y =0and
a,p, P2 =1,M = 1,t = 4 for different values of T =10, 20 and 60 respectively.

Fig. (3.156) the first order approximation of
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Fig. (3.157) the first order approximation of |u(1)| at e=0.2,y=0and
a,pi1,p, =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (3.158) the second order approximation of |u(2)| at €e=0.002,y =0and

a,p1,p, =1,M =10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (3.159) the first order approximation of |u(1)| at e=02,y=1and
a,p,p, =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.160) the first order approximation of |u(1)| at e=0.2,y=1and
a,pi1,p2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2.2 Case study 2

Taking the case F,(t,z) = p;e %, F,(t,z) =0, f,(t) = p,, f>(t) = 0and
following the algorithm, the following selected results for the first approximation

are got:

u| T study
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Fig. (3.161) the first order approximation of |u(1)| ate=1,y=1and
a,p1,p2 =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.162) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1, P2 =1,M = 1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2.3 Casestudy 3

Taking the case F;(t,z) = p;sin (% t), Fo(t,z) =0,f,(t) =p,, fLb(t) =0
and following the algorithm, the following selected results for the first
approximation are got:

U T study
1.2
1\/
0-8\ — ulT10
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Fig. (3.163) the first order approximation of |u(1)| at e=0.2,y=1and
a,pi,p, =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (3.164) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p, =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2.4 Casestudy 4

Taking the case F;(t,z) = p, sin (? t),FZ(t, z)=0,f,(1t) =pe L L) =0
and following the algorithm, the following selected results for the first
approximation are got:
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Fig. (3.165) the first order approximation of |u(1)| at e=0.2,y=1and
a,p,p, =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.166) the first order approximation of |u(1)| at e=02,y=1and
a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2.5 Casestudy5

Taking the case F,(t,z) = pjet, F,(t,z) =0, f;(t) = p,sin (g t),fz(t) =
0 and following the algorithm, the following selected results for the first
approximation are got:
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Fig. (3.167) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p2 =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.168) the first order approximation of |u(1)| ate=1,y=1and
a,p,p, =1,M =1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.169) the first order approximation of |u(1)| at e=02,y=1and
a,p1, P2 =1,M = 1,z = 10 for different values of T =10, 20 and 60 respectively.

3.7.2.6 Case study 6

Taking the case F,(t,z) = p, sin (g t),F2 (t,z) = p1, f1(t) = p,sin (g t),
f>(t) = 0 and following the algorithm, the following selected results for the first
approximation are got:
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Fig. (3.170) the first order approximation of |u(1)| ate=1,y=1and
a,p, P2 =1,M = 1,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (3.171) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Chapter4 Homogeneous Nonlinear Quintic Schrodinger Equations

4.0 Introduction

In this chapter, a perturbing nonlinear quintic homogeneous Schrodinger
equation is studied under limited time interval, complex initial conditions and
zero Neumann conditions. The perturbation and Picard approximation methods
together with the eigenfunction expansion and variational parameters methods
are used to introduce an approximate solution for the perturbative nonlinear case
for which a power series solution is proved to exist. Using Mathematica, the
solution algorithm is tested through computing the possible orders of
approximations. The method of solution is illustrated through case studies and
figures.

4.1 The non- linear case
Consider the homogeneous non-linear Schrodinger equation:

~ou(t, z) 0%u(t,z)
‘Tz T o
(t,z) € (0,T) x (0,0) (4.1)

+ elu(t, 2)|*u(t,z) +iyu(t,z) =0,

where u(t, z) is a complex valued function which is subjected to:

[.Cs.:u(t,0) = fi(t) + if,(¢t), (4.2)
B.Cs.:u(0,z) = u(T,z) = 0. (4.3)
Lemma 4.1

the solution of equation (4.1) with the constraints (4.2), (4.3) is a power series in €
if exists.

Proof

At € = 0 (u(t,z) = uy(t, z)), the following linear homogeneous equation is got:
C0ug(t, 2) 0%uy(t, z)
| ———t+ ¢ ————=

% *— +iyuy(t,z) =0,(t,z) € (0,T) x (0,0) (4.4)
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uO(trZ) = l/)o(t,Z) + i¢0(t,Z) (45)

By following Appendix (A), the linear Schrodinger equation (4.4) has the following

solution:

Yolt,2) = e Y Ty (Dsin (o, (4.6)
n=0

Po(t,z) =e7 Z Ton(2)sin (%)t (4.7)
n=0

Where Ty, (z) and 7y, (z) can be calculated as illustrated in the general linear
case, (Appendix (A), equations (A.12), (A.13) respectively).

By following Pickard approximation equation (4.1) can be rewritten as:

_aun(t,z)_l_ 0%u,(t, z)
"Toz YT a2

+ i yu,(t,z) = —¢lu,_, (¢, 2)|*u,—1 (¢, 2),n = 1(4.8)

at n = 1, the iterative equation takes the form

0wy (t,2) 0%uy(t,z)
i T+ @ — 7 + i yu (t,z) = —eluy(t, 2)|*uy (¢, 2)

= ek,(t,2) (4.9)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

Wi(t,7) = e V2 Z(T(,n(z) + Tyn(2))sin (g)t, (4.10)
n=0

¢,(t,z) =e7 7 z(r(m(z) + srln(z))sin (g)t, (4.11)
n=0

u(t,z) =yY.(t,z) + i p(t,2), (4.12)

=u; O+ gy, M, (4.13)

where u; @ =y,
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At n = 2, the following equation is obtained:

C0u,(t, 2) N 0%u,(t, z)
' Tz NP YS
= ehy(t,2) (4.14)

+ iyu,(t,z) = —¢luy (¢, 2)|*uy (¢, 2)

which can be solved as a linear case with zero initial and boundary conditions. The
following general solution can be obtained:

U (t,2) = u, O + eu, W + 620, + 34,3 + g4y, (4.15)
where u,(® =y, . Continuing like this, one can get:
Uy (t,2) = U, @ + e u,® + £ 2u, @ + &3 u,® 4 oo 4 gmO) g, MO, (4.16)

where m(n) is an increasing polynomialinn.As n — o, the solution (if exists)
can be reached as u(t,z) = lim,_.. u,(t, z). Accordingly the solution is a
power seriesin € .

According to the previous lemma (4.1), one can assume the solution of equation
(4.1) as the following:

[0e]

u(t,z) = Z enu (t,2) (4.17)

n=0

Let u(t,z) = Y(t,z) + i ¢p(t, z),y,¢: arereal valued functions. The
following coupled equations are got:

dp(t,z)  9*Y(t,z)

97 @« — 5 +e@W*+ ¢Y —y¢, (4.18)
aY(t, 02 (t,
l/);; Z) = —q ggitz’- Z)—E(ll)2+ ¢2)2¢_y¢’ (419)

Where ¥(t,0) = f;(t), ¢(t,0) = £,(t), and all other corresponding I.Cs. and
B.Cs. are zeros.

As a third order perturbation solution, one can assume that:

Y(t,z ) =Po+ ey + 2P, + 33, (4.20)

d(t,z)=do+ eps + 29, + 3¢3, (4.21)
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Where ¥, (t,0) = f1(t), ¢o(t,0) = f,(t), and all other corresponding I.Cs. and
B.Cs. are zeros.

Substituting from equations (4.20) and (4.21) into equations (4.18) and (4.19) and
then equating the equal powers of €, one can get the following set of coupled

equations:

ad)O(ti Z) .
oz

alpO (t, Z) _
0z B

a¢1(t' Z) _
0z B

alpl (t' Z) _
oz

a¢2 (t, Z) _
0z B

alpZ (t, Z) _
0z B

0%, (¢,
a % - y(l)o}
0%, (t,
- d:f)()t(z Z) - yll}()
0%y, (¢,
a % — yp, + (¢02 + ¢02)2 Yo,

0% (t,
—a %Z) — vy — (do® + ‘Poz)z Po,

02 )
a # — v + (po” + ¢02)2¢1

+ (490’1 + 4 o’ b1 + WoP1de” + 4o’ Pod1) Yo,

0%, (t,
-« % — v, — (do” + ¢02)2¢1

— (49" Y1 + 4 o’ b1 + 4PoPido” + Ao Pob1) b0

and so on. The prototype equations to be solved are:

¢, (¢, 2)
0z -

Y (t, 2)
0z -

Ozl,bi(t,z) .

a T-l_ Gli ) i>1
aqui(t,z) .

a T-l_ GZi ) i>1

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

Where ;(t,0) = 8;of1(t), ¢;(t,0) = J;f>(t), and all other all corresponding
conditions are zeros. Gy;, G,; are functions to be computed from previous steps.

Following the solution algorithm described in Appendix (A) for the linear case, the
following final results are obtained.
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4.2 The order of approximations

The following final expressions can be used to obtain different order of
approximations.

4.2.1 The zero order approximation

The zero order approximation is the linear case illustrated in Appendix (A).

4.2.2 The first order approximation

u (t,z) =uy(t,z) + e( Y, (t,z) + i ¢py(t, Z)) (4.30)
By following Appendix (A), for n=1, we can find that:
- nm
Wt =77 Y T(sin Gt (431)
n=0
- nm
Bi(t,2) = e ) T (@sin ()t (4:32)
n=0

From equations (4.24) and (4.25), we can see that:

Gi1 = e (o’ + $o*)* Py (4.33)
Ga1 = — e (o” +10")? o (4:34)
in which

Tin(2) = Ay1(2) sin Bz + (Ci2 + B11(2)) cos Bz, (4.35)
T1n(2) = A1z (2) sin Bz + (Cy4 + By2(2)) cos Bz, (4.36)

where C;, = —B;1(0) and C;4, = —B;3(0). The rest constants A;;, Bii,
Ai, ,B1, can be calculated in similar manner as illustrated in Appendix (A).

The absolute value of the first order approximation can be got using

lus (t,2)1% = lup(t, 2)1* + 2e(WPop; + Pod1) + 52(1/112 + ¢12) (4.37)
4.2.3 The second order approximation

Uy (t,2) =uy(t,2) + €2( P, (t, 2) + i P, (t, 7)) (4.38)
By following Appendix (A), for n=2, we can find that
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Y,(t,z) =eV* Z T,,(z)sin (nTn)t, (4.39)
n=0

e}

p,(t,z) =e7V? Z T, (Z)sin (%)t, (4.40)

n=0
From equations (4.26) and (4.27), we can see that:
Gy = e_4yz((¢02 + lpoz)zl/h
+ (49 Y1 + 4 9o’ dy + o1 o’ + AP dodr)Yo)  (441)
Gy = —e~ 7 ((¢02 + ¢02)2¢1
+ (4901 + 4 do’by + 4hoPide + 4o Podr)de)  (442)

in which
T,,(z) = Ay;1(2) sin B,z + (sz + BZl(Z)) cos f3,z, (4.43)
Ton(2) = Ay, (2) sin Bz + (C24 + Bzz(z)) cos f3,z, (4.44)

Where C,, = —B,;(0) and C,, = —B,,(0). The rest constants A;;, Bii,
A4, ,B1, can be calculated in similar manner as illustrated in Appendix A.

The absolute value of the second order approximation can be got using

lu, (t, 2)1% = luy (t,2)1% + 2o, + PoP2) + 283 WY1, + P1¢2)
+ &t (Y,° + ¢,°) (4.45)

4.3 Case studies
To examine the proposed solution algorithm, some case studies are illustrated.
4.3.1 Casestudyl

Taking the case and f;(t) = p;, f,(t) = p, where p; & p, are constants and
following the algorithm, the following selected results for the first and second
order approximations are got:
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Fig. (4.1) the zero order approximation of |u(°)| at e=0,y=0and
a, p1, P> = 1,T = 10 with considering only one term on the series (M=1)

Fig. (4.2) the first order approximation of [u¥|at & = 0.1,y = 0 and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (4.3) the first order approximation of [u®¥|at ¢ =10.2, y = 0 and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.4) the first order approximation of |u(1)| at e=1, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.5) the first order approximation of |u(1)| ate =0.2,y =0and a, py,p; =

1, T =10,M = 10 for different values of z.
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Fig. (4.6) the first order approximation of |u(1)| ate =02,y =0and a,p,p; =
1, T =10,M = 10 for different values of t.
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Fig. (4.7) the first order approximation of |u(1)| ate=1,y=0and a,pq,p; =
1,T = 10,M = 10 for different values of t.

Fig. (4.8) the second order approximation of |u(2)| at €¢=0.2, y =0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.9) the second order approximation of |u(2)| ate =0.02,y = 0and
a,p,pr =1, T = 10,M = 10 for different values of z.
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Fig. (4.10) the second order approximation of |u(2)| ate =0.2,y =0and
a,p,pr =1,T =10,M = 10 for different values of t.

Fig.(4.11) the zero order approximation of [u(®|at ¢ =0, y = 1 and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig.(4.12) the first order approximation of |u(1)| at £e=0.2, y=1and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig.(4.13) the first order approximation of |u(1)| at e=1, y=1and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig.(4.14) the first order approximation of |u(1)| ate =02,y =1anda,p,p, =
1, T = 10,M = 10 for different values of z.
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Fig.(4.15) the first order approximation of |u(1)| ate =02,y =1and a,pq,p, =
1, T =10,M = 10 for different values of t.
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Fig. (4.16) the first order approximation of |u(1)| ate=1,y=1and a,p1,p, =
1, T =10,M = 10 for different values of t.

Note: we calculated till second order only taking M=10 for y = 0, while we
calculated till first order taking M=10 for y = 1 and we cannot calculate more
since the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

4.3.2 Case study 2

Taking the case f;(t) = p;, fo(t) = p,sin (g) t , where p, & p, are
constants and following the algorithm, the following selected results for the first
and second order approximations are got:

Fig. (4.17) the first order approximation of |u(1)| at £ =0.05, y=0and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.18) the first order approximation of |u(1)| at £e=0.2, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (4.19) the first order approximation of |u(1)| at e=1, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.20) the first order approximation of |u(1)| ate =0.2,y =0and

a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.21) the first order approximation of |u(1)| ate =0.2,y =0and

a,p1,p, =1,T =10,M = 10 for different values of t.
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Fig. (4.22) the first order approximation of |u(1)| ate=1,y=0and a,p1,p, =
1, T =10,M = 10 for different values of t.

Fig. (4.23) the second order approximation of |u(2)| at €=0.2, y=0and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.24) the second order approximation of |u(2)| ate = 0.05,y = 0and
a,p,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.25) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p, P2 =1, T =10,M = 10 for different values of t.
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Fig.(4.26) comparison between first and second approximations at e = 0.2,y =
Oand a,pq,p, =1, T =10, z = 10.
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Fig. (4.27) the first order approximation of |u(1)| at £e=0.2, y=1and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (4.28) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

ul |
1.5
1.25
1 — z=0
0.75 —z=1
0.5 // g \\ . 7=2
0'25 e I o ~ - - Z:4
e AR,
e N .

Fig. (4.29) the first order approximation of |u(1)| ate=1,y=1and a,pq,p; =
1,T = 10,M = 10 for different values of z.
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Fig. (4.30) the first order approximation of |u(1)| ate =02,y =1and
a,p,p, =1,T =10,M = 10 for different values of z.

Note: we calculated till second order only taking M=10 for y = 0, while we
calculated till first order taking M=10 for y = 1 and we cannot calculate more
since the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

4.3.3 Case study3

Taking the case f;(t) = p,e~t, fo(t) = p,e~t where p; & p, are constants and
following the algorithm, the following selected results for the first and second

order approximations are got:

Fig. (4.31) the first order approximation of |u(1)| at e=1, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.32) the first order approximation of |u(1)| ate = 0.2,y = 0 and
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a,p, Pz =1, T = 10,M = 10 for different values of z.
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Fig. (4.34) the first order approximation of |u(1)| ate=1,y=0and a,p1,p, =

10

1, T =10,M = 10 for different values of t.
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Fig. (4.33) the first order approximation of |u(1)| ate=1,y=0and a,p1,p; =
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Fig. (4.35) the second order approximation of |u(2)| at €¢=0.2, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.36) the second order approximation of |u(2)| ate = 0.2,y =0and

a,p,pr =1, T = 10,M = 10 for different values of z.
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Fig. (4.37) the second order approximation of |u(2)| ate =0.2,y =0and

a,p, P2 =1, T =10,M = 10 for different values of t.
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Fig. (4.38) comparison between first and second approximationsate = 0.2,y =
Oanda,pq,p, =1, T =10, z = 10.
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Fig. (4.39) comparison between first and second approximationsat e = 0.2,y =
Oanda,pq,pp, =1, T =10, t =4.
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Fig. (4.40) the first order approximation of |u(1)| at €=0.2, y=1and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.41) the first order approximation of |u(1)| at e=1, y=1and
a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.42) the first order approximation of |u(1)| ate =0.2,y =1and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.43) the first order approximation of |u(1)| ate = 0.2,y = 1and

a,p,p2 =1, T =10,M = 10 for different values of t.
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Note: we calculated till second order only taking M=10 for y = 0, while we
calculated till first order taking M=10 for y = 1 and we cannot calculate more
since the machine gives “MATHEMATICA KERNEL OUT OF MEMORY”.

4.4 Picard Approximation
Consider the homogeneous nonlinear Schrodinger equation:

~ou(t,z) 0%u(t,z) . _
P— + «a T-l_ elu(t,z)|*u(t,z) +iyu(t,z) =0,

(t,z) € (0,T) x (0,0) (4.46)

where u(t, z) is a complex valued function which is subjected to the initial and
boundary conditions mentioned before in equations (4.2), (4.3) respectively.

Let u(t,z) = Y(t,z) + i ¢p(t, z),Y,¢: arereal valued functions. The
following coupled equations are got:

0p(t,z) 0*Y(t,2)

07 @« — 5+ @+ ¢~ v, (4.47)
NP (t, 3% ¢(t,
lp(gz 2o ?E—z D e+ ¢ - 1o, (4.48)

Where ¥(t,0) = f,(t), ¢(t,0) = £,(t), and all other corresponding I.Cs. and
B.Cs. are zeros.

a¢i(t' Z) _ azlpi(t' Z)

> @~ Hy i1 (4.49)
alpi(t' Z) aqui(t,z) .
WL a2y, iz (450)

Where ¥;(t,0) = f;(t), ¢;(t,0) = f,(t), and all other all corresponding
conditions are zeros. Hy;, H,; are functions to be computed from previous steps.
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4.4.1 Picard order of approximations

4.4.1.1 Zero order approximation

The zero order approximation is similar as illustrated in Appendix (A).

4.4.1.2 First order approximation
ou, (t, z 0%u,(t, z
[ — 16(2 ) + «a —61t(2 ) + €|u0(t,Z)|4u0(t,z) +i Vul(t; Z) =0, (t,Z)
€ (0,T) x (0,) (4.51)

With initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger equation
(4.51) has the following solution:

u(t,z) =P, + iy, (4.52)

Y,(t,z) =e V% z Ty, (2)sin (g)t, (4.53)
n=0

P,(t,z) =e7 z T1n(2)sin (nTﬂ)t (4.54)
n=0

Following Appendix (A), for n=1, we can find that:

Hy, = ge™7 (Yo + ¢02) %Y, (4.55)
Hyy = — e ™7 (o” + Po°)? o (4.56)
where

Tin(z) = Ay1(2) sin Bz + ((C1z + By1(2)) cos Bz, (4.57)
T10(2) = Ay (@)sin Bz + ((Cr4 + B12(2)) cos Bz, (4.58)

Where the constants and variables A;;,Ci>, Bi1, A12,C14,B12 can be
calculated in similar manner calculated in similar manner as illustrated in
Appendix (A).

The absolute value of the first order approximation is:
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luy(t,2)12 = P2 + ¢y° (4.59)
4.4.1.3 Second order approximation

_E)uz(t,z)_l_ 0%u,(t, z)
‘Tz T YT ar

(t,2) € (0,T) x (0, 0) (4.60)

+ elu (¢, 2)|*uq  (t, 2) + i yu,(t,z) =0,

with initial conditions u,(t,0) = f;(t) + i f,(t) and boundary conditions
u,(0,z) = u,(T,z) = 0. Following Appendix (A), the linear Schrodinger equation
(4.60) has the following solution:

U (t,2) = P+ iy, (4.61)
by(t,2) = e 72 Z(:)TZn(z)sin ("T")t, (4.62)
p,(t,z) =e7V? Z;TZn(z)sin (%)t (4.63)

Following Appendix (A), for n=2, we can find that:

Hi; = ee™ (" + 152 Py (4.64)
Hyy = —ee ™ 2( % + ¥1°)% ¢, (4.65)
where

Tyn(z) = Az1(2) sin Bz + ((Caz + B31(2)) cos Bz, (4.66)
Tyn(2) = Ay (2) sin Bz + ((Cz4 + By2(2)) cos Bz, (4.67)

where the constants and variables A,;,C,,, By1, Ay,,C4,B,, can be
calculated in similar manner as illustrated in Appendix A.

The absolute value of the second order approximation is:

lus(t,2)12 = ¥,° + ¢,° (4.76)
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4.5 Case Studies, Picard
To examine the proposed solution algorithm, some case studies are illustrated.
4.5.1 Casestudy1l

Taking the case and f;(t) = p;, fo(t) = p, where p; & p, are constants and
following the algorithm of Picard Approximation, the following selected results for
the first and second order approximations are got:

Fig. (4.44) the zero order approximation of [u(®|at =0,y = 0and
a, p1, P2 = 1, T = 10 with considering only one term on the series (M=1).

Fig. (4.45) the first order approximation of |u(1)| at ¢=02,y=0and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (4.46) the first order approximation of |u(1)| ate=1, y =0and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).
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Fig. (4.47) the first order approximation of |u(1)| ate =0.2,y =0and

a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (4.48) the first order approximation of |u(1)| ate =0.2,y =0and
a,p,p, =1,T =10,M = 1 for different values of t.
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Fig.(4.49) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (4.50) the second order approximation of |u(2)| ate = 0.2,y = 0and
a,p, P2 =1, T = 10,M = 1 for different values of t.
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Fig. (4.51) the first order approximation of |u(1)| ate =0.2, y=1and
a, p1, P2 = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig.(4.52) the first order approximation of |u(1)| ate=1, y=1and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.53) the first order approximation of |u(1)| ate = 0.2,y = 1and

a,p,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.54) the first order approximation of |u(1)| ate = 0.2,y = 1and
a,p,p, =1,T =10,M = 10 for different values of t.

182



jul |
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Fig. (4.55) the first order approximation of [u| ate = 0.2,y = 1 and
a,p,p, =1,T =10,M = 10 for different values of t.

Note: we calculated till second order only taking M=1 for y = 0 for both first
order and second order respectively , while we calculated only till first order at
Y = 1 taking M=10 and we cannot calculate more since the machine gives
“MATHEMATICA KERNEL OUT OF MEMORY”.

4.5.2 Case study 2

Taking the case f;(t) = p;, fo(t) = p,sin (g) t where p; & p, are constants

and following the algorithm of Picard Approximation, the following selected
results for the first and second order approximations are got:

Fig. (4.56) the first order approximation of [u| ate = 0, y = 0 and
a, p1,p2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.57) the first order approximation of [u| ate = 0.2, y = 0 and

a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (4.58) the first order approximation of |u(1)| ate=1, y =0and

a, p1, P2 = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.59) the first order approximation of |u(1)| ate =0.2,y =0and
a,p,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.60) the first order approximation of |u(1)| ate =0.2,y =0and
a,p,p,=1T =10,M = 10 for different values of t.

Fig. (4.61) the first order approximation of |u(1)| ate =02, y=1and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.62) the first order approximation of [u|ate =1, y = 1 and
a, p1,p2, = 1,T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.63) the first order approximation of |u(1)| ate = 0.2,y =1 and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.64) the first order approximation of |u(1)| ate =02,y =1and

a,p,p2=1T=

10, M = 10 for different values of t.
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Fig. (4.65) the first order approximation of |u(1)| ate = 0.2,y = 1and

10, M = 10 for different values of t.
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Note: we calculated till first order only taking M=10 forboth y = 0andy =1
and we cannot calculate more since the machine gives “MATHEMATICA KERNEL
OUT OF MEMORY”.

4.5.3 Case study 3

Taking the case fi(t) = pie™t, f,(t) = p,e”t where p; & p, are constants
and following the algorithm of Picard Approximation, the following selected
results for the first and second order approximations are got:

Fig. (4.66) the first order approximation of [u| ate = 0.2, y = 0 and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).

Fig. (4.67) the first order approximation of |u(1)| ate=1, y=0and
a, p1, P> = 1, T = 10 with considering only ten terms on the series (M=10).
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Fig. (4.68) the first order approximation of |u(1)| ate =0.2,y =0and
a,p1,p, =1,T =10,M = 10 for different values of z.
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Fig. (4.69) the first order approximation of |u(1)| ate =0.2, y=1and
a, p1, P> = 1, T = 10 with considering only one term on the series (M=1).

Fig. (4.70) the first order approximation of [u|ate =1, y = 1 and
a, p1,p, = 1,T = 10 with considering only one term on the series (M=1).
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Fig. (4.71) the first order approximation of |u(1)| ate = 0.2,y = 1and
a,p,p, =1,T =10,M = 1 for different values of z.
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Fig. (4.72) the first order approximation of |u(1)| ate =02,y =1and
a,pi,p, =1,T =10,M = 1 for different values of t.

Note: we calculated till first order only taking M=10 forboth y = 0andy =1
and we cannot calculate more since the machine gives “MATHEMATICA KERNEL
OUT OF MEMORY”.

4.6 Comparison between Perturbation & Picard Approximation

We are here giving both perturbation method and Picard approximation results in
the same graph for some selected cases to compare between the two methods.

4.6.1 Casestudy 1

Taking the case f;(t) = py, f(t) = p,, the following selected results are
obtained.

189



ulf

/ \ —— ulPic

\
, N --- ulPer

PN WS OO N

t
2 4 6 8 10

Fig. (4.73) comparison between Picard approximation and Perturbation method

for first order at
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Fig. (4.76) comparison between Picard approximation and Perturbation method
for firstorderat ¢ = 0.2,y =0and a,p,,p, =1, T = 10,t = 3.
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Fig. (4.77) comparison between Picard approximation and Perturbation method
forfirstorderat € =0.2,y =1anda,p;,p, =1,T =10,z =5.
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Fig. (4.78) comparison between Picard approximation and Perturbation method
for firstorderat e=1,y=1anda,py,p, =1, T =10,z = 2.
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Fig. (4.79) comparison between Picard approximation and Perturbation method
forfirstorderat e=1,y=1anda,pq,p, =1, T =10,t = 3.
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Fig. (4.80) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2,y =1anda,p1,p, =1, T =10,t = 3.

4.6.2 Case study 2
Taking the case f;(t) = pq, fo(t) = p, sin (g) t , the following selected results

are obtained.
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Fig. (4.81) comparison between Picard approximation and Perturbation method
for firstorderat € =0.2,y =0anda,p;,p, =1,T =10,z =5.
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Fig. (4.82) comparison between Picard approximation and Perturbation method
forfirstorderat e =1,y =0anda,p,, 0, =1, T =10,z =5.
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Fig. (4.83) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =0and a,p,p, =1, T = 10,t = 6.
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Fig. (4.84) comparison between Picard approximation and Perturbation method
for firstorderat e=1,y=0anda,pq,p, =1, T =10,t =09.
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Fig. (4.86)
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Fig. (4.88) comparison between Picard approximation and Perturbation method
forfirstorderate = 0.2,y =1landa,p1,p, =1, T =10, t = 6.

4.6.3 Case study 3

Taking the case f;(t) = p,e~ ¢, f,(t) = pye”t, the following selected results are
obtained.
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Fig. (4.89) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =0anda,p;,p, =1,T =10, z=5.
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Fig. (4.90) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2,y =0anda,p,p, =1, T =10, t = 3.
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Fig. (4.91) comparison between Picard approximation and Perturbation method
for firstorderat ¢ =0.2,y =1landa,p;,p, =1, T =10, z=5.
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Fig. (4.92) comparison between Picard approximation and Perturbation method

for firstorderat e=1,y=1anda,py,p, =1, T =10, z = 2.
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Fig. (4.93) comparison between Picard approximation and Perturbation method
for firstorderat e =1,y =1landa,p,p, =1, T =10, t = 3.
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Fig. (4.94) comparison between Picard approximation and Perturbation method
forfirstorderat ¢ =0.2,y =1anda,p1,p, =1,T =10, t = 3.

4.7 T-Study

We are here examining the behavior of Perturbation method and Picard
Approximation against different values of T through case studies on the same
graph.

4.7.1 Case Studies, Perturbation

4.7.1.1 Casestudy1l

Taking the case f1(t) = pq, fo(t) = p, where p; & p, are constants and
following the algorithm, the following selected results for the first and second
order approximations are got:

U T study
40

30
—— ulT10

2 . wTo

10 — — ulTeo

4
10 20 30 40 S0 60

Fig. (4.95) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.

197



u| T study

— ulT10
- ulT20
— — ulTeo

10 20 20 40 5 e °
Fig. (4.96) the first order approximation of |u(1)| at e=1,y=0and

a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.97) the first order approximation of |u(1)| at e=02,y=0and
a,p1,p, =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.98) the first order approximation of |u(1)| at e=1,y=0and
a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.99) the first order approximation of |u(1)| at e=02,y=1and

a,p,p;=1M=10,t =

U
0.00008
0.00006
0.00004
0.00002

4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.100) the first order approximation of |u(1)| at £e=02,y=1and

a,p,p,=1,M =10,z =

10 for different values of T =10,20 and 60 respectively.
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Fig. (4.101) the first order approximation of |u(1)| at e=1,y=1and

a,p,p,=1,M=10,z =

5 for different values of T =10, 20 and 60 respectively.
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4.7.1.2 Case study 2

Taking the case

f1(t) = pq, fo(t) = p,sin (% t), and following the algorithm,

the following selected results for the first and second order approximations are

got: lu| T study
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80 — ulTI0
60 _uTo
40
— — ulTeo
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Fig. (4.102) the first order approximation of |u(1)| at €e=0.2,y=0and

a,p, Pz =1, M|= 10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.103) the first order approximation of |u(1)| at e=1,y=0and

a,p1, Pr =1,M = 10,t = 5 for different values of T =10, 20 and 60 respectively.
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Fig. (4.104) the first order approximation of |u(1)| at e=02,y=0and

a,p1,p, =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.

200



U T study
1.6

1.4

1.2
1 — ulTi10

0.8 AN - ulT20

0.6 N

04 AN

0.2 —_

— — ulTeo

— V4
1 2 3 4 5

Fig. (4.105) the first order approximation of |u(1)| at £e=02,y=1and
a,p1, P2 = 1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.106) the first order approximation of |u(1)| at e=1,y=1and
a,p1, P2 =1,M = 10, t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (4.107) the first order approximation of |u(1)| at e=1,y=1and
a,p1, Pz =1,M =10,z = 5 for different values of T =10, 20 and 60 respectively.
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4.7.1.3 Case study 3

Taking the case  f;(t) = p,e7t, f,(t) = pye~t and following the algorithm, the

following selected results for the first and second order approximations are got:

luj T study

—— ulT10

— — ulTeo

20 40 60 80 100

Fig. (4.108) the first order approximation of |u(1)| at €e=0.2,y=0and
a,p1, P2 = 1,M = 10,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.109) the first order approximation of |u(1)| at e=0.2,y=0and

a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.110) the first order approximation of |u(1)| at e=1,y=0and
a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.111) the first order approximation of |u(1)| at e=1,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (4.112) the first order approximation of |u(1)| at e=02,y=1and
a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.113) the first order approximation of |u(1)| at e=1,y=1and
a,p1, P2 =1,M = 10,z = 5 for different values of T =10, 20 and 60 respectively.
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4.7.2 Case Studies, Picard
4.7.2.1 Casestudy1l
Taking the case  f;(t) = p4, f(t) = p, and following the algorithm, the

following selected results for the first and second order approximations are got:
|uf T study

Fig. (4.114) the first order approximation of |u(1)| at ¢=0.2,y=0and

a,p1,p; =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.115) the first order approximation of |u(1)| at e=1,y=0and

a,p, P2 =1,M = 1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.116) the first order approximation of |u(1)| at e=02,y=0and
a,p1,p2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (4.117) the first order approximation of |u(1)| at e=0.2,y=1and

a,p1, P2 = 1,M = 10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (4.118) the first order approximation of |u(1)| at e=1,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (4.119) the first order approximation of |u(1)| at e=02,y=1and
a,p1,p2 =1,M =10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.120) the first order approximation of |u(1)| at e=1,y=1and
a,p1, P2 =1,M =10,z = 5 for different values of T =10, 20 and 60 respectively.

4.7.2.2 Case study 2
Taking the case  f;(t) = pq, fo(t) = p,sin (% t) and following the algorithm,

the following selected results for the first and second order approximations are

got:
U] T study
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Fig. (4.121) the first order approximation of |u(1)| at €e=0.2,y=0and

a,p1,p; =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.122) the first order approximation of |u(1)| at e=1,y=0and
a,p1,p; =1,M =1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.123) the first order approximation of |u(1)| at e=0.2,y=0and
a,p1,p2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (4.124) the first order approximation of |u(1)| at e=1,y=0and

a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (4.125) the first order approximation of |u(1)| at ¢e=0.2,y=1and
a,p1, P2 =1,M = 10, t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.126) the first order approximation of |u(1)| at e=1,y=1and

a,p1,p2 =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.

— ulT10
—--- ulT20
— — ulTeo

Fig. (4.127) the first order approximation of |u(1)| at ¢=0.2,y=1and

a,p1, P2 =1,M = 10,z = 10 for different values of T =10,20 and 60 respectively.
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Fig. (4.128) the first order approximation of |u(1)| at e=1,y=1and

a,p1, P2 =1,M = 10,z = 5 for different values of T =10, 20 and 60 respectively.
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4.7.2.3 Case study 3
Taking the case  f;(t) = p,e7t, f,(t) = pye~t and following the algorithm, the
following selected results for the first and second order approximations are got:

lu| T study
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~ _ ulTeo

20 40 60 80 100
Fig. (4.129) the first order approximation of |u(1)| at ¢=0.2,y=0and
a,p, P2 =1,M = 1,t = 4 for different values of T =10, 20 and 60 respectively.
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Fig. (4.130) the first order approximation of |u(1)| at e=02,y=0and
a,p1, P2 =1,M =1,z = 10 for different values of T =10, 20 and 60 respectively.
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Fig. (4.131) the first order approximation of |u(1)| at ¢e=0.2,y=1and
a,p1,p, =1,M =10,t = 6 for different values of T =10, 20 and 60 respectively.
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Fig. (4.132) the first order approximation of |u(1)| at e=0.2,y=1and
a,p1,p, =1,M =10,z = 10 for different values of T =10,20and 60 respectively.
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Fig. (4.133) the first order approximation of |u(1)| at e=1,y=1and
a,p, P =1,M =10,z = 5 for different values of T =10, 20 and 60 respectively.
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Chapter 5 Summary and Conclusion
5.0 Summary

We demonstrated in this thesis that both Perturbation Method and Picard
approximation can be used to solve both cubic and quintic Nonlinear Schrodinger
equation. Through different case studies, we can find that the results for both
methods are near enough; however, in Perturbation method we obtained higher
order approximations than Picard approximation. As, an example in cubic
homogeneous case, we obtained up to third order approximation, while by using
Picard approximation for the same equation with same initial and boundary
conditions, we obtained up to second order approximation.

In Appendix A, we showed in details the steps of solution for the general
linear case. This solution is considered as zero order approximation for both
perturbation method and Picard approximation.

In chapters 2, 3 and 4, we used the perturbation method and Picard
approximation to solve the Cubic Homogeneous, the Cubic Non-Homogeneous
and the Quintic Homogeneous nonlinear Schrodinger equations, respectively and
illustrated the solution through different case studies. We compared between
results of both methods on the same graph. Also, we studied the solution change
for both methods; perturbation and Picard approximation at different values of
time.

In chapter 3, we studied the effect of non homogeneous term; F,(t,z) +
iF,(t, z) and we found that in case of zero initial conditions; f;(t,z) + if5(t,z) =
0 the change of non homogeneous term from constant ( p;), exponential ( p;e ™)

or sinusoidal ( p;sin (g t) has no spatial effect on the solution.

5.1 Conclusions
e For cubic and quintic homogeneous nonlinear Schrodinger equations:

0 We found that the stability of the solution of the nonlinear
homogeneous Schrodinger equation is highly affected in the
absence of gamma (y) term.

0 The perturbation as well as the Picard methods introduce
approximate solutions for such problems where second or third
order of approximations can be obtained from which some
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parametric studies can be achieved to illustrate the solution
behavior under the change of the problem physical parameters.

0 The use of Mathematica, or any other symbolic code, makes the use
of the solution algorithm possible and can develop a solution
procedure which can help in getting some knowledge about the
solution.

0 The results for both perturbation and Picard methods are quite
nearer in the presence of gamma (y) term.

0 With the existence of gamma (y) term, the magnitude of solution
(|u|) decreases as time increases.

e For cubic non-homogeneous nonlinear Schrodinger equation:
Same conclusions as cubic and quintic Homogeneous nonlinear Schrodinger
equations cases, while, we found the following:

0 In the case of zero initial conditions, we found that the change of
non homogeneous term did not affect on the solution; both
constant (F1 = p;), exponential (F1 = p;e~t) and sinusoidal
(F1 = p;sin (g t)) had the same solutions.

O Due to non homogeneous term, we can not calculate more than
second order approximation at (y=0) and first order
approximation at (y = 0).

e Part of the work of chapter 2 was published in TOAMJ [Magdy El-Tawil, H.
El Zoheiry and Sherif E. Nasr, 2010] and we are arranging to send cubic non-
homogeneous and quintic cases; chapter 3 and 4 respectively for publishing
on the nearest future

Hopefully, with high capabilities of computers, we can reach to higher order

approximations and solve quintic non-homogeneous nonlinear Schrodinger
equation.
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Appendix A The general Linear Case

We introduce here the general solution of linear Schrodinger equations
A.1 The general linear case
Consider the non homogeneous linear Schrodinger equation:

ou(t, z) d%u(t, z)
L= T 5

(t,z) € (0,T) x (0, o) (A.1)

+iyu(t,z) = F,(t,z) + i F,(t, z),

where u(t, z) is a complex valued function which is subjected to:

[.Cs.:u(t,0) = fi(t) + i f5(t) (A.2)
B.Cs.:u(0,z) = u(T,z) =0 (A.3)
Let u(t,z) = Y(t,z) + i ¢p(t,z), Y, ¢ are real valued functions.

Let Y(t,z) = e V"W (t,z) and ¢(t,z) = e Y4V (t, z). The following coupled
equations are got as follows:

av(tz)  9*W(tz)

= A4
aZ a atz + Gl(t,Z), ( )
ow (t,z) 0%V (¢, Z)
5, = ¢ on t+ G (4:5)
where,

W(t! 0) = fl(t); V(t! O) = fZ(t)i Gl(t! Z) = _eyzFl(t! Z)! GZ (t, Z) = eyZFZ(t! Z),
and all corresponding other I.C. and B.C. are zeros.

Eliminating one of the variables in equations (4.4) and (A.5), one can get the
following independent equations:

oW (t,2) L1 1 02W(t, z) 1

ot4 22 0t2 2¢1(t z), (A.6)
0*V(t,z) 10°V(t,z) 1 .
T-I_CZZT__ZIP (t,Z) (A'7)
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where,

_ dG,(t,z)  8%G,(t2)
——————————————— — a—

lpl(tr Z) = 0z atz (A8)
~ 02G,(t,z) 0 Gy(t,2)
Po(t2) =a—— 5+ —— (A4.9)

Using the eigenfunction expansion technique, the following solution expressions
are obtained:

W(t,z) = eV z T, (2)sin (g)t (4.10)
n=0

b(t,2) = e z r. (2)sin (g)t (4.11)
n=0

where T,,(z) and t,(z) can be got through the applications of initial conditions
and then solving the resultant second order differential equations using the
method of variational of parameter [Staliunas,1994]. The final expressions can be
got as the following :

To(z) = (C; + A1(2))sin Bz + (C; + B1(2)) cos Bz (A.12)

T.(2) = (C3 + A3(2))sin Bz + (C4 + By(2)) cos Bz (A.13)

where,

Bp= a (%)2 (A.14)
1 ~

4G = o [ hin @iy sin(Bn) dz (4.15)
B
-1 .

B2 = 5 [ Bun G5 sin(Bo2) dz (4.16)
Bn
1 -

1:2) = 7 [ Ban z51) cos(Baz) dz (A.17)
-1( .

B,(z) = ﬁ_J Yop (2 ;1) cos(B,z) dz (A.18)
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in which,

~ 2 ( -~ omm
Yin(z;n) = T_[ Y, (t,z)sin (T t) dt (A.19)
~ 2 [ -~ mm
Yon(z;n) = Tf Y, (t,z)sin (T t) dt (A.20)
The following conditions should also be satisfied:
2 (T omm
G =% JO fi(®)sin (=t) dt = B,(0) (A.21)
2 (T onm
C= 7 fo £,(t) sin (T t) dt — B,(0) (A.22)

finally the following solution is obtained:

u(t,z) =y(t,z)+ i¢p(t,z) (A.23)
Or
lut,2)I? =92, 2) + ¢*(t,2) (A.24)

The general linear case solution is considered at ¢ =0 as zero order
approximation for cubic nonlinear homogeneous, cubic nonlinear non
homogeneous Schrodinger equations and quintic nonlinear homogeneous
Schrodinger equations.
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