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On Solution of Nonlinear Cubic Non-Homogeneous 
Schrodinger Equation 

 
Magdy A. El-Tawil*, Sherif E. Nasr†, H. El Zoheiry‡

1. Introduction  

 
 
Abstract: In this paper, a perturbing nonlinear non-homogeneous Schrodinger equation is 
studied under limited time interval, complex initial conditions and zero Neumann conditions. 
The perturbation and Picard approximation methods together with the eigenfunction 
expansion and variational parameters methods are used to introduce an approximate solution 
for the perturbative nonlinear case for which a power series solution is proved to exist. Using 
Mathematica, the solution algorithm is tested through computing the possible orders of 
approximations. The method of solution is illustrated through case studies and figures. 
 
Keywords: Nonlinear Schrodinger equation, Perturbation, Eigenfunction expansion, 
Mathematica, Picard Approximation. 
 
 

The nonlinear Schrodinger equation (NLS) is the principal equation to be analyzed and solved 
in many fields, see [1-5] for examples. The NLS equation arises in many application areas 
[6-8] such as wave propagation in nonlinear media, surface wave in sufficiently deep waters 
and signal propagation in optical fibers. The NLS is one of the most important models of 
mathematical physics arising in a great array of contexts [9, 10] as for conductor electronics, 
optics in nonlinear media, photonics, plasmas, fundamentation of quantum mechanics, 
dynamics of accelerators, mean-field theory of Bose-Einstein condensates or in biomolecule 
dynamics. 
 
In the last ten decades, there are a lot of NLS problems depending on additive or 
multiplicative noise in the random case [11, 12] or a lot of solution methodologies in the 
deterministic case. Wang M. et al. [13] obtained the exact solutions to NLS using what they 
called the sub-equation method. They got four kinds of exact solutions of the equation for 
which no sign to the initial or boundary conditions type is made. Xu L. and Zhang J. [14] 
followed the same previous technique in solving the higher order NLS. 
 
Sweilam N. [15] solved a nonlinear cubic Schrodinger equation which gives rise to solitary 
solutions using variational iteration method. Zhu S. [16] used the extended hyperbolic 
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auxiliary equation method in getting the exact explicit solutions to the higher order NLS 
without any conditions. Sun J. et al. [17] solved an NLS with an initial condition using Lie 
group method. By using coupled amplitude phase formulation, Parsezian K. and Kalithasan B. 
[18] constructed the quartic anharmonic oscillator equation from the coupled higher order 
NLS. Two-dimensional grey solitons to the NLS were numerically analyzed by Sakaguchi H. 
and Higashiuchi T. [19]. The generalized derivative NLS was studied by Huang D. et al. [20] 
introducing a new auxiliary equation expansion method. 
 
 
2. The General Linear Case 
Consider the non homogeneous linear Schrodinger equation: 
 

𝑖𝑖 
𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

+  𝛼𝛼 
𝜕𝜕2𝑢𝑢(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 = 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧), (𝑡𝑡, 𝑧𝑧) ∈ (0,𝑇𝑇) x (0,∞)                                 (1) 

 
where  𝑢𝑢(𝑡𝑡, 𝑧𝑧) is a complex valued function  which is subjected to: 
 
𝐼𝐼.𝐶𝐶. : 𝑢𝑢(𝑡𝑡, 0) =  𝑓𝑓1(𝑡𝑡) +  𝑖𝑖 𝑓𝑓2(𝑡𝑡), a complex  valued function,                                   (2) 
 
𝐵𝐵.𝐶𝐶. : 𝑢𝑢(0, 𝑧𝑧) =  𝑢𝑢(𝑇𝑇, 𝑧𝑧) = 0.                                              (3) 
 
Let 𝑢𝑢(𝑡𝑡, 𝑧𝑧) =  𝜓𝜓(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝜙𝜙(𝑡𝑡, 𝑧𝑧), 𝜓𝜓,𝜙𝜙 are real valued functions. The following coupled 
equations are got as follows: 
 
𝜕𝜕𝜕𝜕 (𝑡𝑡 ,𝑧𝑧)
𝜕𝜕𝜕𝜕

=  𝛼𝛼 𝜕𝜕
2𝜓𝜓(𝑡𝑡 ,𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝐺𝐺1(𝑡𝑡, 𝑧𝑧),                                            (4) 

 
𝜕𝜕𝜓𝜓(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

=  𝛼𝛼 
𝜕𝜕2𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝐺𝐺2(𝑡𝑡, 𝑧𝑧),                                                                                                   (5) 

 
where   𝜓𝜓(𝑡𝑡, 0) = 𝑓𝑓1(𝑡𝑡), 𝜙𝜙(𝑡𝑡, 0) = 𝑓𝑓2(𝑡𝑡),  𝐺𝐺1(𝑡𝑡, 𝑧𝑧) = −𝐹𝐹1(𝑡𝑡, 𝑧𝑧),  𝐺𝐺2(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),   and all 
corresponding other I.C. and B.C. are zeros. 
 
Eliminating one of the variables in equations (4) and (5), one can get the following 
independent equations: 
 
𝜕𝜕4𝜓𝜓(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡4 +

1
𝛼𝛼2

𝜕𝜕2𝜓𝜓(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 =

1
𝛼𝛼2 𝜓𝜓�  1(𝑡𝑡, 𝑧𝑧),                                                                                          (6) 

 
𝜕𝜕4𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡4 +

1
𝛼𝛼2

𝜕𝜕2𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 =

1
𝛼𝛼2 𝜓𝜓� 2(𝑡𝑡, 𝑧𝑧),                                                                                          (7) 

 
where  

𝜓𝜓�  1(𝑡𝑡, 𝑧𝑧) =
𝜕𝜕 𝐺𝐺2(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
−  𝛼𝛼

𝜕𝜕2𝐺𝐺1(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 ,                                                                                              (8) 

 

𝜓𝜓�  2(𝑡𝑡, 𝑧𝑧) = 𝛼𝛼
𝜕𝜕 2𝐺𝐺2(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝑡𝑡2 +  
𝜕𝜕 𝐺𝐺1(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
,                                                                                              (9) 
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Using the eigenfunction expansion technique [24], the following solution expressions are 
obtained: 
 

𝜓𝜓(𝑡𝑡, 𝑧𝑧) =  �𝑇𝑇𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡,                                                                                                         (10) 

 

𝜙𝜙(𝑡𝑡, 𝑧𝑧) =  �𝜏𝜏𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡,                                                                                                         (11) 

 
where  𝑇𝑇𝑛𝑛(𝑧𝑧) and 𝜏𝜏𝑛𝑛(𝑧𝑧)  can be got through the applications of initial conditions and then 
solving the resultant second order differential equations using the method of variational of 
parameter [17]. The final expressions can be got as in the following: 
 
𝑇𝑇𝑛𝑛(𝑧𝑧) = �𝐶𝐶1 +  𝐴𝐴1(𝑧𝑧)� sin𝛽𝛽𝑛𝑛𝑧𝑧 +  �𝐶𝐶2 +  𝐵𝐵1(𝑧𝑧)� cos𝛽𝛽𝑛𝑛𝑧𝑧                                                           (12) 
 
𝜏𝜏𝑛𝑛(𝑧𝑧) = �𝐶𝐶3 + 𝐴𝐴2(𝑧𝑧)� sin𝛽𝛽𝑛𝑛𝑧𝑧 +  �𝐶𝐶4 +  𝐵𝐵2(𝑧𝑧)� cos𝛽𝛽𝑛𝑛𝑧𝑧                                                          (13) 
 
where  
𝛽𝛽𝑛𝑛 =  𝛼𝛼(

𝑛𝑛 𝜋𝜋
𝑇𝑇

)2                                                                                                                                       (14) 
 

𝐴𝐴1(𝑧𝑧) =  
1
𝛽𝛽𝑛𝑛
�𝜓𝜓�1𝑛𝑛 (𝑧𝑧 ;𝑛𝑛) sin(𝛽𝛽𝑛𝑛𝑧𝑧)𝑑𝑑𝑑𝑑,                                                                                           (15) 

 

𝐵𝐵1(𝑧𝑧) =  
−1
𝛽𝛽𝑛𝑛

�𝜓𝜓�1𝑛𝑛 (𝑧𝑧 ;𝑛𝑛) sin(𝛽𝛽𝑛𝑛𝑧𝑧)𝑑𝑑𝑑𝑑,                                                                                          (16) 

 

𝐴𝐴2(𝑧𝑧) =  
1
𝛽𝛽𝑛𝑛
�𝜓𝜓�2𝑛𝑛 (𝑧𝑧 ;𝑛𝑛) cos(𝛽𝛽𝑛𝑛𝑧𝑧)𝑑𝑑𝑑𝑑,                                                                                          (17) 

 

𝐵𝐵2(𝑧𝑧) =  
−1
𝛽𝛽𝑛𝑛

�𝜓𝜓�2𝑛𝑛 (𝑧𝑧 ;𝑛𝑛) cos(𝛽𝛽𝑛𝑛𝑧𝑧)𝑑𝑑𝑑𝑑,                                                                                         (18) 

 
in which 
 

𝜓𝜓�1𝑛𝑛(𝑧𝑧 ;𝑛𝑛) =  
2
𝑇𝑇
�𝜓𝜓�1 (𝑡𝑡 , 𝑧𝑧)sin⁡(

𝑛𝑛 𝜋𝜋
𝑇𝑇
𝑡𝑡)𝑑𝑑𝑑𝑑,                                                                                       (19) 

𝜓𝜓�2𝑛𝑛(𝑧𝑧 ;𝑛𝑛) =  
2
𝑇𝑇
�𝜓𝜓�2 (𝑡𝑡 , 𝑧𝑧)sin⁡(

𝑛𝑛 𝜋𝜋
𝑇𝑇
𝑡𝑡)𝑑𝑑𝑑𝑑,                                                                                       (20) 

 
The following conditions should also be satisfied: 
 

𝐶𝐶2 =  
2
𝑇𝑇
� 𝑓𝑓1(𝑡𝑡)
𝑇𝑇

0
sin �

𝑛𝑛 𝜋𝜋
𝑇𝑇
𝑡𝑡� 𝑑𝑑𝑑𝑑 − 𝐵𝐵1(0),                                                                                         (21) 

 

𝐶𝐶4 =  
2
𝑇𝑇
� 𝑓𝑓2(𝑡𝑡)
𝑇𝑇

0
sin �

𝑛𝑛 𝜋𝜋
𝑇𝑇
𝑡𝑡� 𝑑𝑑𝑑𝑑 − 𝐵𝐵2(0).                                                                                         (22) 
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Finally the following solution is obtained: 
 
𝑢𝑢(𝑡𝑡 , 𝑧𝑧) = 𝜓𝜓(𝑡𝑡 , 𝑧𝑧) +  𝑖𝑖 𝜙𝜙(𝑡𝑡 , 𝑧𝑧),                                                                                                         (23) 
 
Or 
 
|𝑢𝑢(𝑡𝑡 , 𝑧𝑧)|2 = 𝜓𝜓2(𝑡𝑡 , 𝑧𝑧) +  𝜙𝜙2(𝑡𝑡 , 𝑧𝑧).                                                                                                  (24) 
 
 
3. The Non-Linear Case 
Consider the non-homogeneous non-linear Schrodinger equation: 
 

𝑖𝑖 
𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

+  𝛼𝛼 
𝜕𝜕2𝑢𝑢(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝜀𝜀|𝑢𝑢(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢(𝑡𝑡, 𝑧𝑧)  + 𝑖𝑖 𝛾𝛾𝑢𝑢(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),   (𝑡𝑡, 𝑧𝑧)

∈ (0,𝑇𝑇) 𝑥𝑥 (0,∞)                                                                                                        (25) 
 
where 𝑢𝑢(𝑡𝑡 , 𝑧𝑧) is a complex valued function which is subjected to the initial and boundary 
conditions mentioned before in equations (2), (3) respectively. 
 

Lemma [21-23] 
The solution of equation (25) with the constraints (2), (3) is a power series in 𝜀𝜀 if exists. 
 
Proof 
at  𝜀𝜀 = 0, the following linear non-homogenous equation is got: 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢0(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢0(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 + 𝑖𝑖 𝛾𝛾𝑢𝑢0(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),

( 𝑡𝑡, 𝑧𝑧) ∈ (0,𝑇𝑇) 𝑥𝑥 (0,∞)                                                                                             (26) 
 
𝑢𝑢0(𝑡𝑡 , 𝑧𝑧) =  𝜓𝜓0(𝑡𝑡 , 𝑧𝑧) +  𝑖𝑖 𝜙𝜙0(𝑡𝑡 , 𝑧𝑧)                                                                                                   (27) 
 
where, 
 

𝜓𝜓0(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇0𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (28) 

 

𝜙𝜙0(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏0𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (29) 

 
where 𝑇𝑇0𝑛𝑛(𝑧𝑧) and 𝜏𝜏0𝑛𝑛(𝑧𝑧) can be calculated as the linear case equations (12), (13) respectively. 
 
Following Pickard approximation, equation (25) can be rewritten as: 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢𝑛𝑛(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢𝑛𝑛(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2  + 𝑖𝑖 𝛾𝛾𝑢𝑢𝑛𝑛(𝑡𝑡, 𝑧𝑧)

= 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) − 𝜀𝜀|𝑢𝑢𝑛𝑛−1(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢𝑛𝑛−1(𝑡𝑡, 𝑧𝑧),           𝑛𝑛 ≥ 1                    (30) 
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at  𝑛𝑛 = 1, the iterative equation takes the form 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢1(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢1(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2  + 𝑖𝑖 𝛾𝛾𝑢𝑢1(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) − 𝜀𝜀|𝑢𝑢0(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢0(𝑡𝑡, 𝑧𝑧)

=  𝜀𝜀𝑘𝑘1(𝑡𝑡 , 𝑧𝑧)                                                                                                                (31) 
 
which can be solved as a linear case with zero initial and boundary conditions. The following 
general solution can be obtained: 
 

𝜓𝜓1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �(𝑇𝑇0𝑛𝑛(𝑧𝑧) + 𝜀𝜀𝑇𝑇1𝑛𝑛(𝑧𝑧))(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡,                                                              (32) 

 

𝜙𝜙1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �(𝜏𝜏0𝑛𝑛(𝑧𝑧) + 𝜀𝜀𝜏𝜏1𝑛𝑛(𝑧𝑧))(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡,                                                              (33) 

 
𝑢𝑢1(𝑡𝑡 , 𝑧𝑧) = 𝜓𝜓1(𝑡𝑡 , 𝑧𝑧) +  𝑖𝑖 𝜙𝜙1(𝑡𝑡 , 𝑧𝑧),                                                                                                    (34) 
 
𝑢𝑢1(𝑡𝑡 , 𝑧𝑧) = 𝑢𝑢1

(0) +  𝜀𝜀 𝑢𝑢1
(1),                                                                                                                (35) 

 
At  𝑛𝑛 = 2 , the following equation is obtained: 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢2(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢2(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2  + 𝑖𝑖 𝛾𝛾𝑢𝑢2(𝑡𝑡, 𝑧𝑧) = 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) − 𝜀𝜀|𝑢𝑢1(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢1(𝑡𝑡, 𝑧𝑧)

=  𝜀𝜀𝑘𝑘2(𝑡𝑡 , 𝑧𝑧)                                                                                                                (36) 
 
which can be solved as a linear case with zero initial and boundary conditions. The following 
general solution can be obtained: 
 
𝑢𝑢2(𝑡𝑡 , 𝑧𝑧) = 𝑢𝑢2

(0) +  𝜀𝜀 𝑢𝑢2
(1) +  𝜀𝜀 2𝑢𝑢2

(2) +  𝜀𝜀3 𝑢𝑢2
(3) +  𝜀𝜀4 𝑢𝑢2

(4),                                                (37) 
 
Continuing like this, one can get: 
 
𝑢𝑢𝑛𝑛(𝑡𝑡 , 𝑧𝑧) = 𝑢𝑢𝑛𝑛 (0) +  𝜀𝜀 𝑢𝑢𝑛𝑛 (1) + 𝜀𝜀 2𝑢𝑢𝑛𝑛 (2) +  𝜀𝜀3 𝑢𝑢𝑛𝑛 (3) + ⋯+  𝜀𝜀(𝑛𝑛+𝑚𝑚) 𝑢𝑢𝑛𝑛 (𝑛𝑛+𝑚𝑚).                       (38) 
 
As  𝑛𝑛 →  ∞ , the solution (if exists) can be reached as 𝑢𝑢(𝑡𝑡 , 𝑧𝑧) =  lim𝑛𝑛→∞ 𝑢𝑢𝑛𝑛(𝑡𝑡 , 𝑧𝑧). 
Accordingly the solution is a power series in 𝜀𝜀 . 
 
According to the previous lemma, one can assume the solution of equation (25) as the 
following: 
 

𝑢𝑢(𝑡𝑡 , 𝑧𝑧) =  �𝜀𝜀𝑛𝑛
∞

𝑛𝑛=0

𝑢𝑢𝑛𝑛(𝑡𝑡 , 𝑧𝑧)                                                                                                                  (39) 

 
Let  𝑢𝑢(𝑡𝑡 , 𝑧𝑧) =  𝜓𝜓(𝑡𝑡 , 𝑧𝑧) +  𝑖𝑖 𝜙𝜙(𝑡𝑡 , 𝑧𝑧),𝜓𝜓 ,𝜙𝜙:  are real valued functions. The following coupled 
equations are got: 
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𝜕𝜕𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

= 𝛼𝛼 
𝜕𝜕2𝜓𝜓(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 + 𝜀𝜀(𝜓𝜓2 +  𝜙𝜙2)𝜓𝜓 − 𝛾𝛾𝛾𝛾 − 𝐹𝐹1(𝑡𝑡 , 𝑧𝑧),                                                       (40) 

 
𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

= − 𝛼𝛼 
𝜕𝜕2𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 − 𝜀𝜀(𝜓𝜓2 +  𝜙𝜙2)𝜙𝜙 − 𝛾𝛾𝛾𝛾 + 𝐹𝐹2(𝑡𝑡 , 𝑧𝑧),                                                  (41) 

 
where  𝜓𝜓(𝑡𝑡, 0) = 𝑓𝑓1(𝑡𝑡), 𝜙𝜙(𝑡𝑡, 0) = 𝑓𝑓2(𝑡𝑡), and all corresponding other I.C. and B.C. are zeros. 
 
As a perturbation solution, one can assume that the prototype equations to be solved are: 
 
𝜕𝜕𝜙𝜙𝑖𝑖(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝑧𝑧
=  𝛼𝛼 

𝜕𝜕2𝜓𝜓𝑖𝑖(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝐺𝐺𝑖𝑖 (1), 𝑖𝑖 ≥ 1                                                                                (42) 

  
𝜕𝜕𝜓𝜓𝑖𝑖(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
=  𝛼𝛼 

𝜕𝜕2𝜙𝜙𝑖𝑖(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝐺𝐺𝑖𝑖 (2), 𝑖𝑖 ≥ 1                                                                                (43) 

 
where 𝜓𝜓𝑖𝑖(𝑡𝑡, 0) = 𝛿𝛿𝑖𝑖 ,0𝑓𝑓1(𝑡𝑡), 𝜙𝜙𝑖𝑖(𝑡𝑡, 0) = 𝛿𝛿𝑖𝑖 ,0𝑓𝑓2(𝑡𝑡), and all other corresponding initial conditions 
are zeros. 𝐺𝐺𝑖𝑖 (1),𝐺𝐺𝑖𝑖(2)  are functions to be computed from previous steps. 
 
Following the solution algorithm described in the previous section for the linear case, the 
following final results are obtained. 
 

3.1 The Order of Approximations 
The following final expressions can be used to obtain different order of approximations. 
 
a. The absolute value of zero order approximation is:  
 
�𝑢𝑢(0)(𝑡𝑡 , 𝑧𝑧)�

2
=  𝜓𝜓0

2 +  𝜙𝜙0
2                                                                                                              (44) 

 
where 

𝜓𝜓0(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇0𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (45) 

 

𝜙𝜙0(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏0𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (46) 

 
𝐺𝐺1 =  − 𝑒𝑒𝛾𝛾𝑧𝑧𝐹𝐹1(𝑡𝑡 , 𝑧𝑧)                                                                                                                             (47) 
 
𝐺𝐺2 =   𝑒𝑒𝛾𝛾𝛾𝛾𝐹𝐹2(𝑡𝑡 , 𝑧𝑧)                                                                                                                                (48) 
 
b. The absolute value of first order approximation is:  
 
�𝑢𝑢(1)(𝑡𝑡 , 𝑧𝑧)�

2
= �𝑢𝑢(0)(𝑡𝑡 , 𝑧𝑧)�

2
+ 2𝜀𝜀(𝜓𝜓0𝜓𝜓1 + 𝜙𝜙0𝜙𝜙1) +  𝜀𝜀2�𝜓𝜓1

2 +  𝜙𝜙1
2�                                  (49) 

 
where 
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𝜓𝜓1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇1𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (50) 

 

𝜙𝜙1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏1𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (51) 

 
𝐺𝐺1 =  𝑒𝑒−2𝛾𝛾𝛾𝛾 �𝜓𝜓0

3 +  𝜓𝜓0𝜙𝜙0
2�                                                                                                              (52) 

 
𝐺𝐺2 =  𝑒𝑒−2𝛾𝛾𝛾𝛾 �− 𝜙𝜙0

3 −  𝜙𝜙0𝜓𝜓0
2�                                                                                                          (53) 

 
c. The absolute value of second order approximation is: 
 
�𝑢𝑢(2)(𝑡𝑡 , 𝑧𝑧)�

2
= �𝑢𝑢(1)(𝑡𝑡 , 𝑧𝑧)�

2
+ 2𝜀𝜀2(𝜓𝜓0𝜓𝜓2 + 𝜙𝜙0𝜙𝜙2) +  2𝜀𝜀3(𝜓𝜓1𝜓𝜓2 + 𝜙𝜙1𝜙𝜙2)

+ 𝜀𝜀4�𝜓𝜓2
2 + 𝜙𝜙2

2�                                                                                                   (54) 
 
where 

𝜓𝜓2(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇2𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (55) 

 

𝜙𝜙2(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏2𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (56) 

 
𝐺𝐺1 =  𝑒𝑒−2𝛾𝛾𝛾𝛾 (3𝜓𝜓0

2𝜓𝜓1 + 2𝜓𝜓0𝜙𝜙0𝜙𝜙1 +  𝜓𝜓1𝜙𝜙0
2)                                                                              (57) 

 
𝐺𝐺2 =  𝑒𝑒−2𝛾𝛾𝛾𝛾 �−3𝜙𝜙0

2𝜙𝜙1 − 2𝜙𝜙0𝜓𝜓0𝜓𝜓1 −   𝜙𝜙1𝜓𝜓0
2�                                                                           (58) 

 
 
4. Picard Approximation 
To validate the previous results, in the absence of the exact solution, let us follow another 
approximation technique. The Picard approximation is considered in this section. 
 
Solving equation (25) with the same conditions (2) and (3) and following the Picard 
algorithm, which means that we solve the linear case iteratively [24]. This means that 
equation (25) can be rewritten as: 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

+  𝛼𝛼 
𝜕𝜕2𝑢𝑢(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 + 𝑖𝑖 𝛾𝛾𝑢𝑢(𝑡𝑡, 𝑧𝑧) = −𝜀𝜀|𝑢𝑢(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢(𝑡𝑡, 𝑧𝑧) + 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),                   

                          (𝑡𝑡, 𝑧𝑧) ∈ (0,𝑇𝑇) 𝑥𝑥 (0,∞)                                                                                              (59) 
 
Let  𝑢𝑢(𝑡𝑡 , 𝑧𝑧) =  𝑒𝑒−𝛾𝛾𝑧𝑧(𝜓𝜓(𝑡𝑡 , 𝑧𝑧) +  𝑖𝑖 𝜙𝜙(𝑡𝑡 , 𝑧𝑧)),𝜓𝜓 ,𝜙𝜙:  are real valued functions. The following 
coupled equations are got: 
 
𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

=  𝛼𝛼 
𝜕𝜕2𝜓𝜓(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 +  𝜀𝜀(𝜓𝜓2 +  𝜙𝜙2)𝜓𝜓 −  𝛾𝛾𝛾𝛾 − 𝐹𝐹1(𝑡𝑡 , 𝑧𝑧)                                                     (60) 
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𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝜕𝜕

=  − 𝛼𝛼 
𝜕𝜕2𝜙𝜙(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 −  𝜀𝜀(𝜓𝜓2 +  𝜙𝜙2)𝜙𝜙 −  𝛾𝛾𝛾𝛾 + 𝐹𝐹2(𝑡𝑡 , 𝑧𝑧)                                                (61) 

 
where  𝜓𝜓(𝑡𝑡, 0) = 𝑓𝑓1(𝑡𝑡), 𝜙𝜙(𝑡𝑡, 0) = 𝑓𝑓2(𝑡𝑡), and all other corresponding initial and boundary 
conditions are zeros. 
 

4.1 The order of approximations 
1. The absolute value of Zero order approximation is similar to perturbation method. 
 
2. The absolute value of First order approximation: 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢1(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢1(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 + 𝑖𝑖 𝛾𝛾𝑢𝑢1(𝑡𝑡, 𝑧𝑧) = −𝜀𝜀|𝑢𝑢0(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢0(𝑡𝑡, 𝑧𝑧) + 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),

(𝑡𝑡, 𝑧𝑧) ∈ (0,𝑇𝑇) 𝑥𝑥 (0,∞)                                                                                              (62) 
 
with initial conditions 𝑢𝑢1(𝑡𝑡, 0) =  𝑓𝑓1(𝑡𝑡) +  𝑖𝑖 𝑓𝑓2(𝑡𝑡) and boundary conditions 
𝑢𝑢1(0, 𝑧𝑧) =  𝑢𝑢1(𝑇𝑇, 𝑧𝑧) = 0. 
 
�𝑢𝑢(1)(𝑡𝑡 , 𝑧𝑧)�

2
=  𝜓𝜓1

2 +  𝜙𝜙1
2                                                                                                               (63) 

 

𝜓𝜓1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇1𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (64) 

𝜙𝜙1(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏1𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (65) 

 

𝐺𝐺1 =  − 𝑒𝑒𝛾𝛾𝛾𝛾𝐹𝐹1(𝑡𝑡 , 𝑧𝑧) + 𝑒𝑒−2𝛾𝛾𝛾𝛾 𝜀𝜀(𝜓𝜓0
3 +  𝜓𝜓0𝜙𝜙0

2)                                                                             (66) 
 
𝐺𝐺2 =  𝑒𝑒𝛾𝛾𝛾𝛾𝐹𝐹2(𝑡𝑡 , 𝑧𝑧) −  𝑒𝑒−2𝛾𝛾𝛾𝛾 𝜀𝜀�𝜙𝜙0

3 +  𝜙𝜙0𝜓𝜓0
2�                                                                                (67) 

 
3. The absolute value of Second order approximation : 
 

𝑖𝑖 
𝜕𝜕𝑢𝑢2(𝑡𝑡, 𝑧𝑧)

𝜕𝜕𝜕𝜕
+  𝛼𝛼 

𝜕𝜕2𝑢𝑢2(𝑡𝑡, 𝑧𝑧)
𝜕𝜕𝑡𝑡2 + 𝑖𝑖 𝛾𝛾𝑢𝑢2(𝑡𝑡, 𝑧𝑧) = −𝜀𝜀|𝑢𝑢1(𝑡𝑡, 𝑧𝑧)|2𝑢𝑢1(𝑡𝑡, 𝑧𝑧) + 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) +  𝑖𝑖 𝐹𝐹2(𝑡𝑡, 𝑧𝑧),

(𝑡𝑡, 𝑧𝑧) ∈ (0,𝑇𝑇) 𝑥𝑥 (0,∞)                                                                                              (68) 
 
with initial conditions 𝑢𝑢2(𝑡𝑡, 0) =  𝑓𝑓1(𝑡𝑡) +  𝑖𝑖 𝑓𝑓2(𝑡𝑡) and boundary conditions 
 𝑢𝑢2(0, 𝑧𝑧) =  𝑢𝑢2(𝑇𝑇, 𝑧𝑧) = 0. 
 

�𝑢𝑢(2)(𝑡𝑡 , 𝑧𝑧)�
2

=  𝜓𝜓2
2 +  𝜙𝜙2

2                                                                                                              (69) 
 

𝜓𝜓2(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝑇𝑇2𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (70) 

 

𝜙𝜙2(𝑡𝑡 , 𝑧𝑧) = 𝑒𝑒−𝛾𝛾𝛾𝛾  �𝜏𝜏2𝑛𝑛(𝑧𝑧)sin⁡(
𝑛𝑛 𝜋𝜋
𝑇𝑇

∞

𝑛𝑛=0

)𝑡𝑡                                                                                            (71) 
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𝐺𝐺1 =  − 𝑒𝑒𝛾𝛾𝛾𝛾𝐹𝐹1(𝑡𝑡 , 𝑧𝑧) + 𝑒𝑒−2𝛾𝛾𝛾𝛾 𝜀𝜀(𝜓𝜓1
3 +  𝜓𝜓1𝜙𝜙1

2)                                                                             (72) 
 
𝐺𝐺2 =  𝑒𝑒𝛾𝛾𝛾𝛾𝐹𝐹2(𝑡𝑡 , 𝑧𝑧) − 𝑒𝑒−2𝛾𝛾𝛾𝛾 𝜀𝜀� 𝜙𝜙1

3 +  𝜙𝜙1𝜓𝜓1
2�                                                                                (73) 

 
5. Case Studies 
To examine the proposed solution algorithm, we calculated many cases at different conditions 
of non-homogeneous term and initial conditions too.  
 

5.1 Perturbation Method: 
We illustrate here some cases of the case studies (Fig. 1 – Fig. 4) 
 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1, 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1𝑒𝑒−𝑡𝑡  , 𝑓𝑓2(𝑡𝑡) =  0, the following 
selective results for the first and second order approximations are got: 

 
Fig. 1   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟏𝟏 , 𝜸𝜸 = 𝟏𝟏 and 

𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=1). 
 

Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1 sin �𝑚𝑚  𝜋𝜋
𝑇𝑇
� 𝑡𝑡 , 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1𝑒𝑒−𝑡𝑡  , 𝑓𝑓2(𝑡𝑡) =  0, the 

following selective results for the first and second order approximations are got: 

 
Fig. 2   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟏𝟏 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=1). 

 

Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1 , 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 sin �𝑚𝑚  𝜋𝜋
𝑇𝑇
� 𝑡𝑡 , 𝑓𝑓2(𝑡𝑡) =  0, the 

following selective results for the first and second order approximations are got: 
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Fig. 3   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟎𝟎 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=1). 

 
Fig. 4   The second order approximation of �𝒖𝒖(𝟐𝟐)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟎𝟎 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only ten terms on the series (M=10). 

 
Note: a lot of other case studies had been studied with combinations between constant, 
sinusoidal and exponential functions for both non-homogenous and initial conditions.  
 

5.2 Picard Approximation  
We illustrate here some of the case studies (Fig. 5 – Fig. 8). 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1 ,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0  and  𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 , 𝑓𝑓2(𝑡𝑡) =  0, the following 
selective results for the first and second order approximations are got: 

 
Fig. 5   The second order approximation of �𝒖𝒖(𝟐𝟐)� at 𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟎𝟎 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏, 𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=10). 
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Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 , 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 𝑒𝑒−𝑡𝑡  , 𝑓𝑓2(𝑡𝑡) =  0, the 
following selective results for the first and second order approximations are got: 

 
Fig. 6   The first order approximation of �𝒖𝒖(𝟏𝟏)� at  𝜺𝜺 = 𝟏𝟏, 𝜸𝜸 = 𝟏𝟏 and 

𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=1). 
 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 sin �𝑚𝑚  𝜋𝜋

𝑇𝑇
� 𝑡𝑡 ,𝑓𝑓2(𝑡𝑡) =  0, the 

following selective results for the first and second order approximations are got: 

 
Fig. 7   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐, 𝜸𝜸 = 𝟎𝟎  

and  𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏, 𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only one term on the series (M=1). 
 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 ,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 sin �𝑚𝑚  𝜋𝜋

𝑇𝑇
� 𝑡𝑡 , 𝑓𝑓2(𝑡𝑡) = 0, the 

following selective results for the first and second order approximations are got: 

 

Fig. 8   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐, 𝜸𝜸 = 𝟏𝟏 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏 with considering only ten terms on the series (M=1). 
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Note: a lot of other case studies had been studied with combinations between constant, 
sinusoidal and exponential functions for both non-homogenous and initial conditions.  
 
 
6. Comparison between Perturbation & Picard Approximation  
We are here give both perturbation and Picard results in same graph for some selected cases 
to compare between two methods, (Fig. 9 – Fig. 11) 
 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1, 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and  𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1,𝑓𝑓2(𝑡𝑡) =  0. 
 

 
Fig. 9   Comparison between Picard approximation and Perturbation method 

for first order at 𝜺𝜺 = 𝟎𝟎.𝟐𝟐,𝜸𝜸 = 𝟎𝟎 and 𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏, 𝒕𝒕 = 𝟑𝟑. 
 
Taking the case  𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 , 𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 and 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 ,𝑓𝑓2(𝑡𝑡) =  0. 

 
Fig. 10   Comparison between Picard approximation and Perturbation method 

for first order at 𝜺𝜺 = 𝟎𝟎.𝟐𝟐,𝜸𝜸 = 𝟏𝟏 and 𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏, 𝒛𝒛 = 𝟓𝟓. 

 
Fig. 11   Comparison between Picard approximation and Perturbation method 

for first order at 𝜺𝜺 = 𝟎𝟎.𝟐𝟐,𝜸𝜸 = 𝟏𝟏 and 𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑻𝑻 = 𝟏𝟏𝟏𝟏, 𝒕𝒕 = 𝟑𝟑. 
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7. T Study  
We are here examining the behavior of Perturbation method and Picard Approximation 
against different values of T through case studies on the same graph. 
 

7.1 Perturbation Method 
We are here illustrating the effect of the change of the time interval T on the solution and 
showing that through many case studies. Some of them are summarized through (Fig. 12 – 
Fig. 14) 
 
Taking the case   𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0, 𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1, 𝑓𝑓2(𝑡𝑡) =  0, the following selective 
results for the first and second order approximations are got: 
 
 

 
 

Fig. 12   The first order approximation of �𝒖𝒖(𝟏𝟏)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟎𝟎 and 
𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑴𝑴 = 𝟏𝟏𝟏𝟏, 𝒕𝒕 = 𝟒𝟒 for different values of 

T =10, 20 and 60 respectively. 
 
 

 
Fig. 13   The second order approximation of �𝒖𝒖(𝟐𝟐)� at   𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟎𝟎 

and  𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑴𝑴 = 𝟏𝟏𝟏𝟏, 𝒕𝒕 = 𝟒𝟒 for different values of 
T =10, 20 and 60 respectively. 

 
Taking the case 𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 ,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 ,𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1 sin �𝑚𝑚  𝜋𝜋

𝑇𝑇
𝑡𝑡� ,𝑓𝑓2(𝑡𝑡) =  0 , the 

following selective results for the first and approximation are got: 
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Fig. 14   The first order approximation of �𝒖𝒖(𝟏𝟏)� at  𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟏𝟏 and 

𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑴𝑴 = 𝟏𝟏, 𝒕𝒕 = 𝟔𝟔 for different values of  
T =10, 20 and 60 respectively. 

 
 
It is clear from case studies that as T increases from 𝑇𝑇 = 10,𝑇𝑇 = 20,𝑇𝑇 =  60 the magnitude 
of 𝑢𝑢(𝑡𝑡, 𝑧𝑧) decreases accordingly. 
 

7.2 Picard Approximation 
We are here to study the effect of change of the time interval T on the solution through many 
case studies. Some of them are illustrated (Fig. 15 – Fig. 16). 
 
Taking the case   𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1,𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 ,𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1,𝑓𝑓2(𝑡𝑡) =  0 and following the 
algorithm, the following selective results for the first and second order approximations are 
got: 
 
 

 
Fig. 15   The second order approximation of �𝒖𝒖(𝟐𝟐)� at  𝜺𝜺 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 , 𝜸𝜸 = 𝟎𝟎  

and  𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑴𝑴 = 𝟏𝟏𝟏𝟏, 𝒕𝒕 = 𝟒𝟒 for different values of 
T =10, 20 and 60 respectively. 

 
Taking the case   𝐹𝐹1(𝑡𝑡, 𝑧𝑧) = 𝜌𝜌1sin⁡(𝑚𝑚  𝜋𝜋

𝑇𝑇
𝑡𝑡),𝐹𝐹2(𝑡𝑡, 𝑧𝑧) = 0 ,𝑓𝑓1(𝑡𝑡) = 𝜌𝜌1𝑒𝑒−𝑡𝑡 ,𝑓𝑓2(𝑡𝑡) =  0 and 

following the algorithm, the following selective results for the first approximation are got: 
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Fig. 16   The first order approximation of �𝒖𝒖(𝟏𝟏)� at  𝜺𝜺 = 𝟎𝟎.𝟐𝟐 , 𝜸𝜸 = 𝟏𝟏  

and  𝜶𝜶,𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐 = 𝟏𝟏,𝑴𝑴 = 𝟏𝟏, 𝒕𝒕 = 𝟔𝟔 for different values of 
 T =10, 20 and 60 respectively. 

 
It is clear from case studies that as T increases from 𝑇𝑇 = 10,𝑇𝑇 = 20,𝑇𝑇 =  60 the magnitude 
of 𝑢𝑢(𝑡𝑡, 𝑧𝑧) decreases accordingly. 
 
 
8. Conclusions 
The stability of the solution of the cubic nonlinear non-homogeneous Schrodinger equation is 
highly affected in the absence of gamma. The perturbation as well as the Picard methods 
introduce approximate solutions for such problems where second or third order of 
approximations can be obtained from which some parametric studies can be achieved to 
illustrate the solution behavior under the change of the problem physical parameters. The use 
of Mathematica, or any other symbolic code, makes the use of the solution algorithm possible 
and can develop a solution procedure which can help in getting some knowledge about the 
solution. 
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