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Abstract

The composite materials are well known by their excellent combination of high structural tiffness and low weight. The main feature of
these anisotropic materials is their ability to be tailored for specific applications by optimizing design parameters such as stacking
sequence, ply orientation and performance targets. Finding free torsional vibrations characteristics of laminated composite beams is one
of the bases for designing and modeling of industrial products. With these requirements, this work considers the free torsional vibrations
for laminated composite beams of doubly symmetrical cross sections. The torsional vibrations of the laminated beams are analyzed
analytically based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes due to fiber
orientation of the laminated beams are neglected. Also, the torsional vibrations of the laminated beams analyzed by shear deformation
theory in which the shear deformation effects are considered. Numerical analysis has been carried out using finite eement method
(FEM). The finite element software package ANSYS 10.0 is used to perform the numerical analyses using an eight-node layered shell
element to describe the torsional vibration of the laminated beams. Numerical results, obtained by the ANSYS 10.0, classical lamination
theory, and shear deformation theory are presented to highlight the effects of fibers orientation and layers stacking sequence on torsional
frequencies of the beams.

Keywords. Composite materials, Laminated composite beams, Torsional vibrations, Shear deformation, Finite element
analysis
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1.INTRODUCTION

The composite beam members have been increasiagty aver
the past few decades in the fields of aerospacel and
mechanical engineering due to their excellent egying
features. A variety of structural components mafleomposite
materials such as turbine blades, vehicle axlesiadi wing, and
helicopter blade can be approximated as laminatedposite
beams, which requires a deeper understanding oYitiration
characteristics of the composite beams [1]. Ccoiltpdeams
are generally used as structural components oft-Vigight
heavy load bearing elements because of the higingttr-to-
weight and stiffness-to-weight ratios, the abiliof being
different strengths in different directions and tteture of being
tailored to satisfy the design requirements of rgte and
stiffness in practical designs. The increased uUséaminated
composite beams requires a better understandingbaodtion
characteristics of these beams; it is quite esaleintithe design
of composite beams subjected to dynamic loads. Duéhe

composite beams widely used in a variety of stmest@as well as
their substantial benefits and great promise forturfu
application, the dynamic behaviors of the laminatethposite
beams have received widespread attention and haen b
investigated extensively by many researchers. A barnof
researchers have been developed numerous solutthods to
analysis the dynamic behaviors of the laminated pmsite
beams [2], [3], and [4]. [5] addressed a free \ibraanalysis of
functionally graded beams via hierarchical modelsich were
derived via a unified formulation. Giunta et al] firesented a
unified formulation for the free vibration and dlasstability
analysis of three-dimensional sandwich beams, iiclwkhear
deformation, in- and out-of-plane warping and rptamertia
were accounted for. Giunta et al. [7] investigatbe free
vibration of simply supported, cross-ply beams waveral
higher-order displacement- based theories accayritin non-
classical effects.
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Vidal and Polit [8,9] developed a three-noded bedement on
the basis of a sinus distribution with layer refiment for the
dynamic analysis of laminated beams. Vidal and tPdiD]
performed the vibration analysis of laminated bedynase of
the Murakami’s zig-zag function in the sine modéb. and Thai
[11,12] investigated the free vibration of axiallpaded
composite beams with arbitrary lay-ups using thealpalical
shear dreformation theory. Based on the sinukatiaar
dreformation theory, Vo et al. [13] developed atéinelement
model to study the vibration and buckling of comfm$eams
with arbitrary lay-ups.

In designing structures, it is critical to know theatural
frequencies of the structure. If a natural freqyemé the
structure is close to an excitation frequency, tresvere
vibration of the structure could occur. This coiatitis called
resonance and to avoid resonance, the naturaldneigs of the
structure must be altered by making suitable adjasts in the
design. The study of such free vibrations (freeabse the
structure vibrates with no external forces) is vemportant in
finding the dynamic response of the elastic stmgctThus, in
the dynamic analyses, it is quite essential to idemsan
overview of the free vibration characteristics, lugling the
natural frequencies of these composite structure$l4]

performed the free vibration analyses of generdiyinated
composite beams using the method of Lagrange niatpJang
and Lee [15] presented a spectral element modethforaxial-
bending-shear coupled vibrations of axially loadathinated
Timoshenko beams.

Free vibration analysis of laminated beams has loeaeducted
by significant amount of research. Y®&ldoérém andrdld16]

studied the out-of-plane free vibration problem syinmetric
cross-ply laminated beams using the transfer matrethod.
Also, the effects of the rotary inertia and sheefodmnation are
investigated under various boundary conditions.dBae, J. [17]
investigated the free vibrations of axially loadedmposite
Timoshenko beams using the dynamic stiffness matthod
by developing an exact dynamic stiffness matrixcomposite
beams taking into account the effects of an axdatd, shear
deformation, and rotatory inertia. The theory imgs the
material coupling between the bending and torsionatles of
deformations. Jun et al. [18] investigated the frémation and
buckling behaviors of axially loaded laminated casipe beams
having arbitrary lay-up using the dynamic stiffnessthod
taking into account the influences of axial ford@sjsson effect,
axial deformation, shear deformation, and rotamrtia. They
developed the exact dynamic stiffness matrix bgatly solving
the governing differential equations of an axiallgaded
laminated beam. Eisenberger, M. et al. [19] u$eddynamic
stiffness analysis and the first-order shear dedfion theory to
study the free vibration of laminated beams. Cakn{20] make
study intended to analyze free and forced vibratiof non-
uniform composite beams in the Laplace domain. khdad

Reddy [2] have been studied free vibrations of sy

laminated beams with arbitrary boundary

Krishnaswamy, S. et al. [3] gave analytical solasidor the free
vibration problem of laminated composite beams. gSand
Waas [22] have been studied both buckling and Wbeation
analyses of laminated composite beams. They SodgWamas
[22] also investigated the shear deformation e$fe¥tldirim, V.
[23] used the stiffness method for the solutiorthaf purely in-
plane free vibration problem of symmetric cross-aginated
beams with the rotary inertia, axial and transvestwar
deformation effects included by the first-orderahéeformation
theory. Chandrashekhara and Bangera [24] investighe free
vibration of angle-ply composite beams by a higbreter shear
deformation theory using the shear flexible FEM.hTand
Huang [25] presented two finite element models tasea first-
order theory for the free vibration analysis offikfree beams of
general orthotropic. Carrera et al. [26] presentéstarchical
beam elements on the basis of a unified formulatidmere the
displacement components were expanded in terriieeafection
coordinates. On the basis of a unified formulatiBiscani et al.
[27] formulated variable kinematics beam elemewtsich were
combined through the Arlequin method. Giunta et al.

Several researchers have carried out studies ariexgntal and
theoretical evaluations of flexural- torsional \d@abon analysis
for FRP structural members. Lee and Kim [28] stddfeee
vibration of a thin-walled laminated composite beamnere a
general analytical model applicable to the dynabaavior of a
thin-walled channel section composite is develoddtds model
is based on the classical lamination theory, amdwats for the
coupling of flexural and torsional modes for armiyr laminate
stacking sequence. Shadmehri, F. et al. [29] stuttie flexural—
torsional behavior of thin-walled composite beamthwlosed
cross-section and a number of non-classical effesush as
material anisotropy, transverse shear, are coreidén the
study. Kollar, LP. [30] investigated the analysit Fdexural-
torsional vibration of open section composite beavith

including shear deformation. Qiao et al. [31] prded a
combined analytical and experimental approach taratterize
the vibration behavior of pultruded Fiber-Reinfafc®lastic
(FRP) composite cantilever I-beams.

In engineering practice, we often come across thayais of
structures subjected to vibratory twisting loadirgych as
aerodynamic or asymmetric traffic forces. Also, posite
structural elements consisting of a relatively wesatdatrix
reinforced by stronger inclusions or of differentaterials in
contact are of increasing technological importanae
engineering. Steel beams or columns totally encasedncrete
are most common examples, while construction ustegl
beams as stiffeners of concrete plates is a qdiéskjliar and
economical method for long bridge decks or for lspgn slabs.

The extensive use of the aforementioned structalanents
necessitates a rigorous dynamic analysis. Sevesdarchers
have dealt with torsional vibration of beams. Biseger, M. [32]
studied the torsional vibration of open and vaeatross section

conditionsbars by derive analytical method is to form theaiyit stiffness
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matrix of the bar, including the effect of warpingameswara
and Mirza [33]studied the problem of free torsiondration

and buckling of doubly symmetric thin-walled beanfsopen

section, subjected to an axial compressive statid bnd resting
on continuous elastic foundation. Evangelos ando&aigakis
[34] studied the Torsional vibrations of composhtars by
(BEM) boundary element method which is developed tfe

non-uniform torsional vibration problem of doublynsmetric

composite bars of arbitrary constant cross-section.

In the present study, the torsional vibration bédravof

symmetrical laminated composite beams are studiBke

laminated beam is modeled and analyzed by the FEM
commercial finite element program ANSYS 10.0 is duge

perform a dynamic modelling to the laminated beahys
performing an eigenvalue analysis. Mindlin eighteo
isoparametric layered shell elements (SHELL 99)earployed
in the modeling for describing the torsional viliwas of these
beams. Also, analytical models are developed bsdaal
lamination theory and shear deformation theory tiadys the
torsional vibrations of the beams. In the analjtitadels, the
flexural-torsional coupling effects are ignored gnate torsional
vibrations are taken. The effects of fiber directend laminate
stacking sequence on the frequencies of torsidbedtions were
investigated. Also, the effects of boundary cowdisi on the
torsional frequencies of the laminated beams ameodstrated.

2.MATERIAL AND GEOMETRY

A generally laminated composite beam with a safictangular
cross-section of doubly symmetrical cross sectiassshown in
Figure 1, is considered to be studied. The lamthdteam is
made of many plies of orthotropic materials, and fhincipal

material axes of a ply may be oriented at an ayitangle with

respect to the x-axis. In the right-handed Cartesi@aordinate
system, the x-axis is coincident with the beam axig its origin

is on the mid-plane of the beam. The length, bteaahd

thickness of the beam are represented by L, b and
respectively.

Glass fiber (E-Glass) is used as reinforcementhan form of

unidirectional fibers with epoxy resin as matrix fbe laminated
composite beams. The mechanical properties forr filned

matrix are presented in Table 1 [35]. For all #nélement and
analytical models, their associate material elgstperties were
calculated analytically using the simple rule-ofktares as
given in [36]. More accurate values can be furthtetained with
some mechanical testing.

The constituent laminate were considered to balfieastic and
generally orthotropic therefore the concept of Begring
constants was used to describe the laminae eldgtiacertain
set of elastic properties is required as input patars for the
finite element code and for the analytical moddlee set of
properties required as an input parameter at ariaglevel were

El, E2, Eg, Glz, Glg, ng, V12, V13 and b3 as shown in Table 1;

Where 1, 2, and 3 are principal material directions

Table 1 Material elastic properties

Material Properties Value
Glass fiber Fiber longitudinal modulus n 74
direction Ef (GPa)
Fiber transverse modulusint| 74
direction Eft (GPa)
Fiber shear modulus @&f(Gpa) 30
Densitypf (kg/m3) 2600
Fiber Poisson ratiof ¢t 0.25
Epoxy Elastic modulus E (Gpa) 4.5
resin Shear modulus G (Gpa) 1.6
Densitypm (kg/m3) 1200
Poisson rati@ 0.4
orthotropic | Lamina longitudinal modulus E1 46.2
Laminae (GPa)
Lamina transverse modulus E2 14.70
(GPa)
Lamina transverse modulus E3 14.70
(GPa)
Density of compositec (kg/m3) | 2040
Lamina shear modulus in plang 5.35
1-2 G12 (GPa)
Lamina shear modulus in plange 5.35
1-3 G13 (GPa)
Lamina shear modulus in plang 5.22
2-3 G23 (GPa)
Major Poisson ratio in plane | 0.31
1-2v12
Major Poisson ratio in plane | 0.31
1-3v13
Major Poisson ratio in plane | 0.41
h 2-3v23
Fiber volume fraction vf 60%]
3. MODAL ANALYSS BY FINITE-ELEMENT

METHOD, ANSYS

The beams were discretized using (type shell93%efielement

as shown in Figure 2, available in the commerpiatkage

ANSYS10.0. This element has 8 nodes and is coredtitiby

layers that are designated by numbers (LN - Layembkr),

increasing from the bottom to the top of the larteénahe last

number quantifies the existent total number of daym the

laminate (NL - Total Number of Layers).The eleméias six

degrees of freedom at each node: translationseimtidal x, vy,

and z directions and rotations about the nodal, gngl z-axes.
The choice of shell99 element type is based on réaye
applications of a structural shell model, and tyetof results
that need to be calculated.
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X3 = Element x-axis if ESYS is not supplied.
x = Element x-axis if ESYS is supplied.

A modal analysis will be carried out using ANSYS.@inite
element software to study the frequencies of freesidnal
vibrations of the mentioned composite laminatedthea

4. DYNAMIC MODELING BY ANALYTICAL
METHODS

In the present paper, the free torsional vibratiohsymmetric
laminated beams are studied by the classical |dinimaheory
and shear deformation theory.

When the cross-section has one plane of symmetig,ob the
circular frequencies belongs to a flexural mode tedother two
circular frequencies to flexural-torsional modesiiler when the
cross-section has two planes of symmetry, the tloiemuilar
frequencies belong respectively to the flexural esih the two
planes of symmetry and to the pure torsion modeefwthe axis
of the beam does not bend). The bending—torsioplrmudue
to stiffness coupling presented in composite bedugsto fiber
orientation and stacking sequence is neglected.

4.1. Classcal Beam Theory

The oldest and the well-known beam theory is thdeleu
Bernoulli beam theory (or classical beam theory—&Bih
which the shear deformation not included. Althotilgis theory
is useful for slender beams, it does not give ateusolutions
for thick beams. The beams to be studied are ogpiat and its
cross section has two axes of symmetry y and znTdmss is also
symmetrical with respect to these axes, and, aowld the
center of mass coincides with the origin of the gaordinate
system, so that the flexural-torsional coupling oturs.

A beam with two cross-sectional planes of symmetrgy
undergo flexural vibration in either of the two mpés of
symmetry and torsional vibration [37]. Pure torsibwibrations
are focused in this study.
the

Expressions for torsional

El /L2

vibratiomByi of long

El /L2

(at >> ) and short @t << ) orthotropic beams

are:

Torsional vibration of long beam is given by:

sye = Gl pe
(%) 21 6 12 )

Torsional vibration of short beam is given by:

(@) = Ho

2 9 L 2

=], Py (y* +2°)dA o

Where Gl is the torsional stiffness of the beam; in N.m2,

Elvis the warping stiffness of the beam; in N.ré4s the polar
moment of mass per unit length about the sheaecgtomp is
mass per unit volume, A is the area of the crosticse and
u4Bi and p4Gi are parameters in the calculationnatural
frequencies, which are given in Table 2.

Fig 2 Shell99 geometry

The torsional frequencies of a beam of arbitrangth can be
approximated by:

(@) = (@) e + (@,

By using the previous two equations of torsiondration, the
torsional frequencies will be:

=0 4 Cl 2
(0);)2_ El :uBi+ Gl Hs

2L 2m e

For symmetric orthotropic laminated beam previously

mentioned; the torsional stiffness of the be&:’r‘t can be

obtained by this relation,

4

at _dg in (N.m2) (6)
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and Warping stiffness of the bedphocan be obtained by this

relation,

b® h?
Elo=2:14%, (nmay (7)

Where:

all: element 1-1 of the laminate extensional caanpé matrix
(m/N)

d66: element 6—6 of the laminate bending compliamagrix
(/N .m)

Table 2 The constantgBi anduGi for for different types of end

supports

Geometry uB uG
Clamped-Free uBl =1.875 uGi = (i-0.5)n

uB2 = 4.694

uBi = (i-0.5)
Clamped-Clamped puB1 = 4.730 uGi =in

uB2 = 7.853

uBi = (i+0.5)r
Clamped-Simply | uB1 = 3.927 uGi =in
supported uB2 = 7.069

uBi = (i+0.25%
Simply supported{ uBi = in uGi =in
Simply supported

4.2, Shear Deformation Theory

The theory, based on the assumption that crosiossatmain
plane but not perpendicular to the axis is freqyerdlled first-
order shear theory. A beam, in which shear defaonas taken
into account, is called a Timoshenko beam. In sHe&rmation
theory the effect of the shear deformation is abergd in
torsional frequencies calculation as given by [17].

Torsional vibration with shear deformatiomyi of short

JR— — —_— — oy 2 JR—
(Gl L'<< El @) and long Bl L*>> El wandSwwL >>El )
orthotropic beams are:

Torsional vibration of short beam is given by,

@y=| E (L), oLy
! Ew Hg §W Hs

-1

8)

Torsional vibration of long beam is given by,

Gl. 1
(W) =— 5

The torsional circular frequency of a beam of asbit length
can be approximated by:

2 2 2
(wal) - (CLW) short + (CLW) long (10)

By using Egs. (8) and (9) then,

(,) = N B A +G|‘”§i
El. Hy; S Hy g L

Where the torsional shear stiffness is given by,

s _ bn
- 1.2a,,

(11)

(12)

Where a66 is element 6-6 of the
compliance matrix (m/N)

5NUMERICAL RESULTSAND DISCUSSION
5.1 Influence of Fiber Angle on Torsonal Natural
Frequencies

The influences of fiber orientation are investigaby modeling
laminated beams of different lay-up constructionclamped —
free boundary condition as shown in Figure 1. Thalysis was
performed to 8-layered symmetrically laminated bewiith

length 400 mm, width 40 mm and thickness 3.2 mm toad
lamination scheme of beams is ranging frém 00 to 900, in
increments of 50.

The results obtained after modeling the beams eegepted in
Figure 3. It presents the variation of the lowéseée torsional
natural frequencies of the beam with respect terfangle. From
the results, It is seen that the torsional freqgieenimcrease with
increasing the fiber angle of the laminated beantd teach to
significant values in the range from ab@aB50 t06=450, then
the torsional frequencies decrease gradually witheiasing the
fiber angle until reach to minimum valuetat900.
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1400
FEM---1st Mode

1200 B Classical beam theory---1st Mode
;:'31000 A Shear deformation theory---1st Mode
3 = = =FEM-2nd Mode
S 800
g X  Classical beam theory---2nd Mode
[}
&= 600
© o  Shear deformation theory---2nd Mode
=)
s 400 = = FEM--3rd Mode

200 +  Classical beam theory---3rd Mode

&  Shear deformation theory---3rd Mode

0 10 20 30 40 50 60 70 80 90

Fiber orientation (8)

Fig 3. Variation of 1st, 2nd, and 3rd torsional frequesaf Clamped—Free composite beam with respedt¢o dngle change

5.2. Influence Of Laminate Arrangement On Torsional flexural load it is better to use 0/90 laminated arhen applied

) loads are torsional, laminates with orientation480 is more
Frequencies appropriate.
To investigate the influence of laminate stackirgpguence, ) ) )
dynamic modeling is performed to 3 set of symmatric The que shapes assor_nated with the' tors!onal alatur
laminates with a total of 8 layers and dimension46p mm  frequencies of (0/90)2S laminated beam are illtstién Figure
length, 40 mm width and total thickness 3.2 mm.rEyer in - They are deduced by FEM ANSYS for the first tsissional
the laminate has the same thickness. The laminatbemes of frequencies.
the beams are as follow: (0/90)2S, (45/-45)2S, 48/
45/0/90)S. The torsional frequencies are obtaingd the
analytical methods and by FE package, Table 3. Fhantable it
is noticed that very good agreement between resbtined by
FEM, classical beam theory and shear deformaticeorih
National frequency for laminates with fiber orietida (+45/-45)
is permanent higher than for orientation with (0)/9

=p==(0/90)2s Laminate === (45/-45/0/90)s Laminate
== (45/-45)2s Laminate

Figure 4, give the variation of the torsional naturequencies
of the laminates with respect to mode number famgled free
end condition, from the results it is already pblesto verify the
influence of the stacking sequence of the lamimeteorsional
vibration: the laminate with fibers at +/-450 has lager

torsional natural frequencies than the laminatet/s5/0/900
and of 0/900 fibers. This was expected, since thtural

frequencies are related to the stiffness of thectire and the
(+/-450) is much stiffer on torsion than the +/&S00 and than
0/900 laminate.

1500 -

1000 -

500 -

1 2 3 4 5 6

The laminate of 0/900 fibers have the lowest toraionatural Mode no
frequencies than the other lamination schemestarg] tbecause
50% of the fibers are oriented at 00 directionG®00 laminate,
and thus appropriate for bending (Flexural Mod@js can be
explained by the fact that the fibers oriented @tabe more
appropriate to flexural loads and the fibers oednait 450 are
more appropriate to torsional loads, i.e. when giesi have

Fig 4. Influence of laminate stacking sequence on toedion
natural frequencies for clamped free boundary dardi
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Table 3 Torsional natural frequencies (Hz) for differetacking sequences laminate

Lamination schemes Theory Modes
1 2 3 4 5 6
(0/90)2s FEM ANSYS 164.24 | 499.13 852.68 1236.00 71®% | 2125.00
Classical Beam Theory 161.90 490.40 836.00 1208.40616.30 2067.40
Shear deformation Theory 161.80 490.30 835.2( P04 | 1602.70 2033.00
(45/-45)2S FEM ANSYS 246.40| 741.30 1242.00 1754.002280.00 2824.00
Classical Beam Theory 250.30 752.70 1261.20 1179.42311.00 2860.00
Timoshenko 250.30 | 752.70 1261.10 1779.00 2310.00856.80
(45/-45/0/90)s FEM ANSYS 239.00| 720.00 1208.00 1009 | 2227.00 2767.00
Classical Beam Theory 242.50 730.10 1227.90 1138.72270.90 2828.70
Shear deformation Theory 242.50 730.0D 1226.80 7503 | 2267.00 2819.00

1st Mode — 164.24 Hz 2nd Mode —499.13 Hz

3rd Mode — 852.68 Hz 4th Mode - 1236 Hz
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5th Mode - 1657 Hz 6th Mode - 2125 Hz

Fig 5. The torsional vibration modes of (0/900) clampezkflaminated beam

53. Effet Of Boundary Conditions On Torsional beam previously mentioned with the same dimensiand

. geometry. The boundary conditions to be investjdte this
Frequencies study are as follow: C-F Clamped-Free, C-C Clamped-
The FE analyses by using ANSYS are used to inastihe Clamped, C-S Clamped-Simply-Supported, and S-S Igimp
influences of boundary conditions on torsional freacies of the SuPported - Simply Supported.
laminated beams. The analysis can be applied tdathanated

500

450 -

400 ~

—e—Clamped-Free
350 3

300 - —a— Simply supported-Simply

supported
250 - PP

—a— Clamped-Simply supported
200 M
¥ —¢—Clamped-Clamped

150

1st Torsional frequency (Hz)

100 +
50

0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Fiber orientation (8)

Fig 6. Influence of boundary conditions on 1st torsiamatiural frequency frequency

The influence of boundary conditions on torsionalunal than clamped-simply supported, and finally clamfree-
frequencies is investigated for the 1st torsiomaffiency as condition comes to be lower than other supports.

shown in Figure 6. From the results, It is seent tie

clamped-clamped condition has a larger torsionadjdfency CONCLUSIONS

than other boundary fixations, and thus for allefitangles. . L .

The torsional frequency for clamped-simply suppbrte In the p_resent §tudy, the torglonal vibrations lq&ha of
condition comes to be lower than clamped-clampentiition, symmetrical laminated composite beams are studied.
then simply supported-simply supported comes tdoweer
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The laminated beams is modeled and analyzed by Eié.
The commercial finite element program ANSYS 10.Qised
to perform a dynamic modeling to the laminated bedm
performing an eigenvalue analysis, Aanalytical niedare
conducted by classical lamination
deformation theory to study the torsional vibrasioof the
beams. The following conclusions could be cited:

1) Through the results, it is demonstrated thatltedy FEM

ANSYS have shown to be in a good agreement with the
analytical solutions, the results by classical lzation theory

and shear deformation theory.

2) From the results, it is clear that changes lirerfiangle as

well as laminate stacking sequences yield to diffedynamic
behavior of the component, that is, different tonsil natural

frequencies for the same geometry, mass and boundar

conditions.
3) It is seen that the torsional frequencies irgeeavith
increasing the fiber angle of the laminated beamtd teach

to significant value at aboub=45, then the torsional

frequencies decrease gradually with increasinditie angle
until reach to minimum value 8£9¢.

4) This result is very attractive since it makesitgke to obtain
the desired torsional natural frequencies withauréasing

mass or changing geometry. In practical applicatidtnrmeans
that if a torsional natural frequency excites ttrecture, the

designer can change the material properties bygihgrthe

laminate stacking sequence, instead of re-desigrcamplete

structure.
5) The finite element software package ANSYS isfiitient

theory and shear

vibration prediction tool, because of its ability inodel the
laminated composite beam and reveal fundamentalamod
frequencies and modal shapes.

6) Finally this study is useful for the designeoialer to select
the fiber orientation angle to shift the torsiona&tural
frequencies as desired or to control the vibralgwe!.
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