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The lack of coordination in supply chains can cause various inefficiencies like bullwhip effect and inven-
tory instability. Extensive researches quantified the value of sharing and forecasting of customer demand,
considering that all the supply chain partners can have access to the same information. However, only
few studies devoted to identify the value of limited collaboration or information visibility, considering
their impact on the overall supply chain performances for local and global service level. This paper
attempts to fill this gap by investigating the interaction of collaboration and coordination in a four-
echelon supply chain under different scenarios of information sharing level. The results of the simulation
study show to what extent the bullwhip effect and the inventory variance increase and amplify when a
periodic review order-up-to level policy applies, noting that more benefits generate when coordination
starts at downstream echelons. A factorial design confirmed the importance of information sharing
and quantified its interactions with inventory control parameters, proving that a poor forecasting and
definition of safety stock levels have a significant contribution to the instability across the chain. These
results provide useful implications for supply chain managers on how to control and drive supply chain
performances.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Similar to the shape of a cowboy cracking his lash, the bullwhip
effect (Fig. 1) is the amplification of the demand variance as infor-
mation flows across the supply chain, from customer to factory
(Chatfield, Kim, Harrison, & Hayya, 2004; Lee, Padmanabhan, &
Whang, 1997b). Starting from the most famous experiences at
Campbell Soup’s (Fisher, Hammond, Obermeyer, & Raman, 1997),
HP and Procter & Gamble (Lee, Padmanabhan, & Whang, 1997a), a
clothing supply chain (Disney & Towill, 2003a), Glosuch (McCullen
& Towill, 2000) till the recent examples of fast moving consumer
goods (Zotteri, 2012) and car manufacturing (Klug, 2013), the bull-
whip effect continues to show its impact on supply chain perfor-
mances. Many researchers illustrated the bullwhip dynamics and
its negative effects: the amplification of order variance requires a
managerial effort that results in a consequent increase of costs to
maintain a target service level (Chatfield et al., 2004) and a further
reduction of business performances due to:

- High levels of inventory to face unexpected variations of the
demand with a relative increase of stocking costs, as the
amount of safety stocks derives from the order variability.

- Low service level to customers for unexpected stock-outs that,
in the worst cases, can cause the cancelation of orders and the
reduction of actual and future sales.

- Reduction of quality for the necessity to increase production
rates to satisfy peaks of demand.

- Increase of costs for rescheduling, updating of production plans
and reworking.

Besides the role of misperception of feedback by managers and
of operational causes, accurately described starting from the
research of Sterman (1989), there is still a substantial need to
understand the contribution that coordination and collaboration
could give to counteract it in a modern and competitive
environment.

According to these considerations, this paper presents the fol-
lowing structure: (1) a literature review in Section 2 provides the
motivations and the scope of the research, determining the specific
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Fig. 1. An example of demand amplification in a linear supply chain.
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field of analysis; (2) Section 3 describes the supply chain simula-
tion model and the performance measurement system; (3)
Section 4 provides a quantification of the impact of different infor-
mation sharing levels on supply chain performances; (4) Section 5
shows the interactions of the inventory control parameters on the
performances, according to different levels of information sharing;
(5) Section 6 gives general insights and implications for managers,
and Section 7 summarizes the conclusions.

2. Literature review

Forrester (1958) was the first to observe and describe the bull-
whip effect, calling it ‘‘demand amplification’’, determining that it
is due to natural system dynamics and delays in supply chain.
Reducing the lead-time between echelons and adopting coordina-
tion approaches such as vendor-managed inventory, to eliminate
decision-making layers and increase visibility on information
without distortion, can help to smooth this effect (Disney &
Towill, 2003b; Lee et al., 1997b).

Two classes of sources cause the bullwhip effect: behavioral
causes (Nienhaus, Ziegenbein, & Schoensleben, 2006; Rong, Shen,
& Snyder, 2008; Sterman, 1989) and operational causes (Lee
et al., 1997a, 1997b). The first refers to the evidence that decision
makers consistently underweight the supply line when making
order decisions (Croson & Donohue, 2006) while the second relates
to the operational conditions of the replenishment process as for
demand signal processing, non-zero lead-times, order batching,
price fluctuations, rationing and shortage gaming.

In particular, demand signal processing encompasses the fore-
casting of future demand and inventory adjustment through apply-
ing inventory control policies, proven by Disney and Lambrecht
(2008) to be of a significant importance. In this stream of research,
many studies attempted to identify the impact on the bullwhip
effect of different inventory control policies, evaluating the role of
forecasting methods (Barlas & Gunduz, 2011; Chen, Drezner, Ryan,
& Simchi-Levi, 2000; Chen, Ryan, & Simchi-Levi, 2000;
Dejonckheere, Disney, Lambrecht, & Towill, 2003, 2004; Hosoda &
Disney, 2006a, 2006b; Wright & Yuan, 2008; Zhang, 2004), lead-
times (Chatfield, 2013; Chatfield et al., 2004; Chen, Drezner, et al.,
2000; Chen, Ryan, et al., 2000; Ciancimino, Cannella, Bruccoleri, &
Framinan, 2012; Dejonckheere et al., 2003, 2004; Kelepouris,
Miliotis, & Pramatari, 2008) and information sharing (Chatfield &
Pritchard, 2013; Chatfield et al., 2004; Chen, Drezner, et al., 2000;
Dejonckheere et al., 2004; Kelepouris et al., 2008) to give useful
insights for supply chain managers on how to handle demand vari-
ability amplification. A specific attention is to give to side effects of
bullwhip effect, as for inventory stability, especially in multi-
echelon supply chains: while the amplification of the demand con-
tributes to the increase of the production and inventory costs, the
variance of the net inventory determines the ability of any single
organization to meet a service level in a cost-effective manner
(Hussain, Shome, & Lee, 2012; Ma, Wang, Che, Huang, & Xu, 2013).
To this extent, most studies focused on the periodic review order-
up-to policy because of its popularity (Chatfield & Pritchard, 2013;
Dejonckheere et al., 2003; Disney & Lambrecht, 2008; Wright &
Yuan, 2008). The order-up-to policy is a common strategy when
there is no fixed ordering cost (e.g. in case of visiting agents or
framework contracts with suppliers) or both holding and shortage
costs are proportional to the volume of the on-hand inventory
(Dejonckheere et al., 2003). The important role of this inventory
control rule in many supply chains derives from the small set of
parameters to set as the only information for its implementation
are a forecasting value of demand and a level of safety stock, to
determine according to a required service level. Of particular inter-
est, Chen, Drezner, et al. (2000) quantified the bullwhip effect in a
two-echelon serial supply chain experiences auto-regressive AR(1)
demand process and employs the order-up-to level with the moving
average method, and they further extended the results for a multi-
echelon supply chain both with and without information sharing.
Chen, Ryan, et al. (2000) extended the analysis for a supply chain
employs the order-up-to level with the exponential smoothing
method. Xu, Dong, and Evers (2001) obtained similar results using
the exponential smoothing technique. Chen, Ryan, et al. (2000)
showed also that, if the forecasting parameters for both exponential
smoothing and moving average methods are set to achieve the same
forecasting accuracy, then moving average gives a lower order var-
iance. Dejonckheere et al. (2004) confirmed these results using a
control theoretic approach. Chatfield et al. (2004) examined the
effects of stochastic lead times, information sharing and quality of
information in a periodic review order-up-to level inventory system
through a simulation study. They considered three measures to
track the supply chain performance, namely, standard deviation of
the orders at each echelon, total variance amplification (i.e. bull-
whip effect) and stage variance amplification. They concluded that
lead-time variability exacerbates variance amplification and that
information sharing and information quality are highly significant
to handle the propagation of variability. Jakšič and Rusjan (2008),
Kelepouris et al. (2008), Wright and Yuan (2008), Hussain et al.
(2012), Chatfield (2013) and Chatfield, Hayya, and Cook (2013) con-
ducted similar studies to confirm these findings in more complex
configurations of supply chains or different inventory control
conditions.

Different mitigation strategies can help to overcome the effect
of demand signal processing, from improving the operational effi-
ciency to the use of collaboration approaches in decision making
(Campuzano-Bolarín, Mula, & Peidro, 2013; Costantino, Di Gravio,
Shaban, & Tronci, 2013a; Costantino, Di Gravio, Shaban, & Tronci,
2013b; Dejonckheere et al., 2004; O’Donnell et al., 2006). In
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particular, Holweg, Disney, Holmström, and Småros (2005) classi-
fied supply chain collaboration initiatives on inventory replenish-
ment and forecasting dimensions, concluding that any action
have to integrate both these areas to reach significant improve-
ments. Interventions that improve, locally or globally, the level of
coordination showed their effectiveness in practice (Chatfield
et al., 2004; Cho & Lee, 2013; Costantino et al., 2013a, 2013b;
Kelepouris et al., 2008; Ye & Wang, 2013).

Most of previous works assumed that all partners use the same
forecasting methods and inventory control policy with the same
parameters. In addition, they assumed that, if there is collaboration
(i.e. information sharing of customer demand), all partners partic-
ipate. The paper extends these efforts through measuring perfor-
mances under different levels of information sharing, forecasting
parameters and safety stock level at the upstream and downstream
echelons of the supply chain. This results in different scenarios of
partial collaboration to quantify the effectiveness to what extent
the coordination of policies among partners can help in smoothing
the bullwhip effect in a multi-echelon supply chain. To allow
comparisons with the main cited research, the partners apply a
periodic review order-up-to policy with a moving average forecast-
ing method where the amplification of the demand, the inventory
variance and the service level are measures of performance, coher-
ently to Kurien and Qureshi (2011) review and Tangen (2004)
framework. To this extent and according to the classification of
Chatfield (2013), simulation is the most appropriate approach to
study supply chain complex dynamics. Similar experiences proved
the effectiveness of discrete-event simulation (Tako & Robinson,
2012; Chatfield, 2013; Costantino, Di Gravio, Shaban, & Tronci,
2014a, 2014b, 2014c; Costantino et al., 2013a; Lau, Xie, & Zhao,
2008). An experimental design evaluates the statistical significance
of the interactions of forecasting parameters, information sharing
level and safety stock level to evaluate how they can contribute
to improve or reduce performances. The analysis aims at giving
some useful insights and managerial implications to determine
guidelines of coordination in a competitive environment.
3. Supply chain simulation modeling

Following the leading research of Chen, Drezner, et al. (2000),
Chatfield et al. (2004) and Dejonckheere et al. (2004), this study
propose a discrete event simulation to identify the role of the
ordering policy in controlling bullwhip effect, where the perfor-
mances at each echelon derives mainly from the level of coordina-
tion among the partners of the supply chain.

The model represents a traditional four-echelon supply chain
consisting of a customer, a retailer, a wholesaler, a distributor
and a factory (see, Fig. 2) as for many previous studies in this field
(Chatfield et al., 2004; Chatfield, 2013; Ciancimino et al., 2012;
Costantino et al., 2013a, 2013b, 2014a). Fig. 2 depicts a visual rep-
resentation of the supply chain in which, at any period, each ech-
elon i receives orders from its downstream partner i � 1, satisfies
these orders from his own stock and then issues an order to
echelon i + 1. The retailer observes and satisfies the customer
demand Dt and places orders with the wholesaler. All the
Fig. 2. A multi-echel
echelons employ a periodic review order-up-to (R, S) inventory
policy in which the order-up-to level updates at the end of each
review period (R), with R = 1, according to the forecasting of the
future demand.

The model presents the following assumptions (Ciancimino
et al., 2012; Sterman, 1989; Wright & Yuan, 2008):

� The factory has an unlimited capacity to produce any quantity
ordered by the distributor.
� The stocking capacity at any echelon is unlimited.
� The unfulfilled orders, due to out of stock, at any echelon are not

lost but they become backlogs, to satisfy as soon as the inven-
tory recovers.
� The transportation capacity between adjacent echelons is

unlimited.
� The ordering and delivery lead-times are deterministic and

fixed across the supply chain with ordering lead-time (Lo ¼ R)
= 1 and delivery lead-time (Ld) = 2.
� Orders are always positive or equal to zero, cancelations are not

allowed (non-negativity condition).

The Eqs. (1)–(7) define the different state variables at each
echelon i in each period t; where i = 1, ..., 4; e.g., i = 1 stands for
the retailer and i = 4 stands for the factory, and we also refer to
the customer as i = 0 to adjust the model:

SLi
t ¼ SLi

t�1 þ Oi
t�1 � SRiþ1

t�Ld ð1Þ

SRi
t ¼ MinfIOi

t þ Bi
t�1; Ii

t�1 þ SRiþ1
t�Ldg ð2Þ

IOi
t ¼ Oi�1

t�Lo ð3Þ

Ii
t ¼ Ii

t�1 þ SRiþ1
t�Ld � SRi

t ð4Þ

Bi
t ¼ Bi

t�1 þ IOi
t � SRi

t ð5Þ

NIi
t ¼ Ii

t � Bi
t ð6Þ

IPi
t ¼ Ii

t þ SLi
t � Bi

t ð7Þ

In each period t, each echelon i receives an amount of shipment

SRiþ1
t�Ld issued by the upstream echelon i + 1 at time t � Ld. Thus,

the initial inventory level Ii
t�1 increases by the shipment SRiþ1

t�Ld

and at the same time decreases by the amount of SRi
t released down

to the echelon i � 1 (see, Eq. (4)). The amount SRi
t to ship to echelon

i � 1 is the lower value between the initial inventory Ii
t�1 added to

the incoming shipment SRiþ1
t�Ld and the order IOi

t added to the backlog

order Bi
t�1 (see, Eq. (2)) where at the retailer (echelon i = 1), the

incoming order at time t is the observed customer demand at this

time (IOi¼1
t ¼ Dt). Thus, the net inventory NIi

t in Eq. (6) is equal to

the difference between the available inventory level Ii
t and the back-

log Bi
t at time t. The inventory position (7) is the accumulation of the

amount in supply line SLi
t in Eq. (1) and the net inventory level in Eq.

(6). The order Oi
t of the echelon i to the echelon i + 1 depends on the

ordering policy.
on supply chain.
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The Eqs. (8)–(15) represent the rules of the order-up-to policy:

Oi
t ¼ MaxfðSi

t � IPi
tÞ;0g ð8Þ

IPi
t ¼ Si

t�1 � IOi
t ð9Þ

Si
t ¼ LD̂i

t þ SSi
t ð10Þ

SSi
t ¼ kr̂i

t ð11Þ
Si

t ¼ LD̂i
t þ kr̂i

t ð12Þ

D̂i
t ¼

1
ni

Xni

j¼1

IOi
t�jþ1; for 8i > 1 ð13Þ

D̂R
t ¼

1
ni

Xni

j¼1

Dt�jþ1; for i ¼ 1

ðat the retailerÞ ð14Þ

In the periodic review order-up-to policy, at the end of each
period t, each echelon issues a non-negative order Oi

t whenever
the inventory position IPi

t is lower than a specific target level Si
t

(order-up-to level) as in Eq. (8). The target inventory position for
an echelon i at time t, Si

t relies on the expected demand over the
total lead-time (LD̂i

t) where L = R + Ld and D̂i
t is the one-period

ahead demand forecast, as shown in Eq. (10), resulting in a
dynamic target level that, every period t, follows the updated
demand forecast. In order to account for demand variation, a safety
stock component adds to the equation of the target inventory posi-
tion, as in Eqs. (10)–(12). The amount of safety stock depends on
the variation of incoming orders during the lead-time period (L)
and the service level (k). Another common approach is to extend
the lead-time to calculate the safety stock, instead of depending
on the formula kr̂i

t (Chatfield & Pritchard, 2013; Dejonckheere
et al., 2004). In this model, we set k = 0 and considered the safety
stock term by extending the lead-time period by Ki so that the tar-
get inventory position Si

t becomes as follow:

Si
t ¼ ðLþ KiÞD̂i

t ð15Þ

The demand forecast (D̂i
t) is dynamically updated in each period t

with the moving average forecasting technique which is commonly
used in practice and research (Chen, Drezner, et al., 2000; Disney &
Lambrecht, 2008). The only parameter required for the moving
average forecasting is the number of past periods ni used to average
the demand. Specifically, at the end of each period t, all echelons
other than the retailer (echelon i > 1) estimate the expected demand
in the next period (one-period ahead demand forecast, D̂i

t) based on
the average of the incoming orders from the adjacent downstream
echelon over the most recent ni periods (IOi

t�niþ1; . . . ; IOi
t) (see,

Eq. (13)). Eq. (13) is a general equation that can be used to obtain
the demand forecast at any echelon where IOi

t�jþ1 represents the
incoming order from the downstream echelon i � 1 to echelon i at
time t � j + 1 where j = 1, ..., ni. At the retailer (echelon i = 1), the
demand forecast is adjusted in the same manner but based on the
actual customer demand data (Dt�niþ1; . . . ;Dt) as shown in Eq. (14)
which is a special case of (13). The mean demand over the lead time
is estimated by multiplying the next period’s demand forecast by
the lead time added to the safety stock parameter which determines
the target inventory position in Eq. (15).

The last Eq. (15) shows that each echelon i in the supply chain
can use his own forecasting method and his own parameter of the
ordering policy.
3.1. Performance measures

The study analyzes and quantifies supply chain under three dif-
ferent performances: bullwhip effect ratio, inventory variance ratio
and average service level.
3.1.1. Bullwhip effect ratio
The bullwhip effect ratio expresses the amplification of demand

variability across the supply chain. In particular, Chen, Drezner,
et al. (2000) quantified bullwhip effect (BWEi) analytically in terms
of the variance of the orders (r2

Oi
) at echelon i relative to the vari-

ance of the demand at the retailer:

BWEi ¼
r2

Oi
=lOi

r2
D=lD

ð16Þ

where lOi
represents the average of the orders at echelon i, lD is the

average of the customer demand and r2
D is the variance of the cus-

tomer demand. It is expected that lOi
¼ lD in the long term run and,

therefore, the measure turns into BWEi ¼ r2
Oi
=r2

D. Dejonckheere
et al. (2004) used the same metric as a measure of bullwhip effect
and called it the ‘Variance Ratio’. They stated that Variance Ratio > 1
results in a bullwhip; Variance Ratio < 1 results in order smoothing;
Variance Ratio = 1 results in a ‘‘pass-on-orders’’ policy, where the
ordering pattern exactly follows the demand pattern.

3.1.2. Inventory variance ratio
The second measure is the inventory variance ratio. Disney and

Towill (2003a) were the first to propose this measure to evaluate
the degree of inventory stability, as it quantifies the fluctuations
in net inventory variability (r2

NIi
) relative to the fluctuation in

demand variability (r2
D):

InvRi ¼
r2

NIi

r2
D

ð17Þ

It can also measure the amplification in inventory instability as we
move up the supply chain, similar to the bullwhip effect ratio. An
increase in inventory variance would result in higher holding and
backlog costs, lower service level and increasing average inventory
costs per period.

3.1.3. Average service level
The average service level quantifies the percentage of items

delivered immediately by the echelon i to satisfy an incoming
order (Zipkin, 2000). Service level or fill rate (Sli

t) computes every
review time R over the effective delivery time (i.e., IOi

t > 0) as in
Eq. (18). Its time series constitutes the history of the effectiveness
of the delivery system, where SRi

t stands for the shipment from
echelon i to echelon i � 1, Bi

t�1 stands for the initial backlog at ech-
elon i, and IOi

t is the incoming order to echelon i. The effective sim-
ulation time is equivalent to the summation of all periods with
IOi

t > 0; hence, Teff 6 T .

Slit ¼
SRi

t�Bi
t�1

IOi
t
� 100 if SRi

t � Bi
t�1 > 0

0 if SRi
t � Bi

t�1 6 0

8<
: ð18Þ

ASli ¼
PTeff

t¼1Sli
t

Teff
ð19Þ

The average service level (ASli) is computed only over the effective
simulation time (Teff ) as in Eq. (19).

3.2. Verification and validation of the simulation model

The simulation model, developed in SIMUL8, followed a verifi-
cation and validation process with the analytical work of Chen,
Drezner, et al. (2000), the control engineering work of
Dejonckheere et al. (2004) and the simulation work of Chatfield
et al. (2004). Chen, Drezner, et al. (2000) developed a closed-form
expression for quantifying the bullwhip effect ratio in a two-stage
supply chain, generalizing to multi-echelon systems through



Table 1
Simulation model validation results.

Comparison of TSC results L + Ki = 5"i ni = 19"i D�N(100, 102)

Echelon i TSC (a) Chen et al. (2000) (b) Dejonckheere et al. (2004) (c) Chatfield et al. (2004) (d) % (a–b) % (a–c) % (a–d)

Retailer 1.67 1.66 1.67 1.67 0% 0.13% 0.12%
Wholesaler 3.00 2.77 2.99 2.99 8% 0.27% 0.32%
Distributor 5.74 4.61 5.72 5.72 20% 0.36% 0.36%
Factory 11.45 7.68 11.43 11.43 33% 0.16% 0.13%
Average percentage error (%) 15% 0.23% 0.23%

Table 2
Information sharing scenarios (incoming order to each echelon).

CD = customer demand, RO = retailer order, WO = wholesaler order,
DO = distributor order
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multiple applications (i.e. a product of several individual stage
amplification values) as shown in the following equation:

r2
Oi

r2
D

P
Ym
i¼1

1þ 2Li

ni
þ 2L2

i

n2
i

 !
8i ð20Þ

Dejonckheere et al. (2004) considered a control theoretic approach
to quantify the bullwhip effect and validated their model with Chen,
Drezner, et al. (2000), whereas Chatfield et al. (2004) adopted a sim-
ulation approach to quantify the bullwhip effect and validated their
results with both Dejonckheere et al. (2004) and Chen, Drezner,
et al. (2000). We compare the results of our model with them all,
setting the same simulation and operational parameters in a valida-
tion test of 20 replications for a length of 5200 periods, each with a
warm-up period of 200 periods (Chatfield et al., 2004; Dejonckheere
et al., 2004). For the other simulation experiments in the paper,
since the simulation model is a non-terminating system, the num-
ber of replications are selected based on a 95% confidence level
Retailer Wholesa
Scenario # 1 2.14 5.19

Scenario # 2 2.14 2.45

Scenario # 3 2.14 2.45

Scenario # 4 2.14 2.45

Scenario # 5 2.14 5.19

Scenario # 6 2.14 5.19

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

B
W
E

Bullw

Fig. 3. Bullwhip effect ratio in differe
and absolute precision level (half width/mean) lower than 5% on
the bullwhip effect measures (Chatfield et al., 2004; Chatfield
et al., 2013; Robinson, 2005).

The demand pattern follows a normal distribution with an aver-
age of 100 and a standard deviation of 10 (i.e., N(100, 102)). The mov-
ing average parameter was set to ni = 19, "i, and the safety stock
component was set to Ki = 2, i.e., the value of L + Ki = 5 where
L = R + Ld and R = 1 (Chatfield et al., 2004; Dejonckheere et al.,
2004). We applied these values in Eq. (20) to get the bullwhip effect
ratio at each echelon i based on Chen, Drezner, et al. (2000), where
i = 1, ..., m and m = 4, and Li = L + Ki to consider the safety stock com-
ponent. Table 1 shows that the simulation model works as expected.
The closed form expression of Chen, Drezner, et al. (2000) does not
consider the interactions in the model (Chatfield, 2013, 2004),
therefore, there is a considerable difference between the average
percentage error between (a, c, d) and (b). The average percentage
error of 0.23% with the other two simulation models is mainly due
to the different random seeds in the different models and to the
non-negativity of orders (allowed in the original ones).
4. The value of information sharing

In literature, a general assumption of information sharing is that
all the partners in the supply chain would have access in real time
to same information (Dejonckheere et al., 2004). Considering the
periodic review order-up-to level strategy, the only set of sensible
information is the value of the demand: having information on
inventory or capacity of the downstream and upstream echelons
wouldn’t change the value of the orders issued by any partner. In
this study, we are seeking to quantify the impact of different con-
figurations of partial demand sharing on supply chain perfor-
mances as for cases when downstream echelons might
ler Distributor Factory

13.62 34.89

6.01 15.83

2.75 6.80

2.75 3.05

6.00 6.79

13.62 15.84

hip effect ratio

nt information sharing scenarios.



Retailer Wholesaler Distributor Factory
Scenario # 1 4.56 11.61 32.62 79.04
Scenario # 2 4.53 7.56 19.88 49.46
Scenario # 3 4.54 7.39 10.34 25.73
Scenario # 4 4.54 7.38 10.05 11.83
Scenario # 5 4.54 10.93 18.67 25.52
Scenario # 6 4.54 11.21 29.68 49.72
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Fig. 4. Inventory variance ratio in different information sharing scenarios.
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collaborate without coordinating with the upstream ones (Son &
Sheu, 2008). Table 2 illustrates a sample of significant information
sharing scenarios to represent a gradually increasing level of col-
laboration, where not all the partners have complete visibility on
the demand or orders:

1. Scenario #1 or Traditional Supply Chain (TSC): the benchmark
case described above, in which the retailer is the only partner
that has access to the customer demand while the other part-
ners receive the downstream echelon’s orders.

2. Scenario #2 or Downstream Collaboration (DC) both the retailer
and the wholesaler have access to the customer demand.

3. Scenario #3 all the partners in the supply chain, except the fac-
tory, have access to the customer demand.

4. Scenario #4 or Information-Enriched Supply Chain (IESC) highest
level of information sharing in which all the partners have
access to the customer demand.

5. Scenario #5 limited collaboration among the upstream echelons
where both the distributor and the factory have access to the
incoming orders from the retailer to the wholesaler, without
knowing the customer demand.
Retailer Wholesa
Scenario # 1 100.0 99.9

Scenario # 2 100.0 100.0

Scenario # 3 100.0 100.0

Scenario # 4 100.0 100.0

Scenario # 5 100.0 100.0

Scenario # 6 100.0 100.0
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96.0

97.0

98.0

99.0

100.0

101.0

A
Sl
%

Avera

Fig. 5. Average service level in differe
6. Scenario #6 or Upstream Collaboration (UC) very limited collabo-
ration between the distributor and the factory in which the fac-
tory has access to the incoming orders at the distributor.

The level of information sharing changes the input data of the
forecast at any echelon. In the scenarios #2, #3 and #4, all the part-
ners that have access to the demand use Eq. (14) instead of Eq.
(13), meaning that the target level is no more affected by the vari-
ations of the orders coming from the downstream echelons but it
relies directly on the customer demand. In the scenarios #5 and
#6, all the partners that have access to the downstream echelons
orders use these values in their forecasts, instead of their incoming
order time series, to represent the customer demand with a lower
distortion.

The simulation settings for the experiment are considered as
follows:

- customer demand follows the normal distribution with lD = 30
and r2

D ¼ 32 where rD is selected significantly smaller than lD,
so that the occurrence of negative demand observations is
negligible;
ler Distributor Factory
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- all echelons in the supply chain use the same ordering policy
with Ki = 1, "i, and the same forecasting method with
ni = 10, "i where these settings are the average and common
values employed for these parameters in the related literature
(Chatfield et al., 2004; Dejonckheere et al., 2003;
Dejonckheere et al., 2004; Wright & Yuan, 2008). In particular,
when ni = 10, "i, the forecast variance is r2

D̂
¼ r2

D=ni ¼ 0:9 that
means a percentage error of 3% on the average value.

- for each scenario, the simulation model runs for 20 replications
of 1200 periods, each with a warm-up of 200 periods (95% con-
fidence level with absolute precision level lower than 5%).

Fig. 3 confirms that the bullwhip effect act in all the scenarios
(i.e., BWEi > 1) regardless information are shared or not. However,
Scenario #1 shows the highest bullwhip effect at all echelons with
a ratio geometrically increasing as moving from the retailer to the
factory and a variability about 35 times the customer demand. Sce-
nario #4 represents the lower bound of the bullwhip effect as the
distortion of the demand is null and the effect derives only from
the value of lead times and the structure of the inventory control
policy. Increasing the information sharing level among the
Fig. 6. The sensitivity of the bullwhip
downstream echelons shows a considerable effect throughout the
supply chain and especially at the most upstream echelons, as in
Scenarios #2–6. For instance, the collaboration between the retai-
ler and the wholesaler in Scenario #2 (downstream collaboration)
allows a decrease of more than 50% of the bullwhip effect, i.e. from
5.19 to 2.45 at the wholesaler, from 13.62 to 6.01 at the distributor
and from 34.89 to 15.83 at the factory. More collaboration leads to
a reduction in the propagation rate: bullwhip effect ratio increases
geometrically over the echelons that do not participate in collabo-
ration (e.g., Scenarios #1, #2, #6) and increase linearly over the
echelons that participate (e.g., Scenarios #3, #4, #5). Furthermore,
the results indicate that downstream collaboration is more effec-
tive than upstream collaboration as, once the amplification starts,
it is more difficult to counteract.

In Fig. 4, the behavior in terms of inventory variance ratio
resembles to a considerable degree the bullwhip effect in Fig. 3.
The lack of collaboration leads to a large increase in the inventory
instability moving upstream in the supply chain as a negative con-
sequence of the bullwhip effect. The collaboration through infor-
mation sharing have both local and global effect: comparing the
Upstream Collaboration (Scenario #6) with the Traditional Supply
effect to the experimental factors.



Fig. 7. Interaction effect between MA and Info_Shar on bullwhip effect.

Fig. 8. Interaction effect of the safety stock levels on the bullwhip effect.

Table 3
ANOVA results for the bullwhip effect at the different echelons.
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Chain (Scenario #1), the inventory variance ratio decreases from
32.62 to 29.68 at the distributor (local effect), from 79.04 to
49.72 at the factory (global effect) and slightly from 11.61 to
11.21 at the wholesaler (global effect).
The behavior of the average service level is a reverse pattern of
the bullwhip effect and inventory variance, as for Fig. 5. It is clear
that the average service level (ASli) decreases as we move upstream
in the supply chain especially when the collaboration level is low



Fig. 9. The sensitivity of the inventory variance to the experimental factors.

Fig. 10. Impact of different settings of safety stock level on the inventory variance.
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or absent. This conclusion confirms the recent study of Chatfield
et al. (2013) where they investigated the existence and magnitude
of stock out propagation and amplification in inventory systems.
This means that the upstream echelons are not able to handle
properly the variability of the incoming orders although the down-
stream are successful to do that. The distributor and the factory
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that suffer the problem would have to increase the level of their
safety stock to handle this situation. Interestingly, as the level of
collaboration increases, the average service level improves at the
higher upstream echelons.

The best scenario that achieves the lowest bullwhip effect and
inventory variance ratio and the highest average service level is
the Information-Enriched Supply Chain in which all echelons have
access to the customer demand. The results show that, when pos-
sible, local partnerships (downstream or upstream) are anyway
recommended, as they can lead to decrease the variance amplifica-
tion at any echelon whilst achieving improvements on inventory
performance.

5. Experimental design

Forecasting and inventory control parameters are key causes of
the bullwhip effect and inventory instability that could influence
the impact of information sharing. To extend the results of the
analysis, we design a factorial experiment with five factors on
two levels each, according to the hypothesis of Chatfield et al.
(2004) and Barlas and Gunduz (2011):

1- Information sharing (Info_Shar): TSC and IESC
2- Moving average parameter (MA): 5 and 15
3- Safety stock level at the most downstream echelon (i.e., retai-

ler): 3 and 6
4- Safety stock level at the middle echelons (i.e., wholesaler and

distributor): 3 and 6
5- Safety stock level at the most upstream echelon (i.e., factory): 3

and 6

To conduct this experiment, we run all the possible combina-
tions of the five factors and levels, having 32 possible
Table 4
ANOVA results for the inventory variance at the different echelons.
combinations. Each simulation consists of 20 replications of 1200
periods each, with the first 200 periods of warm-up. In this case,
we assumed the customer demand follows a normal distribution
with lD = 30 and rD = 3. The value of rD is selected significantly
smaller than lD in order to avoid the occurrence of negative
demand observations since it is also assumed that cancelations
are not allowed which means that orders of each echelon in the
supply chain are always positive or equal to zero (Hussain et al.,
2012).

The two levels of information sharing factor are the Traditional
Supply Chain (TSC) and the Information Enriched Supply Chain
(IESC) to represent the extreme conditions of performances where
the bullwhip effect increases, respectively, geometrically and line-
arly at all echelons. The difference between TSC and IESC indicating
how the input data for the demand forecast is different in each case
is discussed in the previous section.

The experimental factor MA represents the moving average
parameter ni (i.e., ni = MA, "i) in Eqs. (13) and (14), which is the
only parameter to regulate the accuracy of the forecasting tech-
nique, being considered as one of the major causes of the bullwhip
effect in either TSC or IESC (Chen, Drezner, et al., 2000;
Dejonckheere et al., 2003, 2004). In this case, where the demand
pattern is normal, an increase in MA results uniquely in a more
accurate forecast as, according to the central limit theorem, the
estimation error decreases with the increase of the size of the sam-
ple. With this simple assumption, two levels are sufficient to
describe the relative impact that an increase of the forecast accu-
racy has on the supply chain performances whilst providing fur-
ther insights on the interaction between MA and other
experimental factors. Therefore, the values of the two levels of
MA are selected to have a high likelihood of considerable main
effect and interaction with the other parameters, whilst covering
the MA range reported in the previous literature (Chandra &
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Grabis, 2005; Chatfield et al., 2004; Dejonckheere et al., 2003,
2004; Son & Sheu, 2008; Wright & Yuan, 2008). In particular, when
MA is set to the low level (ni = MA = 5, "i) then the forecast vari-
ance is r2

D̂
¼ r2

D=ni ¼ 1:8 that means a percentage error of about
4.5% on the average value; when MA is set to the high level (ni =
MA = 15, "i), r2

D̂
¼ 0:6 and the percentage error decreases to
Fig. 11. The sensitivity of the average serv

Fig. 12. The impact of safety stock level
2.5%. If the patterns were not normal, the experimental design
should first support in finding the best value of MA, investigating
different levels of the parameter according to the weight of trend,
seasonality and autocorrelation of the demand.

In the order-up-to policy, the safety stock parameter (Ki) is the
only one to control. The work of Barlas and Gunduz (2011) showed
ice level to the experimental factors.

changing on average service level.



Table 5
ANOVA results for the average service level at the different echelons.

F. Costantino et al. / Computers & Industrial Engineering 76 (2014) 292–306 303
that increasing the safety stock level increases the bullwhip effect
even assuming the same Ki value at all the echelons. To deeply
investigate the interaction among the different safety stock levels
across the supply chain and identify the best allocation of inven-
tory, we define three different factors dividing the supply chain
into three zones, where the values of R_SS, WD_SS and F_SS repre-
sent the ordering level L + Ki. For instance, R_SS = 3 means that
there is no safety stock or Ki = 0 where L = 3 is the same at all ech-
elons. As for the other two parameters of the experimental design,
when the demand pattern is normal, the effect of increasing the
safety stock reflects in the same way on the supply chain perfor-
mances so two levels are sufficient to entirely describe the interac-
tions with the others.

5.1. Analysis of bullwhip effect sensitivity

Fig. 6 presents the sensitivity of the bullwhip effect of each ech-
elon i to the different factors. The figure consists of the main effects
of the factors (see, Fig. 6a–c) and of the interaction effects between
the different factors (see, Fig. 6d–f). Since the conclusions for the
bullwhip effect at the wholesaler are the same as at the distributor,
we exclude the wholesaler’s plot and present only the response for
the retailer, distributor and factory.

The strongest main effect on the bullwhip effect ratio is due to
the MA value where increasing the averaging time reduces the
bullwhip effect at all echelons. The second important factor is
the information sharing level with no impact on the retailer as it
always receives and collects the customer demand. The safety
stock level has the third important main effect where increasing
the safety stock level at any of the echelons leads to increase the
bullwhip effect at the current echelon (local effect) and at the
upstream echelons (global effect) as well. Therefore, the safety
stock policy at the downstream echelons contributes to the level
of instability at the upstream echelons. This result is a good
motivation for supply chain managers to seek for partnerships
with other partners in order to restrict the propagation of informa-
tion distortion. The strong interaction between MA and Info_Shar
at all echelons is evident in Fig. 7, in particular when information
are not shared, where selecting the appropriate forecasting is a
crucial task to suppress the bullwhip effect.

The other significant interactions relate to the safety stock lev-
els, confirming their role in disturbing the transmission of the
information. The two plots in Fig. 8 exhibit some examples of those
interactions at two different levels of MA.

Table 3 illustrates the analysis of variance (ANOVA) to show if
each term is statistically significant. At the retailer, where demand
is known, there is only a statistical significant effect between MA
and R_SS. At the upstream echelons there are 2-way and 3-way
interaction effects of statistical significance that confirm the find-
ings from the interaction plots.

5.2. Analysis of inventory variance ratio sensitivity

As for bullwhip effect ratio, Fig. 9 presents a sensitivity analysis
for the inventory variance ratio at the different echelons.

The main effect plots in Fig. 9a–c show that Info_Shar and MA
have the most important impact. Furthermore, the retailer’s inven-
tory performance benefits from sharing the customer demand with
the other partners in the supply chain, pushing toward collabora-
tion to reduce the propagation of the bullwhip effect whilst keep-
ing a satisfactory inventory variance in a win–win situation. The
most significant effect at the retailer is due to the WD_SS since it
is able to recover quickly from instability when the wholesaler is
holding much safety stock. Fig. 10 presents the impact of different
stock levels throughout the supply chain.

Studying the inventory variance, it is possible to confirm all the
results on the bullwhip effect, e.g. the importance of a higher MA
and information sharing. The interaction between MA and the
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safety stock levels of the upper echelons influences the inventory
variance. Increasing the safety stock at echelon i leads to reduce
the inventory variance at the downstream echelon i � 1 and the
decrease rate is higher if the echelon i � 1 has a smaller level of
safety stock.

The ANOVA results in Table 4 show the statistical significance of
the above interactions.

5.3. Analysis of average service level sensitivity

As expected, the main effect plots in Fig. 11a–c show that the
safety stock level has the most important impact on the average
service level at all echelons. It is clear how increasing the safety
stock at any echelon i increases the service level at that echelon
and at the downstream echelons as well.

Fig. 12 details the impact of increasing the safety stock of the
retailer on the average service level at the other echelons:
Fig. 13. The ranking of the most significant terms in the ANOVA model on the bullwhi
increasing the R_SS level from 3.0 to 6.0 leads to increase the
average service level at the retailer from 43% to 100% while the
average service level at the wholesaler decreases from 45.3% to
40.8%, due to the amplification of the bullwhip effect and inven-
tory variance ratio.

As well, all the other factors that contribute to increase visibility
(information sharing and forecasting parameters) have a positive
effect on the service level.

Fig. 11d–f shows that the most important interaction acts
between the safety stock levels of the adjacent echelons. Increasing
the safety stock level locally (e.g., at echelon i) makes the average
service level at that echelon insensitive to whatever the safety
stock levels at the upstream echelons and especially echelon
i + 1. Larger values of safety stock at an upstream echelon improves
the average service level at the nearest downstream echelon, espe-
cially if the downstream echelon present a smaller safety stock.
Furthermore, the interaction between the safety stock levels of
p effect (a and b), inventory variance (c and d), and average service level (e and f).
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the distant upper echelons (e.g. i + 2 and i + 3) influences the aver-
age service level at echelon i.

The other interactions mainly show the role of safety stock in
smoothing the impact of the operational parameters on the service
level, helping to regulate the bullwhip effect and the supply chain
instability. Table 5 shows the ANOVA results for the average ser-
vice level.

6. Discussions and general implications

The scenario analysis and the experimental design provide a
clear picture of the performances that a periodic review order-
up-to level policy can generate in a supply chain. These results
present many managerial implications with a natural extension
to more complex system and real case applications. Three general
principles combine the findings, summarizing the relative main
and side effects.

6.1. Forecasting ability cannot substitute information sharing

Improving forecasting can help to reach effective results on the
bullwhip effect ratio but sharing the value of the demand has a
strongest impact on the overall performances. The ability of a sup-
ply chain partner to make accurate forecasts generates some
improvement on its local performances that can be rapidly
absorbed by the amplification of the bullwhip effect, if the other
partners do not have the same capacity. The quantification of the
inventory variance ratio and of the average service level shows that
when the collaboration level increases, the performances improve
to a great extent. The lack of visibility leads to a geometrical
increase of the bullwhip effect and to a reduction of the average
service level as moving upstream in the supply chain. The retailer,
in contact with the customer, plays a key role: as owner of the
demand information, it should be pushed to collaborate by the
smoothing of the inventory variance due to the improvement of
its supplier’s service level. The same effect can also start at any
level of the supply chain (sharing, for example, forecasts or orders
time series) but, once the bullwhip effect triggers, the possibility of
controlling performances is much limited.

6.2. Safety stock is not a synonymous of service level

The safety stock policy at the downstream echelons contributes
to the level of instability at the upstream echelons. This simple result
is as a good motivation for supply chain managers to seek for part-
nerships to restrict the propagation of information distortion.

Any coordination mechanism should provide the smallest safety
stock level at the downstream echelons to achieve a target service
level whilst protecting the upstream echelons from bullwhip prop-
agation. This propagation might also lead to increase the inventory
instability at the downstream echelons which means that there is a
negative side effect in increasing the safety stock level: only a grad-
ual adjustment of the safety stock across the supply chain (e.g.
R_SS < WD_SS < F_SS), whilst maintaining these levels as small as
possible, suppresses the bullwhip effect amplification. Just in time
policy are more effective when starting at the retailer, even without
involving all the supply chain partners.

6.3. Coordination goes beyond information sharing

All the partners should select the appropriate value of the fore-
casting parameter to achieve order smoothing and overcome the
inherent variability in incoming orders, allowing substantial
benefits for both scenarios of traditional and information enriched
supply chain. It helps to avoid the negative interactions that might
happen: as shown in Fig. 13, the moving average parameter (MA),
information sharing (Info_Shar) and their interactions give the
highest contribution to the bullwhip effect and the inventory var-
iance at the upstream echelon. Furthermore, these factors can act
along with the safety stock level to improve the average service
level. As information sharing level is high and moving average
parameter is accurately selected, the bullwhip effect and the
inventory variance tends to reduce and thus service level improves
without the need for much safety stock. It is clear that optimizing
supply chain is not an easy task especially in the absence of collab-
oration or information sharing. Supply chain performances not
only depend on the local operational strategies but also on the
coordination with other partners: in the above tables of ANOVA,
2-way and 3-way interactions have a statistical significance. There-
fore, without collaboration, it is very hard to gain considerable
improvements. These results provide a good motivation for initia-
tives such as VMI in which downstream echelons delegate the
upstream echelons to replenish their inventories, eliminating lay-
ers of decision making.

7. Conclusions

The lack of coordination among supply chain partners affects
their performances as a direct consequence of the bullwhip effect.
This common statement derives from the operational causes of
that generate distortion to the demand information, as for misa-
lignments of forecasting techniques, ordering policies and safety
stock levels. While many extensive researches quantified the
impact of these causes under specific conditions, agreed by all
the partners, this paper proposes a simulation study to analyze
partial levels of collaboration. In particular, the simulation study
presents the interactions that arise from different levels of infor-
mation sharing and different choices in the inventory control
parameters in a multi-echelon supply chain. The choice of the peri-
odic review order-up-to level inventory control policy supports the
extension and application of the findings to real cases where this
policy commonly applies. The results confirmed the literature on
the contribution of information sharing to the mitigation of the
bullwhip effect, revealing how also inventory variance and average
service level improves. The impact is most effective when the col-
laboration starts at the downstream echelons as, once the distor-
tion of the demand starts, it is more difficult to limit and recover.
The full factorial design examined the interactions among informa-
tion sharing and the inventory control parameters to check to what
extent they could interfere on the supply chain performances.
While confirming the role of collaboration (e.g. demand sharing)
in reducing the bullwhip effect, it was also clear how the coordina-
tion of the control policies, in term of forecasting and safety stock
level at each echelon, can support service level by reducing the
inventory variance. The general findings of the study showed that
any decision, at each echelon, has an impact locally but also trans-
mits its effect downstream and upstream, with the risk that
expected benefits reduce without coordination.

The value of the study is to represent a methodology to give
some insight about the relative contribution of the different deci-
sion leverage on the bullwhip effect and inventory stability. The
attempt to quantify the performances of a multi-echelon supply
chain with a periodic review order-up-to policy with moving aver-
age forecasting technique can be extended to evaluate the impact
of the other operational causes of the bullwhip effect. Although
many useful conclusions arose from this study, the impact of
lead-times and order batching is a main stream of evolution, as
well as other forecasting techniques. Therefore, further extension
could cover different supply chain configurations with multiple
nodes per echelon or applications of different inventory control
policies. In particular, it would be beneficial to test the interactions
of operational parameters and coordination on inventory control
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policies that allow order smoothing through using control systems
to fit the gap between target and actual inventory and supply line
(Costantino et al., 2014b, 2014c). Following the relevant literature,
this study restricts the allowance of negative customer demand
and replenishment orders as a modeling assumption. Therefore,
the effect of demand variation combined with the possibility of
return policy (negative orders) should be studied to obtain useful
insights for supply chains with returns allowance (Chatfield &
Pritchard, 2013).
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