Mathematics
First term of 2010/2011
Final Exam
Time: 3 hours

Model answer for the following **SIX** questions:

Question 1 [20 points]:

Consider Matrix
$$\mathbf{A} = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$

- 1.1 Compute A^2 , then show that the |A| equal to ± 1 .[5 points]
- 1.2 Is Matrix A idempotent or involutary matrix? [5 points]
- 1.3 Determine A .[5 points]
- 1.4 Find the cofactor C_{11} corresponding to the element a_{11} .[5 points]

Solution:

$$\mathbf{A}^{2} = \frac{1}{4} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \mathbf{I}$$

$$\therefore |\mathbf{A}^{2}| = |\mathbf{A}|^{2} = |\mathbf{I}| = 1$$

$$\therefore |\mathbf{A}| = |\mathbf{I}| = \pm 1$$

1.2

$$:: \mathbf{A}^2 = \mathbf{I}$$

.. Matrix **A** is involutary matrix.

$$:: \mathbf{A}^3 = \mathbf{A}$$

:. Matrix **A** is idempotent of order 3.

1.3

$$\mathbf{A} = \begin{bmatrix} -0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & -0.5 \end{bmatrix}_{\mathbf{H}_{12}}^{\mathbf{H}_{12}} \begin{bmatrix} -0.5 & 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} -0.5 & 0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix} = \frac{-1}{2} \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} = \frac{-1}{2} * (-1*(-1) + 1*(1))$$

$$= -1$$

$$\mathbf{C}_{11} = \mathbf{M}_{11} = \begin{vmatrix} -0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 \end{vmatrix} = \begin{vmatrix} -0.5 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$$

$$=-0.5*-1$$

$$=0.5$$

Question 2 [10 points]:

- 2.1 The determinant of the 1000×1000 matrix **A** is 12. What is the determinant of $(-\mathbf{A}^T)$? (Careful; no credit for the wrong sign.) [3 points]
- 2.2 The vector $\underline{\mathbf{u}}$ is unit vector, what are all possible values of t which guarantee that the matrix $\mathbf{A} = \mathbf{I} + \mathbf{t}\underline{\mathbf{u}}\underline{\mathbf{u}}^{\mathrm{T}}$ is orthogonal? [2 points]
- 2.3 For which λ are the vectors $\begin{bmatrix} 11-\lambda \\ 18 \end{bmatrix}$, $\begin{bmatrix} 6 \\ -10-\lambda \end{bmatrix}$ not linearly dependent?

[5 points]

Solution:

2.1

2.2

: Matrix A is orthogonal.

$$\therefore t = 0; \text{ or } t = -2$$

... The vectors
$$\begin{bmatrix} 11-\lambda \\ 18 \end{bmatrix}$$
, $\begin{bmatrix} 6 \\ -10-\lambda \end{bmatrix}$ are not linearly dependent
$$\therefore \begin{vmatrix} 11-\lambda & 6 \\ 18 & -10-\lambda \end{vmatrix} = 0$$

$$\therefore (11-\lambda)(-10-\lambda)-108=0$$

$$\lambda^2 - \lambda - 218 = 0$$

$$\lambda_{1,2}=\frac{1\pm3\sqrt{97}}{2}$$

Question 3 [20 points]:

3.1 Forward elementary changes $\mathbf{A} \underline{\mathbf{x}} = \underline{\mathbf{b}}$ to a row reduced $\mathbf{R} \underline{\mathbf{x}} = \underline{\mathbf{d}}$: the complete solution is

$$\underline{\mathbf{x}} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + \mathbf{C}_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \mathbf{C}_2 \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}$$

- 3.1.1 What is reduced matrix \mathbf{R} , and what is \mathbf{d} ? [5 points]
- 3.1.2 If the process of elimination subtracted three times of row1 from row 2, and then five times of row1 from row 3, from the system $\mathbf{A} \mathbf{x} = \mathbf{b}$ in order to get $\mathbf{R} \mathbf{x} = \mathbf{d}$; then find \mathbf{A} , and $\mathbf{b} \cdot [\mathbf{5} \mathbf{points}]$

3.2 Suppose
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 3 & 8 & 7 \\ 0 & 0 & 4 & 2 \end{bmatrix}$$
; Solve $\mathbf{A} \ \underline{\mathbf{x}} = \underline{\mathbf{0}} \ . \ [\mathbf{10} \ \mathbf{points}]$

Solution:

3.1.1

$$\mathbf{R} = \begin{bmatrix} 1 & -2 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \underline{\mathbf{d}} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}; \text{ Why?}$$

$$\begin{bmatrix} \mathbf{R} \mid \underline{\mathbf{d}} \end{bmatrix} = \begin{bmatrix} 1 & -2 & -5 \mid 4 \\ 0 & 0 & 0 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}_{\mathbf{H}_{13}(5)}^{\mathbf{H}_{12}(3)} \begin{bmatrix} 1 & -2 & -5 \mid 4 \\ -3 & 6 & 15 \mid 12 \\ -5 & 10 & -25 \mid 20 \end{bmatrix}$$

$$\therefore \mathbf{A} = \begin{bmatrix} 1 & -2 & -5 \\ 3 & -6 & -15 \\ 5 & -10 & -25 \end{bmatrix} ; \quad \mathbf{\underline{d}} = \begin{bmatrix} 4 \\ 12 \\ 20 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 3 & 8 & 7 \\ 0 & 0 & 4 & 2 \end{bmatrix} \overset{\mathbf{H}_{12}(-3)}{\sim} \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 2 \end{bmatrix} \overset{\mathbf{H}_{23}(-2)}{\sim} \begin{bmatrix} 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$\underline{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \end{bmatrix}$$

$$\therefore x_2 + 2x_3 + 2x_4 = 0$$

$$\therefore 2x_3 + x_4 = 0$$

Let
$$x_1 = c_1$$

 $x_3 = c_2$

$$\therefore x_4 = -2c_2$$

$$\therefore x_2 = 2c_2$$

$$\therefore \mathbf{\underline{x}} = \begin{bmatrix} \mathbf{c}_1 \\ 2\mathbf{c}_2 \\ \mathbf{c}_2 \\ -2\mathbf{c}_2 \end{bmatrix} = \mathbf{c}_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \mathbf{c}_2 \begin{bmatrix} 0 \\ 2 \\ 1 \\ -2 \end{bmatrix}$$

Question 4 [20 points]:

The eigenvalues of a square nondiagonalizable nonderogatory matrix $\bf A$ of order n=6 are given by $\lambda=2,4,4,4,8,8$.

- 4.1 Find the characteristic polynomial of **A**. [5 points]
- 4.2 Find the minimal polynomial of **A**. [5 points]
- 4.3 Express exp(At) as a matrix polynomial in A and write down the equations required for evaluating its coefficients. (Don't solve these equations). [5 points]
- 4.4 Find the determinant of $\exp(\mathbf{A}t)$.[5 points]

Solution:

4.1

$$\phi(\lambda) = (\lambda - 2)(\lambda - 4)^3(\lambda - 8)^2 = 0$$

4.2

$$m(\lambda) = (\lambda - 2)(\lambda - 4)(\lambda - 8) = 0$$

4.3

$$\exp(\mathbf{A}t) = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{A} + \alpha_2 \mathbf{A}^2$$

$$\exp(\lambda t) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2$$

$$\exp(2t) = \alpha_0 + 2\alpha_1 + 4\alpha_2$$

$$\exp(4t) = \alpha_0 + 4\alpha_1 + 16\alpha_2$$

$$\exp(8t) = \alpha_0 + 8\alpha_1 + 64\alpha_2$$

$$\left| \exp(\mathbf{A}t) \right| = \left| TD_{\exp(\lambda t)} T^{-1} \right| = \left| D_{\exp(\lambda t)} \right| = \exp(30t)$$

Question 5 [15 points]:

Solve the following differential equations.

$$\frac{\mathrm{dx}}{\mathrm{dt}} = 3x - 4y$$

$$\frac{\mathrm{dy}}{\mathrm{dt}} = 2x - 3y$$

With initial conditions: x(0) = 1; y(0) = 0

Solution:

$$\because \dot{\mathbf{x}} = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix} \mathbf{x}$$

where:

$$\underline{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$
; and $\underline{\mathbf{x}}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\therefore \underline{\mathbf{x}}(t) = \exp(\mathbf{A}t)\underline{\mathbf{x}}(0)$$

$$\because \exp(\mathbf{A}t) = \begin{bmatrix} \cosh(t) + 3\sinh(t) & -4\sinh(t) \\ 2\sinh(t) & \cosh(t) - 3\sinh(t) \end{bmatrix}$$
 [10 points]

$$\therefore \underline{\mathbf{x}}(t) = \begin{bmatrix} \cosh(t) + 3\sinh(t) \\ 2\sinh(t) \end{bmatrix}$$
 [3 points]

$$\therefore x(t) = \cosh(t) + 3\sinh(t)$$

$$\therefore y(t) = 2\sinh(t)$$
 [2 points]

Dr. Eng. Waleed Ahmed

(Good Luck)