
Applied Protocols in Smart Control Graduation Project 2010

i

APPLIED PROTOCOLS IN SMART CONTROL

By

Ahmed Abdel Kareem Mourad

Ragab Mustafa Abdel Gawad

Mohamed Sayed Mohamed

Asmaa Mohammed Zohri

Asmaa El Sayed Ahmed

A Graduation Project submitted in

partial fulfillment of the requirements

for the degree of

BSc in Electronics and Communication

Engineering

Fayoum University

2010

Approved by Amr M. Gody ____________________________

__

__

__

Applied Protocols in Smart Control Graduation Project 2010

ii

Program

to Offer Degree Bachelor in Electronics and Communication

Engineering __

Date July 2010 __

Applied Protocols in Smart Control Graduation Project 2010

3

FAYOUM UNIVERSITY

APPLIED PROTOCOLS IN SMART CONTROL

By

Ahmed Abdel Kareem Mourad

Ragab Mustafa Abdel Gawad

Mohamed Sayed Mohamed

Asmaa Mohammed Zohri

Asmaa El Sayed Ahmed

Supervisory Committee: Associate Professor Amr M. Gody

 Department of Electrical engineering

A work presented on Smart home and how to automate your home with low cost and high

reliability, also representing some technologies and how can using it to utilize the home

automation.

Applied Protocols in Smart Control Graduation Project 2010

4

TABLE OF CONTENTS

Executive Summary .. 17

ABSTRACT .. 18

Chapter I: Introduction .. 19

1.1 Introduction ... 19

1.2 Statement of Problem ... 19

1.3 Objectives .. 20

Chapter II: Conceptual Framework .. 21

2.1 Static class diagram .. 21

2.2 Interactivity scenario .. 24

2.2.1 X 10 Networks .. 24

2.2.2 RS485 Network(Server) .. 24

2.2.3 RS485 Network(Client) ... 24

2.2.4 TCP/IP Network .. 25

2.2.5 FBUS Connection .. 25

Chapter III: Methodology .. 26

3.1 Power line communication and X10 ... 26

3.1.1 Introduction ... 26

3.1.2 Advantages and Disadvantages of PLC .. 26

3.1.3 The Challenge ... 27

3.2 X10 Protocol .. 28

3.2.1 What is the X10? ... 28

3.2.2 Transmission theory of X-10 signals .. 28

3.2.3 Why X10 Technology? .. 32

3.2.4 What Are the Tradeoffs? .. 32

Applied Protocols in Smart Control Graduation Project 2010

5

3.2.5 X10 implementation .. 33

3.3 RS485 Protocol .. 41

3.3.1 What is RS485 Protocol? ... 41

3.3.2 The RS485 Advantages: .. 42

3.3.3 How does the hardware work? ... 43

3.3.4 How does the software work? .. 44

3.3.5 Important to communicate ... 45

3.3.6 RS485 Hardware implementation .. 45

3.3.7 Microcontroller Programming.. 55

3.3.8 Software Program .. 57

3.4 FBUS Protocol ... 62

3.4.1 Introduction ... 62

3.4.2 FBUS Protocol .. 62

3.4.3 FBUS Communication ... 67

3.4.4 FBUS Implementation ... 70

3.5 TCP/IP protocol ... 74

3.5.1 What is TCP/IP Protocol? .. 74

3.5.2 The Advantages of using TCP/IP in control: .. 75

3.5.3 How does the hardware work? ... 76

3.5.4 How does the software work? .. 76

3.5.5 Steps to begin Communication .. 77

3.5.6 TCP/IP Hardware implementation ... 78

3.5.7 TCP/IP Software Program ... 78

Chapter IV: Quick User Guide .. 89

4.1 Use cases ... 89

Applied Protocols in Smart Control Graduation Project 2010

6

4.1.1 Server Use Case... 89

4.1.2 Client Use Case ... 90

4.1.3 X10 Transmitter/receiver use Case .. 91

4.2 Basic Settings .. 91

4.2.1 Server Basic Settings ... 91

4.3 Training Mode ... 93

4.3.1 RS485 Transmitter ... 93

4.3.2 RS485 Receiver ... 93

4.3.3 RS485 Transmitter/ Receiver ... 95

4.3.4 X10 Transmitter/ Receiver ... 96

4.4 Step by step tutorial.. 101

4.4.1 How to connect the Hardware .. 101

4.4.2 How to Run the Software ... 103

4.4.2.1 Server Software tutorial .. 103

4.2.2 Client Software tutorial .. 114

Glossary .. 120

Bibliography ... 121

Appendix A: X10 tools .. 122

I. What Can You Do with X10? ... 122

II. X10 Addressing .. 123

Appendix B: RS485 Protocol... 124

I. start byte ... 124

II. address byte .. 124

III. number of data bytes ... 124

IV. first data byte .. 124

Applied Protocols in Smart Control Graduation Project 2010

7

V. second data byte ... 124

VI. third data byte ... 124

VII. redundancy check (CRC) byte ... 124

Appendix C: TCP/IP Protocol ... 125

I. Overview .. 125

II. TCP/IP Layering ... 126

III. IEEE 802.3 Ethernet Frames ... 127

IV. TCP Segments ... 128

VI. Network Architecture .. 131

Appendix D: FBUS Protocol ... 132

I. How to connect microcontrollers to your Nokia 3310 132

Appendix E: Used Software and Hardware .. 134

I. Used Software .. 134

II. Used Hardware ... 134

Appendix F: All Project software codes ... 135

F.1-Main Program(server program) .. 135

F.2- TCP_Server: ... 144

F.3- class Sheimy_RS485 .. 147

F.4-Software Controller Client ... 149

F.5-X10 TR Program ... 151

Appendix G: All Project Microcontroller codes ... 154

G.1-RS485 Receiver .. 154

G.2-RS485 Transmitter .. 155

G.3-RS485 Temperature sender ... 156

G.4-RS485 Transceiver .. 157

Applied Protocols in Smart Control Graduation Project 2010

8

G.5-X10 Transceiver ... 159

G.6- FBUS ... 160

Appendix H: Data Sheets .. 165

I. PIC16F877A... 165

II. MAX232 .. 166

III. MAX485 ... 167

IV. ULN2003 .. 168

V. XM10 ... 169

Index ... 170

Applied Protocols in Smart Control Graduation Project 2010

9

LIST OF FIGURES

Figure 1 Class diagram for Software interface (Server) 1 ... 21

Figure 2 Class diagram for software interface (Sever) 2 ... 22

Figure 3 Class diagram for Software interface (Client) .. 23

Figure 4 Class diagram of X-10 Transmitter .. 23

Figure 5 Sine wave with the injection of an X-10 signal .. 29

Figure 6 Sending of binary signals 1 and 0 .. 29

Figure 7 Standard X-10 Transmission Routine .. 30

Figure 8 Standard Frame of X-10 .. 30

Figure 9 Example of X-10 Frame .. 30

Figure 10 X-10 Codes ... 31

Figure 11 General structure of a power line node ... 32

Figure 12 XM10 Module ... 33

Figure 13 TW523 Connection Block diagram .. 34

Figure 14 X-10 Transmitter Schematic .. 34

Figure 15 X10 Board Layout ... 35

Figure 16 3D View for PCB .. 35

Figure 17 Zero Cross Detection Circuit ... 36

Figure 18 120 KHZ Carrier Generation Circuit .. 37

Figure 19 Open Com Interface .. 38

Figure 20 Send data Interface .. 39

Figure 21 RS485 Network architecture .. 41

Figure 22 Devices connection in the Network .. 42

Figure 23 RS485 Signals ... 43

Figure 24 Max485 Connection .. 44

Applied Protocols in Smart Control Graduation Project 2010

10

Figure 25 Total RS485 Network Circuit .. 46

Figure 26 RS232 to RS485 Converter Schematic ... 47

Figure 27 RS232 to 485 Converter PCB .. 48

Figure 28 RS232 to 485 Converter PCB 2 ... 48

Figure 29 RS232 to 485 Converter bottom view .. 49

Figure 30 RS232 to 485 Converter Top view ... 49

Figure 31 RS485 receiver schematic .. 50

Figure 32 RS485 receiver PCB .. 51

Figure 33 RS485 receiver PCB 2 ... 51

Figure 34 RS485 receiver PCB 3 ... 52

Figure 35 RS485 transmitter schematic ... 53

Figure 36 RS485 transmitter PCB.. 54

Figure 37 RS485 Test Program .. 61

Figure 38 Nokia 3310/3315 F/M Bus connection ... 62

Figure 39 a part of the FBUS communication of the Nokia Data Suite 67

Figure 40 the start of FBUS communication measured with the test circuit 68

Figure 41 A close-up view to the FBUS data sent by the PC .. 69

Figure 42 FBUS data sent by the phone. .. 69

Figure 43 FBUS Interfacing Schematic ... 70

Figure 44 FBUS Interfacing Layout ... 70

Figure 45 3D View of PCB ... 71

Figure 46 TCP/IP Connection .. 75

Figure 47 TCP/IP control Structure ... 76

Figure 48 how does the TCP/IP software work .. 77

Figure 49 Client and Server connection ... 78

Applied Protocols in Smart Control Graduation Project 2010

11

Figure 50 TCP/IP part in login screen .. 78

Figure 51 TCP Server window .. 79

Figure 52 send pattern from the client .. 84

Figure 53 TCP client login form .. 84

Figure 54 required data to connect to the server ... 85

Figure 55 control of client PC software ... 85

Figure 56 Server use Case ... 89

Figure 57 Server use Case (Continued) .. 89

Figure 58 Server use Case (Continued) .. 90

Figure 59 Client Use Case ... 90

Figure 60 X10 Transmitter/receiver use Case .. 91

Figure 61 first RS485 transmitter test program .. 93

Figure 62 RS485 Receiver simulation circuit ... 94

Figure 63 RS485 Receiver test program .. 94

Figure 64 RS485 Transmitter/ Receiver(transmitter screen) ... 95

Figure 65 RS485 Transmitter/ Receiver (receiver screen) ... 96

Figure 66 120 KHz carrier Generator... 97

Figure 67 Together with 220 V 50 Hz AC ... 98

Figure 68 X10 Generated data ... 99

Figure 69 X10 Transmitter .. 100

Figure 70 Data transmitted every Zero crossing ... 101

Figure 71 Real R232 to RS485 converter PCB .. 101

Figure 72 Real RS485 Transmitter PCB .. 102

Figure 73 Light Sensor .. 102

Figure 74 Enter User Name (login) .. 103

Applied Protocols in Smart Control Graduation Project 2010

12

Figure 75 Enter password .. 103

Figure 76 Click to Login ... 104

Figure 77 Select the Port ID .. 104

Figure 78 Click to OPEN PORT button ... 105

Figure 79 Click the OUT DOORS button .. 105

Figure 80 search for camera1 .. 106

Figure 81 select the Camera... 106

Figure 82 Start Camera .. 107

Figure 83 Stop Camera .. 107

Figure 84 control in camera angle .. 108

Figure 85 Enter the Room 1 Control panel ... 108

Figure 86 Turn on/off Specific Device .. 109

Figure 87 read the temperature degree .. 109

Figure 88 Select the track ... 110

Figure 89 Room 2 Control panel .. 110

Figure 90 Turn on Device 3 ... 111

Figure 91 change Room password ... 111

Figure 92 Read Temp .. 112

Figure 93 back to Login... 112

Figure 94 Open TCP/IP Server .. 113

Figure 95 The TCP Server window.. 113

Figure 96 Enter User Name ... 114

Figure 97 Enter Password .. 114

Figure 98 Connect to Server .. 115

Figure 99 The LoginInfo window opens ... 115

Applied Protocols in Smart Control Graduation Project 2010

13

Figure 100 IP address of the Server ... 116

Figure 101 IP address of the Server ... 116

Figure 102 connect to server .. 117

Figure 103 Server PC indicate the connected client .. 117

Figure 104 ROOM 1 Control panel.. 118

Figure 105 Room password ... 118

Figure 106 control in Devices .. 119

Figure 107 Room 2 Control Panel ... 119

Figure 108 An X10 lamp module turns a lamp on and off when an X10 signal is sent

from an X10 transmitter .. 122

Figure 109 RS485 frame.. 124

Figure 110 TCP creates a fully two-way link between the ends of the connection 125

Figure 111 Encapsulation of data ... 126

Figure 112 Ethernet/802.3 Frame Structure ... 127

Figure 113 IEEE 802.3 Ethernet standard frame ... 127

Figure 114 Segmentation and fragmentation .. 128

Figure 115 Window ... 128

Figure 116 IP and TCP Header .. 129

Figure 117 establishing a connection ... 130

Figure 118 Connection closure .. 130

Figure 119 3310 Phone and FBUS connection ... 132

Figure 120 Nokia 3310 and it's download cable ... 133

Applied Protocols in Smart Control Graduation Project 2010

14

LIST OF TABLES

Table 1 F/M-BUS Signal Direction ... 62

Table 2 frame of bytes sent to the Nokia 3310/5110 .. 63

Table 3 ACK frame ... 64

Table 4 ACK frame ... 65

Table 5 Used Software .. 134

Table 6 Used Hardware ... 134

Applied Protocols in Smart Control Graduation Project 2010

15

LIST OF CODES

Code 1 Send data method .. 39

Code 2 Receive data method ... 40

Code 3 RS485 Variables.. 57

Code 4 set_add Method ... 58

Code 5 Set_data Method.. 58

Code 6 Take Not Method .. 59

Code 7 get_data Method .. 60

Code 8 StartFbus Method .. 71

Code 9 get the Phone software version Method ... 72

Code 10 Initialize the Uart ... 72

Code 11 reading from phone ... 73

Code 12 Used Library in Server TCP/IP .. 79

Code 13 struct ClientData .. 80

Code 14 Server used variables ... 80

Code 15 TCP_Server constructor... 81

Code 16 Waiting for Client Method ... 81

Code 17 ReadSocket Method... 82

Code 18 ReadSocket Method (continued) .. 83

Code 19 CloseTheThread Method ... 83

Code 20 client used library .. 86

Code 21 Client used variables.. 86

Code 22 convert bool to byte Method .. 86

Code 23 startServer Method .. 87

Code 24 Send data to server Method.. 87

file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547431
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547433
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547434
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547435
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547436
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547437
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547438
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547439
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547440
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547441
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547442
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547443
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547444
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547445
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547446
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547447
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547448
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547449
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547450
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547451
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547452
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547453
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547454

Applied Protocols in Smart Control Graduation Project 2010

16

Code 25 client Read Socket Method .. 88

Code 26 120 KHz carrier Generator .. 97

Code 27 X10 Data Transmitter .. 99

file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547455

Applied Protocols in Smart Control Graduation Project 2010

17

Executive Summary
Technology in today‟s world is advancing at a very rapid rate. Once a rare commodity,

computers can now be found in hundreds of millions of homes and businesses. A

growing trend involving computers is industrial control and home automation, a practice

in which electrical devices are controlled with little or no human interaction. Although

this may sound like a noble concept, many of these control systems suffer from poor

performance in terms of data communications capability. They also require the user to

configure them locally, which makes it difficult to check the status of the systems from

afar. Also, many systems carry a steep price tag that many potential buyers find

Unappealing.

 To remedy the first of these issues, a new data communications system will be

developed. The system will consist of one or more host units and multiple target units.

The host units will initiate all data communications processes to the target units, and a

target unit may reply only to the host that hails it. Only one communications process may

exist at any given time per host, preventing data communication collisions. Existing

electrical wiring will serve as the communications medium, preventing the expense of

installing additional wiring in the building.

The access issue will be remedied by designing a software package for a personal

computer. The software will allow the host device to connect to a PC, as well as the

Internet using TCP/IP. The user will therefore be able to access the host device through a

standard Internet connection.

A third issue is the cost of comparable control systems. Presently-available systems that

are used in industry cost thousands of dollars. By programming a microcontroller to

emulate traditional hardware, less electronic components will be required to build a

working system. As a result, overall production costs will be substantially lower than

comparable systems.

We will approach this project by dividing it into several key components. An X10

Transmitter will be designed that will allow the host and target units to communicate over

the power line. Microcontroller firmware will be created to control the functionality of

both host and target units. Circuitry and firmware will be implemented to interface the

host unit to a PC. Software will be written to allow user-control over host and target

units.

 Our design will be superior to presently-available device control systems in that ours will

reduce the number of control errors due to corrupted data transmissions, thereby

enhancing the reliability of the system. It will also provide an easy-to-use interface that

will allow users to render remote control over all host and target units and all of their

associated peripherals.

Considering the ongoing growth in popularity of home and industrial control systems,

this project has an abundant future. Potential design enhancements include improving the

data transfer rate of the modems and enhancing the remote web interface.

Applied Protocols in Smart Control Graduation Project 2010

18

ABSTRACT
As the need for control automation systems increases, the number of commercially

available systems is broadening every day. Of these systems, the most reliable ones can

cost thousands of dollars. The inexpensive ones suffer from poor reliability and must be

controlled locally. To solve these issues, a system that is reliable, affordable, and easily

accessible is needed. This system is the PLCS Using X10 Protocol, RS485 Protocol,

TCP/IP Protocol and finally FBUS Protocol. This automation system will improve the

addressed issues by utilizing the capabilities of both customized hardware and software.

The system will use communications chips that have costs comparable to Inexpensive

systems, but with reliability found in more robust systems. Users will also be able to

access the system through a network, such as the Internet, thereby eliminating the

constraint of requiring local control.

Applied Protocols in Smart Control Graduation Project 2010

19

Chapter I: Introduction

1.1 Introduction
The purpose of this project is to design and implement a device control system that

utilizes a building‟s existing electrical wiring as a communications medium. This design

will give consumers a more cost-efficient device control solution. The design approach

will consist of simulation, construction, and field testing of the system. The significance

of the device is that all host and target units may be controlled by any computer

connected to the network.

In the early 1970‟s, Pico Electronics Ltd. was founded by a group of investors who

wanted to develop integrated circuits for the handheld calculator market. Each time Pico

Electronics started a new project, the project was given an experiment number. Their

ninth experiment, “experiment #9”, was an integrated circuit for a programmable record

changer for a phonograph. Shortly after this, Pico Electronics was asked to build a

wireless remote control system for the record changer. This became “experiment #10” for

Pico Electronics, or “X-10” for short.

The X-10 systems were designed to use existing household wiring to control devices

throughout the household. Pico engineers soon realized that this system had many other

uses besides controlling record changers. In 1978, Pico Electronics signed contract with

several large retail stores to sell the X-10 system. The system was soon being advertised

in 1979, and now, 20 years later, it is still growing in popularity.

In more recent years, several enhanced carrier-current networking solutions have been

introduced. CEBus and Lon Works boast improved data transmission rates over X-10, as

well as improved error detection, but they also “boast” much higher price tags.

1.2 Statement of Problem

Industrial control and home automation has rapidly been gaining popularity for the past

decade. Although many automation and control products are available on the market,

many of them suffer from low data rate as X10 Protocol Communication and the other

suffer from that has high Cost and not reliable as CEBus and LonWorks.

A second issue encountered with these systems is some of them need cables (LAN) to

extend to control in the devices as LonWorks, and that is not preferred in home

automation and also for the users.

To remedy the communications issue, our team will develop a more reliable method to

communicate with and control in the home devices. This will be high data rate and less

cable will extend and low error probability. This done by combining more than one

system with them we mean X10 protocol communication, RS485 Protocol

communication, TCP/IP protocol communication and Fbus protocol for Nokia Phones.

 The accessibility issue will be resolved by designing a user-friendly computer interface

for the system. With this interface, users will be able to remotely check the status of their

Applied Protocols in Smart Control Graduation Project 2010

20

systems, therefore eliminating the worry of discovering that their “controlled” devices are

on the blink. Users will also be able to remotely make changes to the operation of their

devices to comply with their schedules.

1.3 Objectives
A. Data Transfer Rate: Most inexpensive automation systems have a data

transmission rate of only approximately 100 bits-per-second (bps), whereas the

more costly ones have a rate of several thousand bps. Our system‟s rate will be a

compromise between the two, with a minimum rate of 600 bps and a desired rate

of 1200 bps.

B. Error Rate: Low-cost carrier-current data transmission systems can have a less-

than-appealing rate of errors. Our system will have a maximum bit error rate of

0.01%.

C. System Structure: The most common low-cost automation system can support a

maximum of only 256 target units, and in this Project the number of devices increased by

using the RS485 Network and the TCP/IP Network.

D. Power Usage: this Project made specifically to utilize the usage of the power because

the one of three controlling signal is carried by the power line (signal of X10 Protocol

communication), and the other devices use only power source of value +5V, So the user

can’t worried about power usage.

E. Cost: the cost will be low because the basic devices and the protocols are cheaper as

example the most expensive device is the XM10 Module with approximately price 40$

and all other devices will be approximately with price 10$.

Applied Protocols in Smart Control Graduation Project 2010

21

Chapter II: Conceptual Framework

2.1 Static class diagram

Figure 1 Class diagram for Software interface (Server) 1

Applied Protocols in Smart Control Graduation Project 2010

22

Figure 2 Class diagram for software interface (Sever) 2

Applied Protocols in Smart Control Graduation Project 2010

23

Figure 3 Class diagram for Software interface (Client)

Figure 4 Class diagram of X-10 Transmitter

Applied Protocols in Smart Control Graduation Project 2010

24

2.2 Interactivity scenario

2.2.1 X 10 Networks

a. X10 Code required send to the XM10 Module.

b. XM10 Module padding the required code to satisfy the X10 frame and send the

frame over the powerline at the Zero Cross.

c. Every receiver in this network receives this frame and read the unit ID if match its

unit ID then execute the order in the frame.

d. If the unit ID doesn‟t match its unit ID then nothing happens.

2.2.2 RS485 Network(Server)

a. Opening the Server Software.

b. Opening the Serial port (COM) connected to the Server Software.

c. Sending the Messages over the RS485 Network Cables.

d. Every receiver in the Network receives those messages and accepts its mine and

rejects the others based upon its ID.

2.2.3 RS485 Network(Client)

a. Opening the client software.

b. Opening the serial port (COM) connected to the client software.

c. Sending its ID to the Server.

Applied Protocols in Smart Control Graduation Project 2010

25

2.2.4 TCP/IP Network

a. Opening the Server Software.

b. Opening the Serial port (COM) connected to the Server Software.

c. Opening the Server connected to TCP/IP Network.

d. Getting the IPs from the Network.

e. Sending the TCP/IP Packets.

f. Converting TCP/IP Packets into RS485 Frames.

g. Sending the Frames to the clients.

2.2.5 FBUS Connection

a. Establishing the FBUS Connection between Microcontroller and the Phone.

b. Sending the Starting FBUs Message to start the FBUS communication.

c. Refreshing the FBUS Connection by sending the starting message again.

d. Reading the message reached to the phone from the GSM by the microcontroller.

Applied Protocols in Smart Control Graduation Project 2010

26

Chapter III: Methodology

3.1 Power line communication and X10

3.1.1 Introduction

Power line communications (PLC) refers to the concept of transmitting information using

the electrical power distribution network as a communication channel. This technology

allows a flow of information through the same cabling that supplies electrical power. This

novel idea of communication helps in bridging the gap existing between the electrical and

communication network. It offers the prospect of being able to construct intelligent

buildings, which contain many devices in a Local Area Network.

There are two main applications for power line communication - one for broadband

Internet access to the home and the other for home and office networking. This work

focuses on using power lines for home networking. Home networks typically use

Ethernet or wireless devices. Ethernet provides high speed networking, but requires

dedicated category 5 (CAT5) cabling which would need to be installed in the home.

Wireless devices are now becoming more popular and work quite well. One major

attraction of power line communication is the high availability of power outlets. “As long

as there is a power socket, there is a connection to the network”. The high node

availability is why this technology has tremendous market potential. Power line

communication technology has been slow to evolve because the lines were designed

solely for the purpose of 50Hz main power distribution. But after development of X-10

protocol for convenient transmission over power line, it became easy.

3.1.2 Advantages and Disadvantages of PLC

3.1.2.1 Advantages of PLC

A. PLC integrates the transmission of communication signal and 50/60 Hz power

signal through the same electric power cable.

B. The data link appears 'transparent' to the user. Although the devices are connected

through the power line, consumers perceive that there is a “separated” link

available for data communications.

C. Since the existing power lines are used for signal transmission, the initial heavy

cost and investment for setting up a data communications system is avoided.

3.1.2.2 Disadvantages of PLC

A. Minimum-security levels: power lines do not necessarily provide a secure media.

B. Data attenuation: due to the presence of numerous elements on a power line

network, data Attenuation is like issue.

C. High costs of residential appliances: the cost of a power line network modem is

not always competitive with the cost of a standard modem used to connect to a

phone line network.

D. lack of global standards: there are several different standards for power line

Applied Protocols in Smart Control Graduation Project 2010

27

E. communication, and the development of a global standard for distributing data

over existing in-home power line systems does not seem to be the trend of the

international market

F. Noise: the greater amount of electrical noise on the line limits practical

transmission speed (vacuum cleaners, light dimmers, kitchen appliances and drills

are examples of noise sources that affect the performance of a power line-based

home network).

3.1.3 The Challenge

Since the power line was devised for transmission of power at 50/60 Hz and at most 400

Hz, the use of this medium for data transmission (especially at high frequencies) presents

some technically challenging problems. It is one of the most electrically contaminated

environments, which makes it very hostile for transmission of data signals.

The channel is characterized by high noise levels and uncertain (or varying) levels of

impedance and attenuation. In addition, the line offers limited bandwidth in comparison

to cable or fiber-optic links.

Power line networks are usually made of a variety of conductor types and cross sections

joined almost at random. Therefore a wide variety of characteristic impedances are

encountered in the network .This imposes interesting difficulties in designing the filters

for these communication networks.

Applied Protocols in Smart Control Graduation Project 2010

28

3.2 X10 Protocol

3.2.1 What is the X10?

X10 is a remote-control system used for home automation. Its chief benefit is that it

requires no additional wiring - it uses the electric power wiring in your house to send

control signals.

This system was originally offered by BSR, a company that made audio equipment. Over

the years, the product line spun off into a separate company, the local manifestation of

which is called "X10 USA".

The X-10 technology is one of the oldest power line communications protocol and uses a

Form of Amplitude Modulation (ASK Modulation) to transmit information. Although it

was originally unidirectional (controller to controlled modules) recent developments

indicate that some bi-directional products are being implemented. X-10 controllers send

their signals over the power line to simple receivers that are used mainly to control

lighting and other appliances.

Some controllers available today implement some sort of gateway between the power line

and other medium such as RF and infrared.

A 120 kHz AM carrier, 0.5 watts signal is superimposed into the ac power line at zero

Crossing to minimize the noise interference. Information is coded by way of bursts of this

high frequency signal. To increase communications reliability, every bit of information is

sent twice, requiring a full line cycle, which limits the transmission rate to 60 BPS (in a

60 Hz line). A normal X-10 command consists of two packets with a 3-cycle gap between

packets. As mentioned, each packet contains two identical messages of 11 bits each,

which yields a 48-cycle command length of about 0.8 second. This represents a poor

bandwidth while the reliability of the transmission is severely compromised in a noisy

environment. These are the main reasons why this technology has limited applications.

3.2.2 Transmission theory of X-10 signals

The X-10 communication is based on the "injection" of high-frequency signals (120 kHz)

on the 220Vac network, representing binary signals (1 or 0). The signal is inserted

immediately after the passage through the origin of the sine wave of 50Hz, with a

maximum delay of 200 microseconds. This special feature is used by receivers to know

when to listen to the line. The signal is sent through the electric energy network to the X-

10 receivers connected to the network.

To allow the use in three-phase electrical networks, the 120 kHz signs are transmitted

three times in each cycle, in moments that coincide with the passage of zero voltage of

each of the phases. Thus, using its own couplers, it is possible to communicate with any

device, regardless of the phase in which it is installed. In order to simplify the

explanation, this fact will be omitted in the continuation of the text, referring only to the

signals of a single phase.

Applied Protocols in Smart Control Graduation Project 2010

29

Figure 5 Sine wave with the injection of an X-10 signal

Since the means of distribution of energy is electrically very noisy, a policy in which a bit

is never sent alone was adopted, and the bit is always sent together with its complement.

In practice this means that whenever you want to send the bit 1, it corresponds to sending

a 1 (120 kHz sign at the source) followed by a 0 (lack of signal). The sending of bit 0

corresponds to send a 0 (lack of signal) followed by a 1 (120 kHz frequency at the

source). This is illustrated in Figure 3. This aims to minimize the probability of the

electrical noise being confused with a valid signal. However, it has disadvantage of

reducing the rate of transmission, which is thus restricted to a mere 50 bps (a bit is sent

per cycle of the electricity network).

Figure 6 Sending of binary signals 1 and 0

A complete transmission of an X-10 command includes the transmission of four fields

that "occupy" eleven cycles of the electric wave. The first field (2 cycles) represents the

"Start Code" - sequence of bits (1 1 1 0). It should be pointed out that this is the exact

sequence indicated and that the rule of each bit being followed by its complement is not

confirmed. The following field, represented by 4 cycles, presents the home code and their

respective supplements. Similarly 4 more bits are followed, which occupy 4 cycles that

represent the device code or the code of the function. In order to distinguish this last field

a bit is sent (and its respective supplement), which identifies whether the previous field

refers to the number of a unit (bit = 0) or to the code of a function (bit = 1).

Applied Protocols in Smart Control Graduation Project 2010

30

Each complete package must be sent in two groups (the first to indicate the device and

the second the function to be executed) with a maximum of three cycles of the sine wave

alternating between each group. The commands Dim and Bright are exceptions to this

rule and should be continuously transmitted without a cycle interval between them.

Figure 7 Standard X-10 Transmission Routine

Figure 8 Standard Frame of X-10

Figure 9 Example of X-10 Frame

Applied Protocols in Smart Control Graduation Project 2010

31

An X-10 command usually includes two actions: activate a particular device (message

code indicating device), and then send the function to be executed (message with the

function code). Note that after a certain device is activated, it will remain active until

another is located. While a device is active you can send it multiple commands. Sine

wave with the injection of an X-10 signal sending of binary signals 1 and 0 Example of

the transmission of an A2 ON command.

List of X-10 commands

Figure 10 X-10 Codes

Note 1: Hail Request is transmitted to see if there are any other X10 compatible

transmitters within listening range.

Note 2: In a Pre-Set Dim function, the D1 bit represents the MSB of the level and the 4

House code bits represent the 4 least significant bits. No known X10 device responds to

the Pre-Set Dim function.

Note 3: The Extended Data code is followed by eight-bit bytes which can be any data you

might want to send (like temperature). There must be no delay between the Extended

Data code and the actual data bytes, and no delay between data bytes.

Note 4: The X10 RF to AC Gateway model RR501 is a two-way module. If the RR501 is

addressed by transmitting its House Code and Unit Code and then the STATUS

Applied Protocols in Smart Control Graduation Project 2010

32

REQUEST is transmitted, the RR501 will respond by transmitting Status ON if it's turned

on or Status OFF if it's off.

3.2.3 Why X10 Technology?

There are two main reasons why choosing the X10 protocol.

A. It is easy. Power line communication is patented. There is no need for 'control

wires' or 'buses'. The modules simply plug in or replace existing switches, there is

no complicated wiring. It is easily expandable to over 250 modules and it has the

widest range of home control products available.

B. It is affordable. You can build a system for very little expense, and expand the

system over time to suit your needs.

Figure 11 General structure of a power line node

3.2.4 What Are the Tradeoffs?

The following are factors in favor of X10 as a home automation system:

A. X10 equipment is inexpensive.

B. It requires no special wiring.

C. It is easy to set up and use.

D. Systems can be small or large - you can start with just a couple of pieces and

grow if you like it.

E. X10 is easily placed under computer control.

F. A radio-controlled version is available and very compatible with the rest of the

system.

The following are drawbacks of X10 as a home automation system:

A. X10 communication can be thwarted by other carrier-current devices, including

wireless intercoms.

B. X10 signals can be degraded, damped, or stopped by power-conditioning

equipment, including inexpensive "noise-suppressing" power strips, certain

brands of computer power supplies, and my DAK bread maker. [There is a

solution for this - a "choke".]

Applied Protocols in Smart Control Graduation Project 2010

33

C. There is no guarantee that an X10 command will get to its destination. If you send

a command to turn off the heater, the command might get zapped by line noise

and never have a chance to turn off the heater.

D. The limitation of 16 house codes and 16 unit codes makes the address space a bit

tight - there is no way to grow above 256 devices.

E. Most houses are wired with two separate 110 circuits. X10 signals sent from a

control panel plugged into one outlet might not get to the lamp module plugged

into the outlet across the room - if it is on the other "leg" of the 110. [There is a

solution of this - a "signal bridge".]

F. It takes about a second to send an X10 command. While that command is being

sent, you can't send another, or both commands will be lost.

3.2.5 X10 implementation

3.2.5.1 XM10 Module

Two-way PLC interface for OEM applications (xm10). The xm10 is a transmitter –

receiver that plugs into a regular AC outlet and connects to the controller via a modular

RJ 11 telephone jack. Alternatively, the xm10may be fitted inside the controller cabinet,

connected to the 230 V AC supply before the power transformer. It provides an opto-

coupled 50 HZ. Square wave, synchronized to the zero cross point of the AC line. The

controller generates X-10 compatible codes synchronized to this zero crossing point. The

two-way interface then couples the X-10 codes onto the AC line.

Figure 12 XM10 Module

Applied Protocols in Smart Control Graduation Project 2010

34

Figure 13 TW523 Connection Block diagram

3.2.5.2 X-10 Transmission Circuit

Figure 14 X-10 Transmitter Schematic

Applied Protocols in Smart Control Graduation Project 2010

35

Figure 15 X10 Board Layout

Figure 16 3D View for PCB

Applied Protocols in Smart Control Graduation Project 2010

36

3.2.5.3 Zero Cross Detector

In X-10, information is timed with the zero-crossings of the AC power. A zero-crossing

detector is easily created by using the external interrupt on the RB0 pin and just one

external component, a resistor, to limit the current into the PICmicro MCU (see Figure

3). In India, the peak line voltage is 230V. If we select a resistor of 6 M Ω, I peak =

230V/6 M Ω=38 μA, which is well within the current capacity of a PICmicro MCU I/O

pin. Input protection diodes (designed into the PICmicro MCU I/O pins) clamp any

voltage higher than VDD or lower than VSS. Therefore, when the AC voltage is in the

negative half of its cycle, the RB0 pin will be clamped to VSS - 0.6V. This will be

interpreted as a logic zero. When the AC voltage rises above the input threshold, the

logical value will become a „1‟. In this application, RB0 is configured for external

interrupts, and the input buffer is a Schmitt trigger. This makes the input threshold 0.8

VDD = 4V on a rising edge and 0.2 VDD = 1V on a falling edge.

Upon each interrupt, the Interrupt Edge Select bit within the OPTION_REG register is

toggled, so that an interrupt occurs on every zero-crossing.

Figure 17 Zero Cross Detection Circuit

3.2.5.4 120 KHZ Carrier Generator

X-10 uses 120 kHz modulation to transmit information over 50 Hz power lines. It is

possible to generate the 120 kHz carrier with an external oscillator circuit. A single I/O

pin would be used to enable or disable the oscillator circuit output. However, an external

oscillator circuit can be avoided by using one of the PICmicro MCU‟s CCP modules. The

CCP1 module is used in PWM mode to produce a 120 kHz square-wave with a duty

cycle of 50%. After initialization, CCP1 is continuously enabled, and the TRISC bit for

the pin is used to gate the PWM output. When the TRISC bit is set, the pin is an input and

the 120 kHz signal is not presented to the pin. When the TRISC bit is clear, the pin

becomes an output and the 120 kHz signal is coupled to the AC power line through a

transistor amplifier and capacitor, as depicted in Figure.

Applied Protocols in Smart Control Graduation Project 2010

37

Figure 18 120 KHZ Carrier Generation Circuit

Since the impedance of a capacitor is Zc = 1/ (2*π *f*C), a 0.1 μF capacitor presents a

low impedance to the 120 kHz carrier frequency, but a high impedance to the 50 Hz

power line frequency. This high-pass filter allows the 120 kHz signal to be safely coupled

to the 50 Hz power line, and it doubles as the first stage of the 120 kHz carrier detector.

To be compatible with other X-10 receivers, the maximum delay from the zero crossing

to the beginning of the X-10 envelope should be about 300 μs. Since the zero crossing

detectors has a maximum delay of approximately 64 μs, the firmware must take less than

236 μs after detection of the zero crossing to begin transmission of the 120 kHz envelope.

Applied Protocols in Smart Control Graduation Project 2010

38

3.2.5.5 X-10 Transmit Software

As explained in the previous sections, the X-10 Frame consist of Start code (1110), house

code and number code , also for doing this in the software the message sent firstly to

MAX232(use RS232 Protocol)that in rule send data to Microcontroller to Packed and

prepare it to transmit over the power line.

First, choose the id of the serial port that device connected to it that is done using the

following interface

Figure 19 Open Com Interface

Second, choosing the house id and the unit id and then write the command code as in the

following interface

Applied Protocols in Smart Control Graduation Project 2010

39

Figure 20 Send data Interface

A. Send data method

private void send_Click(object sender, EventArgs e)
 {
 string s = comboBoxEx1.Text + comboBoxEx2.Text;
 t.Text += "\n\r";
 t.Text += "Send :" + s + "\n\r";
 port.Write(s);
 }

 private void buttonX1_Click(object sender, EventArgs e)
 {
 t.Text = "";
 }

Code 1 Send data method

Applied Protocols in Smart Control Graduation Project 2010

40

B. Receive data method

Code 2 Receive data method

Applied Protocols in Smart Control Graduation Project 2010

41

3.3 RS485 Protocol

3.3.1 What is RS485 Protocol?

RS-485 is a telecommunications standard for binary serial communications between

devices. It is the protocol or specifications that need to be followed to allow devices that

implement this standard to speak to each other. This protocol is an updated version of the

original serial protocol known as RS-232. While the original RS-232 standard allowed

for the connection of two devices through a serial link, RS-485 allows for serial

connections between more than 2 devices on a networked system.

A RS-485 compliant network is a multi-point communications network. The RS-485

standard specifies up to 32 drivers and 32 receivers on a single (2-wire) bus. New

technology has since introduced "automatic" repeaters and high-impedance drivers and

receivers such that the number of drivers and receivers can be extended to hundreds of

nodes on a network. RS-485 drivers are now even able to withstand bus contention

problems and bus fault conditions.

Figure 21 RS485 Network architecture

A RS-485 network can be constructed as either a balanced 2 wire system or a 4 wire

system. If a RS-485 network is constructed as a 2 wire system, then all of the nodes will

have equal ranking. A RS-485 network constructed as a 4 wire system has one node

designated as the master and the remaining nodes are designated as slaves.

Communication in such a system is only between master and slaves and never between

slaves. This approach simplifies the software protocol that needs to be used at the cost of

increasing the complexity of the wiring system slightly.

Applied Protocols in Smart Control Graduation Project 2010

42

3.3.2 The RS485 Advantages:

A. RS485 allows multiple devices (up to 32) to communicate at half-duplex on a

single pair of wires, plus a ground wire (more on that later),

B. At distances up to 1200 meters (4000 feet).

C. Both the length of the network and the number of nodes can easily be extended

using a variety of repeater products on the market.

D. The properties of differential signals provide high noise immunity and long

distance capabilities.

Figure 22 Devices connection in the Network

Applied Protocols in Smart Control Graduation Project 2010

43

3.3.3 How does the hardware work?

Data is transmitted differentially on two wires twisted together, referred to as a "twisted

pair." The properties of differential signals provide high noise immunity and long

distance capabilities. It is like the following figure.

Figure 23 RS485 Signals

A 485 network can be configured two ways, "two-wire" or "four-wire." In a "two-wire"

network the transmitter and receiver of each device are connected to a twisted pair.

"Four-wire" networks have one master port with the transmitter connected to each of the

"slave" receivers on one twisted pair. The "slave" transmitters are all connected to the

"master" receiver on a second twisted pair.

In either configuration, devices are addressable, allowing each node to be communicated

to independently. Only one device can drive the line at a time, so drivers must be put into

a high-impedance mode (tri-state) when they are not in use. Some RS-485 hardware

handles this automatically. In other cases, the 485 device software must use a control line

to handle the driver. (If your 485 device is controlled through an RS-232 serial port, this

is typically done with the RTS handshake line.)

A consequence of tri-stating the drivers are a delay between the ends of a transmission

and when the driver is tri-stated. This turn-around delay is an important part of a two-

wire network because during that time no other transmissions can occur (not the case in a

four-wire configuration). An ideal delay is the length of one character at the current baud

rate (i.e. 1 ms at 9600 baud).

3.3.3.1 Two-wire or four-wire?

Two-wire 485 networks have the advantage of lower wiring costs and the ability for

nodes to talk amongst themselves. On the downside, two-wire mode is limited to half-

duplex and requires attention to turn-around delay. Four-wire networks allow full-duplex

operation, but are limited to master-slave situations (i.e. “master" node requests

information from individual "slave" nodes). "Slave" nodes cannot communicate with

each other. Remember when ordering your cable, "two-wire" is really two wires +

ground, and "four-wire" is really four wires + ground.

Applied Protocols in Smart Control Graduation Project 2010

44

3.3.4 How does the software work?

RS485 software handles addressing, turn-around delay, and possibly the driver tri-state

features of 485. Determine before any purchase whether your software handles these

features. Remember, too much or too little turn-around delay can cause troubleshooting

fits, and delay should be a function of baud rate. If you're writing your own software or

using software written for an RS-232 application, be certain that provisions are made for

driver tri-state control. Luckily, there are usually hardware alternatives for controlling

driver tri-stating. Contact B&B Technical Support for further details.

3.3.4.1 The EIA RS485 Specification

The EIA RS485 Specification labels the data wires "A" and "B", but many manufacturers

label their wires "+" and "-". In our experience, the "-" wire should be connected to the

"A" line, and the "+" wire to the "B" line. Reversing the polarity will not damage a 485

device, but it will not communicate. This said, the rest is easy: always connect A to A and

B to B.

Figure 24 Max485 Connection

Applied Protocols in Smart Control Graduation Project 2010

45

3.3.5 Important to communicate

Signal ground, don't forget it. While a differential signal does not require a signal ground

to communicate, the ground wire serves an important purpose. Over a distance of

hundreds or thousands of feet there can be very significant differences in the voltage level

of "ground." RS-485 networks can typically maintain correct data with a difference of -7

to +12 Volts. If the grounds differ more than that amount, data will be lost and often the

port itself will be damaged. The function of the signal ground wire is to tie the signal

ground of each of the nodes to one common ground. However, if the differences in signal

grounds are too great, further attention is necessary.

3.3.6 RS485 Hardware implementation

Using microcontroller is the easy way for our devices to support RS485 as most of the

microcontroller support the serial communication (RS232) which is the bias of the RS485

.also all the microcontroller compilers support the RS232 protocol so it is easy to

implement the RS485 within it.

3.3.6.1 Microcontroller:

We select PIC microcontroller to be used in our project as we previously give the causes

for using it.

The circuit of the project as the following

Applied Protocols in Smart Control Graduation Project 2010

46

Figure 25 Total RS485 Network Circuit

Applied Protocols in Smart Control Graduation Project 2010

47

Microcontroller circuit elements

A. RS232 to RS485 converter

Our Devices will be connected to PC using serial cable but it is not use RS232 protocol it

use RS485 protocol so we need to convert RS232 interface to RS485 interface. It is like

the following

a. Schematic

Figure 26 RS232 to RS485 Converter Schematic

Applied Protocols in Smart Control Graduation Project 2010

48

b. PCB

Figure 27 RS232 to 485 Converter PCB

Figure 28 RS232 to 485 Converter PCB 2

Applied Protocols in Smart Control Graduation Project 2010

49

c. final PCB

Figure 29 RS232 to 485 Converter bottom view

Figure 30 RS232 to 485 Converter Top view

Applied Protocols in Smart Control Graduation Project 2010

50

3.3.6.2 RS485 Receiver

The following circuit will receive the data from the computer over a pair of wire as

explained in the previous sections. Every RS485 receiver circuit has a microcontroller

with a unique address in which they can control in up to 3 bytes of data which means that

by only one microcontroller we can drive up to 24 devices. The circuit receives data from

the computer check for their ID address if it is the check the entire message and

calculates the CRC if it is equal to that transmitted by the computer it means that the

message was correct so the micro will appears the message at its outputs

a. RS485 receiver schematic

Figure 31 RS485 receiver schematic

Applied Protocols in Smart Control Graduation Project 2010

51

b. RS485 receiver PCB

Figure 32 RS485 receiver PCB

c. Final PCB

Figure 33 RS485 receiver PCB 2

Applied Protocols in Smart Control Graduation Project 2010

52

Figure 34 RS485 receiver PCB 3

3.3.6.3 RS485 Transmitter

The transmitter circuit is used to transmit data from the device to our PC to display it

.also every transmitter circuit is addressable so we can receive data from devices up to 32

devices and the data size to be transmitted is up to 3 bytes which is very good to transmit

what we want to transmit.

In the transmitter circuit it will be used to transmit data from:

1. temperature sensor

2. Light sensor (used in security)

Applied Protocols in Smart Control Graduation Project 2010

53

a. RS485 transmitter schematic

Figure 35 RS485 transmitter schematic

Applied Protocols in Smart Control Graduation Project 2010

54

b. RS485 transmitter PCB

Figure 36 RS485 transmitter PCB

Applied Protocols in Smart Control Graduation Project 2010

55

3.3.7 Microcontroller Programming

The used microcontroller is the PIC microcontroller it can be programmed using

Assamply,C,Basic,and Pascal .also there are more than one compiler like MicroC,CCS

and High-Tec. and each differ from other by its offered library to make programming

easily and efficient.

In this project the used compiler for this part of it is the MicroC compiler it is very easy

to be used also it offer a RS485 library which contain Master and slave classes in

Appendix there is more information about this library.

3.3.7.1 Data Send and received format

start byte address byte
number of

data bytes
first data byte

second data

byte

third data

byte

redundancy

check (CRC)
End Byte

a. Start byte

Is the first byte in the packet which is always is equal 0X96

b. Address byte

The address of the device this byte can take the value from 0 to 255 but it can‟t

take the value 50 decimal which is used for broadcast

c. Number of data bytes

This byte indicate the number of data bytes being transmitted from the slave and

the number of data being transmitted from the M aster plus 128

d. First data byte

This is the first byte of data being transmitted

e. Second data byte

This is the second byte of data to be transmitted

f. Third data byte

This is the third byte to be transmitted

g. Redundancy check (CRC) byte

The algorithm for calculating the CRC is also given as;

CRC = NOT ($aa XOR $bb XOR $dd [XOR $dd XOR $dd])

Where;

$aa = one byte address

Applied Protocols in Smart Control Graduation Project 2010

56

$bb = one byte showing number of data bytes (slave) and 128+number of bytes

(master)

$dd = one to three data bytes (depending on what was put in RS485 send

command)

$cc = cyclic redundancy check (CRC) byte

I.e. XOR $aa, $bb and all $dd bytes then invert all the bits in the answer then if

the answer is $96 or $A9 add one

3.3.7.2 Some important configuration for RS485

a. Buad Rate

The baud rate can be configured in both master and slave devices but it must be the same

for the data to be received correctly in this project the slave is a PIC microcontroller and

the Maser is the PC and the used buad rate is 9600 bps

b. RTS (Request to Send) bin

Control RS-485 Transmit/Receive operation mode this bin must be connected to the RTS

bin of the DB9 connector via the MAX232 IC to control the transmit and receive

operation from and to the PC this also will be configured in the software program

3.3.7.3 Complete Microcontroller codes

For the complete microcontroller code see appendix G

Applied Protocols in Smart Control Graduation Project 2010

57

3.3.8 Software Program

In this project the programming language used is the C# because its facility in interfacing

the hardware with the software .the start with the interfacing with hardware using serial

cable with the protocol RS232 but in this project the used protocol is the RS485 so the

software must be to written to send RS485 packet instead of RS232 packet .in the

following is the work done by us to develop a new class that can send RS485 packets

3.3.8.1 RS485 Class

In the previous section (Microcontroller Programming) the RS485 packet details was

introduced .and now the computer is the master so our software must send the packet

with the same specification and also has to calculate the CRC to make our slave device

which is the microcontroller to receive data correctly so we develop the following class to

take data and format it with the same specification to be transmitted

3.3.8.1.1 RS485 Variables

Where:

Add: is the address of device the data will send to it.

Data: is the data to be send to the specific added.

bytes_no: is the number of data bytes to be transmitted +128 (for now it is only 1 byte).

Crc: redundancy check byte (check for error in the following we will explain how)

start_byte: the start byte which used to indicate to the receiver the start of the message it

is constant for now and equal to 150 in decimal

End byte: the end byte which used to indicate to the receiver the end of the message it is

constant for now and equal to 169 in decimal.

Sbuffer: the packet to be transmitted.

byte add,data,bytes_no=129, crc,start_byte=150,end_byte=169;

 byte[] sbuffer;

Code 3 RS485 Variables

Applied Protocols in Smart Control Graduation Project 2010

58

3.3.8.1.2 RS485 Methods

a. Set_add Method

This method is used to specify the address to the new created object of our class. It is like

the following

b. Set_data Method

This method is used to specify the data to the new created object with the specific add of

our class. It is like the following

//===
 // set add Method
//===
 public void set_add(byte d)
 {
 this.add = d;
 }
//===

Code 4 set_add Method

//===
 // set data Method
//===
 public void set_data(byte da)
 {
 this.data = da;
 }
 //===

Code 5 Set_data Method

Applied Protocols in Smart Control Graduation Project 2010

59

c. Take Not Method

This method is apart from the method that used to calculate the CRC. This method take

an integer convert it to its binary representation then invert each bit and return the

equivalent integer

//==
 //Not Method
//==
 public double takeNOT(int b)
 {
 int t, j = 7;
 string g = string.Empty;
 double k = 0;
 for (t = 128; t > 0; t = t / 2)
 {
 if ((b & t) != 0) g += "0";
 if ((b & t) == 0) g += "1";
 }
 chars = g.ToCharArray();
 foreach (char c in chars)
 {
 if (c == '1')
 {
 k += Math.Pow(2, j);
 }
 j--;

 }
 return k;
 }

//==

Code 6 Take Not Method

Applied Protocols in Smart Control Graduation Project 2010

60

d. get_data Method

This method responsible for calculating CRC for the current ID address and data of the

object that called for it. The CRC calculation algorithm has been explained in the

previous section (2.1-Data Send and received format).

3.3.8.1.3 The Complete Code

For the Complete Code see Appendix F

//==
 // get data Method
//==
 public byte[] get_data()
 {
 t4 = (add ^ bytes_no ^ data);
 crc = (byte)takeNOT(t4);
 sbuffer = new byte[] { 150, add, bytes_no, data, crc, 169 };
 return sbuffer;
 }

//==

Code 7 get_data Method

Applied Protocols in Smart Control Graduation Project 2010

61

3.3.8.1.4 Screen Shot of Test Program

Figure 37 RS485 Test Program

Applied Protocols in Smart Control Graduation Project 2010

62

3.4 FBUS Protocol

3.4.1 Introduction

Most Nokia phones have F-Bus and M-Bus connections that can be used to connect a

phone to a PC or in our case a microcontroller. The connection can be used for

controlling just about all functions of the phone, as well as uploading new firmware etc.

This bus will allow us to send and receive SMS messages.

Figure 38 Nokia 3310/3315 F/M Bus connection

The very popular Nokia 3310/3315 has the F/M Bus connection under the battery holder.

This is a bit of a pain to get to and requires a special cable to make the connection. The

picture above shows the 4 gold pads used for the F and M Bus. The Table below shows

the F/M- Bus connection signal direction.

Table 1 F/M-BUS Signal Direction

Pin Number Pin Name Direction

1 MBUS <-->

2 GND ---

3 RX <--

4 TX -->

3.4.2 FBUS Protocol

The F-Bus is bi-directional serial type bus running at 115,200bps, 8 data bits. The serial

cable contains electronics for level conversion and therefore requires power. The first

thing to do is supply power to the cable electronics and this is done by setting the DTR

Applied Protocols in Smart Control Graduation Project 2010

63

(Data Terminal Ready) pin and clearing the RTS (Request to Send) pin. Connect the

DTR pin to a +3 to 12 Volt supply and RTS to a -3 to -12Volt supply. The easy way to

achieve this is by using a Max232 or similar transceiver for the RS232 TX and RX pins

and then connecting the DTR pin on the serial cable to the V+ pin on the Max232. Do the

same for the RTS; however connect it to the V- pin on the Max232. The V+ and V- pins

are derived from internal charge pumps that double the input voltage. I.e. for a 5V

Max232, the V+ will +10V and the V- will be -10V.

The next step is to synchronize the UART in the phone with your PC or microcontroller.

This is done by sending a string of 0x55 or 'U' 128 times. Simple! The bus is now ready

to be used for sending frames.

The Nokia protocol has a series of commands that allow the user to make calls, send and

get SMS messages and lots more (see appendix D AT Commands).

So here‟s the difficult part. The FBUS protocol is made up of numerous bytes and always

start with „0x1E‟ for cable type of connection (we are really not worried for IR or

Bluetooth here)

Let‟s see a frame of bytes which when sent to the Nokia 3310/5110 phone will reply back

with the h/w and s/w version of the phone.
Table 2 frame of bytes sent to the Nokia 3310/5110

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 1E 00 0C D1 00 07 00 01 00 03 00 01 60 00 72 D5

 cable cell PC

get

ver.

framlen +

3 seq Padd even odd

Byte0=Frame id 1E=cable

Byte1=Destination address=00=phone

Byte2=Source address=0C=terminal/micro/PC

Byte3=Type of command (D1=get version)

Byte4=MSB of frame length

Byte5=LSB of frame length=07 (7bytes ahead and more)

Byte6=Byte7=Byte8=Byte9=Byte10=Byte11=don‟t need to worry about them! J

Byte12=Sequence number or Seq.No. (Very important)

Byte13=is padding byte and is present if Frame length is odd.

Byte14=Even checksum

Byte15=Odd checksum (embedtronics.com was wrong here)

Byte5 has the info of how many more bytes there are about to come till Seq.No.. comes

(which means that after Seq.No.., minimum 2 bytes checksum are always present and a

padding byte=0x00 is inserted to make the whole frame even .In our case padding

byte=0x00 is present since frame length is odd=0x07)

Applied Protocols in Smart Control Graduation Project 2010

64

A little more about the sequence number here: The Seq.No. as the name suggests defines

the sequence of frames and goes from 0 to 7 and back to 0.and so on.

E.g: In above example if we were to send the same Get version frame 9 times in a row,

what should be done? You are absolutely correct! In the first frame, Seq.No.. is 0x60,

next its 0x61,next 0x62……0x67 (and back to..) 0x60. That‟s all. The phone will be

having a count of the source‟s (micro) Seq.No.‟s, and if it‟s incorrect, then phone will not

respond. And you will have to re-initiate the whole „U‟ sending again.

Now about the checksums. These are nothing but the XOR of all bytes. In our case they

are XOR of all bytes in even positions and odd positions

E.g.: in above example the even checksum will be calculated like this

Byte0 XOR Byte2 XOR Byte4 XOR Byte6 XOR Byte8 XOR Byte10 XOR Byte12

0x1E ^ 0x0C ^ 0x00 ^ 0x00 ^ 0x00 ^ 0x00 ^ 0x60

=0x72

Whereas odd check sum is obtained by XORing all odd placed bytes

Byte1^Byte3^Byte5^Byte7^Byte9^Byte11^Byte13=0xD5

When such a frame is sent, the nokia phone replies with 2 frames

A. An acknowledge frame to tell us that „he‟ read the frame.

B. Actual data frame.

Let‟s see how the ACK frame is made up

Table 3 ACK frame

Byte 0 1 2 3 4 5 6 7 8 9

HEX 1E 0C 00 7F 00 02 D1 00 CF 71

 cable PC cell Ack

framlen +

2 Type seq even Odd

Keep in mind, the above frame is sent by Nokia. (Nokia is source now)

Byte0=Frame id 1E=cable

Byte1=Destination address=0C= terminal/micro/PC

Byte2=Source address=00= phone

Byte3=Type of command (7F=acknowledge frame)

Byte4=MSB of frame length

Byte5=LSB of frame length=02 (2 bytes)

Byte6= (replying to what was sent/asked by micro) D1=get version

Byte7=Seq.No. (No padding byte present after Seq.No. since Frame length=0x02=even)

Applied Protocols in Smart Control Graduation Project 2010

65

Byte8=Even check sum

Byte9=Odd check sum

After this ACK frame, the phone will send the actual data frame, with the h/w and s/w

version (check my excel sheet on this)

It isn‟t over yet! The phone also wants a confirmation that we/microcontroller have

received the data, so it will be waiting for the ACK frame that we are supposed to send. If

we don‟t send this ACK frame, the phone sends the data two more times (after the first

frame) which means that we are entitled to the data 3 times before phone stops sending

data.

This also means we need to send an ACK frame to the phone now. This too is quite

simple .The ACK frame that we should send is like this

Table 4 ACK frame

Byte 0 1 2 3 4 5 6 7 8 9

HEX 1E 00 0C 7F 00 02 D2 01 C0 7C

 cable Cell micro ack

framlen +

2 Type seq even Odd

I think there‟s no need to explain the bytes now, but for the sequence number.

When we/micro sends an ACK frame, the sequence number is not the one we are

generating (from x0 to x7) but it is the last three bits of the Seq.No. Of previous received

data frame. No? Haven‟t got it? Let‟s take the example of the Get-version frame.

The phone had sent 0x41 as the sequence number in its h/w, s/w data frame

0x41= 0100 0001 b

Sample frame sent to my Nokia 3310 (showed as a Hex dump)

Byte: 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Data: 1E 00 0C D1 00 07 00 01 00 03 00 01 60 00 72 D5

this sample frame is used to get the hardware and software version from a Nokia phone.

It is a good starting point to test if our implementation of the protocol is working.

Byte 0: All frames sent by cable will start with the character 0x1E first. This is the F-Bus

Frame ID. Cable is 0x1E and IR is 0x1C. Byte 1: This is the destination address. When

sending data, it's the phone's device ID byte. In our case it's always 00 for the phone.

Byte 2: This is the source address. When sending data, it's the PC's device ID byte. In our

case it's always 0x0C (Terminal).

Byte 3: This is the message type or 'command'. 0xD1 is Get HW & SW version.

Applied Protocols in Smart Control Graduation Project 2010

66

Byte 4 & 5: Byte 4 & 5 is the message length. In our case it is 7 bytes long. Byte 4 is the

MSB and byte 5 is the LSB.

Byte 6: The data segment starts here and goes for 7 bytes in our case. As The Nokia is a

16 bit phone and therefore requires an even number of bytes. As ours is odd the last byte

will be a padding byte and the message will end at location 13.

The last byte in the data segment (Byte 12 above) is the sequence number. The last 3 bits

of this byte increment from 0 to 7 for each frame. This part needs to be sent back to the

phone in the acknowledge frame. The other bits I am unsure about what they mean!

Bytes 14 & 15: The second to last byte is always the odd checksum byte and the last byte

is the even checksum byte. The checksum is calculated by XORing all the odd bytes and

placing the result in the odd Checksum location and then XORing the even bytes and

then placing the result in the even byte.

Well that is our first frame for our Nokia Phone. If the phone received it is show reply

with the following data

1E 0C 00 7F 00 02 D1 00 CF 71

1E 0C 00 D2 00 26 01 00 00 03 56 20 30 34 2E 34 35 0A 32 31 2D 30 36 2D 30 31 0A

4E 48 4D 2D 35 0A 28 63 29 20 4E 4D

50 2E 00 01 41 3F A4

The first line is an Acknowledge command frame. Notice how the destination and source

addresses are now swapped. This is because the Nokia phone is now talking. This

message is two bytes long with the two bytes representing the message type received

(0xD1) and the sequence number (0x00). The last two bytes are the checksum and should

be checked to make sure the data is correct. The 3310 will be waiting for an acknowledge

frame after these two frames were sent. If the acknowledge frame is not sent the 3310

will retry sending the data. The 3310 will only send the data 3 times and then gives up.

The second frame from our Nokia 3310 is the data we requested. The message type is

0xD2. This is 'receive Get HW&SW version'. This 38-byte (0x26) message should show

0x0003 "V” "firmware\n" "firmware date\n" "model\n" "(c) NMP." The last byte in the

data is the sequence number. As with standard F-bus frames, the last two bytes in the

frame are checksum bytes.

The received data without f-bus frame

01 00 00 03 56 20 30 34 2E 34 35 0A 32 31 2D 30 36 2D 30 31 0A 4E 48 4D 2D 35 0A

28 63 29 20 4E 4D 50 2E 00 01 41

0003 V 0 4 . 4 5 \n 2 1 / 0 6 / 0 1 \n N H M - 5 \n (c) N M P. Sequence no.

All that is required now is to send a acknowledge frame back to the phone to say 'I got it!'

Applied Protocols in Smart Control Graduation Project 2010

67

1E 00 0C 7F 00 02 D2 01 C0 7C 0x7F is the acknowledge frame's command. We are

only required to send a two-byte message so length is set to 0x02. The message contains

the acknowledged message type (0xD2) and the sequence no. (0x01). the sequence

number is made from the last 3 bits of the sequence number in the previous frame. The

checksum needs to be calculated and sent

3.4.3 FBUS Communication

3.4.3.1 Signal levels

The FBUS data sent by the PC and the reply from the phone are shown in the following

figure. Please note that the signal level of the computer (the data burst on the left) quite

bad only because the measurement circuit attenuates the signal. It should a rail-to-rail

signal from 0 to 3 volts like the phone response. These images are captured from Nokia

Data Suite 2.0 (NDS) communication.

The FBUS data sent by the PC and the reply from the phone are shown in the figure 1.2.

Please note that the signal level of the computer (the data burst on the left) quite bad only

because the measurement circuit attenuates the signal. It should a rail-to-rail signal from

0 to 3 volts like the phone response. These images are captured from Nokia Data Suite

2.0 (NDS) communication.

Figure 39 a part of the FBUS communication of the Nokia Data Suite

A good guess about the FBUS drivers is that there is a high-impedance input in the FBUS

Rx pin of the phone, and a real push-pull buffer output in the FBUS TX pin.

Applied Protocols in Smart Control Graduation Project 2010

68

But it is not so simple. By looking the startup situation of the Nokia Data Suite

communication. The start is shown in figure below.

Figure 40 the start of FBUS communication measured with the test circuit

By looking at the above figure you must see that the FBUS TX line, the phone FBUS

output (the signal without data pulses) will raise after the buffers of the measuring circuit

are powered. (The power is applied to the measurement circuit just before the first time-

division line on the picture.) The "middle" state of the phone before the power-up means

that the FBUS Tx output driver does not drive the pin high all the time, but it is a three-

state output. (Measurement on an idle phone with a current meter shows the same thing.)

By pulling the FBUS Tx down instead of the 400 kilo-ohm pull-up shows that the FBUS

Tx drives the signal up to 3 V during the data pulses, so it is not an open-collector type

output.

The above figure shows also that the Nokia Data Suite 2.0 starts the communication

immediately after supplying power to the measurement circuit (the data pulses on the PC-

to-phone line). The first pulses are possibly not transmitted correctly because the adapter

circuit is not yet correctly powered. (The power-up ramp can be seen in the upper signal

on the scope.) Fortunately, this does not cause problems with the NDS.

Applied Protocols in Smart Control Graduation Project 2010

69

3.4.3.2 Data speed

A part of a data burst from the PC to the phone is shown in the figure below.

Figure 41 A close-up view to the FBUS data sent by the PC

By assuming that the data format contains the typical start and stop bits, one possible data

byte is shown in the figure with the time cursors. If it contains 11 bits (2 low, 4 high, 3

low, and 2 high), then the baud rate near the standard value of 115200 baud.

A similar view to the data sent by the phone is shown in the figure below.

Figure 42 FBUS data sent by the phone.

Applied Protocols in Smart Control Graduation Project 2010

70

3.4.4 FBUS Implementation

3.4.4.1 Hardware Implementation

Figure 43 FBUS Interfacing Schematic

Figure 44 FBUS Interfacing Layout

Applied Protocols in Smart Control Graduation Project 2010

71

Figure 45 3D View of PCB

3.4.4.2 Software Implementation

a. Start FBUS Method

In the Start FBUS Method should send to the phone the Starting byte 128 times

to begin the Synchronization with the Microcontroller, the Starting Byte is (0x55)

, so the method will be,

void StartFbus ()

 {

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55

);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55

);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55

);………………………………………………….. }

Code 8 StartFbus Method

Applied Protocols in Smart Control Graduation Project 2010

72

b. Message one Sending

c. UART Initialization

/*Message1 here*/

void mess ()

{

UART1_Write (0x1E); UART1_Write (0x00);

UART1_Write (0x0C); UART1_Write(0x02);

UART1_Write(0x00);UART1_Write(0x35);

UART1_Write(0x00);UART1_Write(0x01);

UART1_Write(0x00);UART1_Write(0x01);

UART1_Write(0x02);UART1_Write(0x00);

UART1_Write(0x07);UART1_Write(0x91);

} // end method

// Initialize Uart at 115200 baud rate

 UART1_Init(115200);

Code 9 get the Phone software version Method

Code 10 Initialize the Uart

Applied Protocols in Smart Control Graduation Project 2010

73

d. Receive Reply Message

// If data is ready, read it:

 If (UART1_Data_Ready () == 1) {

 // received parameter

 char r;

 // Assign received data to a variable r

 r = UART1_Read ();

 // display data on portB

 portB = r;

 } // end if

Code 11 reading from phone

Applied Protocols in Smart Control Graduation Project 2010

74

3.5 TCP/IP protocol

3.5.1 What is TCP/IP Protocol?

The TCP/IP model is a description framework for computer network protocols created in

the 1970s by DARPA, an agency of the United States Department of Defense. It evolved

from ARPANET, which were the world's first wide area network and a predecessor of the

Internet. The TCP/IP Model is sometimes called the Internet Model

The TCP/IP model, or Internet Protocol Suite, describes a set of general design guidelines

and implementations of specific networking protocols to enable computers to

communicate over a network. TCP/IP provides end-to-end connectivity specifying how

data should be formatted, addressed, transmitted, routed and received at the destination.

Protocols exist for a variety of different types of communication services between

computers.

TCP/IP is generally described as having four abstraction layers. This layer architecture is

often compared with the seven-layer OSI Reference Model; using terms such as Internet

Reference Model in analogy is however incorrect as the Internet Model is descriptive

while the OSI Reference Model was intended to be prescriptive, hence Reference Model.

The TCP/IP model and related protocols are maintained by the Internet Engineering Task

Force (IETF).

The TCP/IP model is a description framework for computer network protocols created in

the 1970s by DARPA, an agency of the United States Department of Defense. It evolved

from ARPANET, which were the world's first wide area network and a predecessor of the

Internet. The TCP/IP Model is sometimes called the Internet Model or the DoD Model.

The TCP/IP model, or Internet Protocol Suite, describes a set of general design guidelines

and implementations of specific networking protocols to enable computers to

communicate over a network. TCP/IP provides end-to-end connectivity specifying how

data should be formatted, addressed, transmitted, routed and received at the destination.

Protocols exist for a variety of different types of communication services between

computers.

We will use this protocol to control in devices connected to server PC from any client pc

in our network.

Applied Protocols in Smart Control Graduation Project 2010

75

Figure 46 TCP/IP Connection

3.5.2 The Advantages of using TCP/IP in control:

a. Setup Connection Before Transmission (handshaking)

b. Reliable, in order data transmission.

c. Flow Control (no side can overwhelm the other side with packets).

d. Congestion Control (Slow down when network is congested).

e. Example of application: HTTP, SMTP and FTP.

Applied Protocols in Smart Control Graduation Project 2010

76

3.5.3 How does the hardware work?

The hardware is that of the RS485 as explained in the previous sections. The added

section is that the LAN network between the two PCs .now it is easy to transmit the

control signal (data) between the PCs in the LAN to control in the Devices from any PC

in the network that know the IP address and the password of the devices that is

connected to the server PC. The structure is like the following

TCP/IP

Network

Server PC Client PC

Control Signal

LAN LAN

Control Signal

R
S

4
8
5
 P

a
c
k
e
ts

Figure 47 TCP/IP control Structure

As shown in the above Figure the control data is transmitted from the Clint PC to the

Server PC over the LAN cables as a TCP/IP packets .the server is translate it to RS485

Packets to send it to the specified Device .this will be shown in the next section.

3.5.4 How does the software work?

The software is a program that can receive a TCP/IP‟s packets and can extract the data

and the ID address from it, also it check for the password to check if the data received

from the Clint program is Authorized or not if it is good the data and the ID address is

repackage to a RS485 packet to be send to the device that can Understood it. the

following figure is explain this structure

Applied Protocols in Smart Control Graduation Project 2010

77

TCP/IP packet

Figure 48 how does the TCP/IP software work

3.5.5 Steps to begin Communication

There is some important settings for connection to be successful they are below:

a. PC in the same LAN

b. client PC software has to know the server IP

c. client Pc software has to know the each room password to make successful

connection with it

d. the server program must be on all time for the Clint to make successful

connection

e. the hardware must be connected to the sever PC

f. the serial port com must be opened

Applied Protocols in Smart Control Graduation Project 2010

78

3.5.6 TCP/IP Hardware implementation

The hardware is the same of the RS485 the only added hardware is the switch and the

LAN structure between the server and the client PC.

Figure 49 Client and Server connection

3.5.7 TCP/IP Software Program

As explained that the programming language used is the C# .in the following we will see

how the connection between 2 PCs will be established using the C# language. The

software is a two parts which is the client and the server. In the following the software of

the client and server will be explained.

3.5.7.1 TCP/IP Server Program

The server program is the program that will be run in the PC witch all devices is

connected to it. this software will accept the data from all client connected to it, and then

will check for some filed in the received massage like ID address, password and the data

if the ID address and the password is true it will pass the data to another part (this part is

the RS485 software part) of the software program `that is responsible for passing that

data to the specified ID address.

Figure 50 TCP/IP part in login screen

As shown in the above figure which is apart from the login screen it responsible for

specifying the port number for the server to connect to the clients through it, also to

specify the password of the server to make a secure connection between it and its client,

the IP address is automatically gate from the PC that the server will run in it.

Applied Protocols in Smart Control Graduation Project 2010

79

After pressing the open server button the server window will be opened .it is like the

following

Figure 51 TCP Server window

The black screen will display the state of the connected and the disconnected client

3.5.7.1.1 The software implementation of the server

The following is the monitoring of the important parts of the sever TCP program .

a. Server used library

The used library for the connecting over the TCP/IP is the Net library it is

imported to be used in the program using the following code.

using System.Net;

using System.Threading;

using System.Net.Sockets;

using System.IO;

Code 12 Used Library in Server TCP/IP

Applied Protocols in Smart Control Graduation Project 2010

80

b. Struct Client Data

Next to store data for each client that will connect to the server .the struct Client

Data will be defined .it is like the following:

c. Server used variables

tcpLsn: is a TcpListener that will listen the specified port in the specified IP assigned to

the server PC.

dataHolder: it is a Hashtable used to store the connecte ID and its data

tcpThd :is a thread used for the TCP

SetTextCallBack(string text): is a delegate Method that is used to pass data between two

threads.

form_1: is an object from Form1 that is the main form so it is possible to send data to the

devices connected to it over r the serial port.

ROM : is an object from Sheimy_RS485 class that is used to calculate the RS485 pattern

to be transmitted over the serial port.

rom_data: is a byte Array that is used to store the calculated RS485 pattern to be sends.

 public struct ClientData

 {

 public Socket structSocket;

 public Thread structThread;

 }

Code 13 struct ClientData

 private TcpListener tcpLsn;

 private Hashtable dataHolder = new Hashtable();

 private static long connectId = 0;

 private Thread tcpThd;

 delegate void SetTextCallBack(string text);

 Form1 form_1;

 Sheimy_RS485 ROM;

 private byte[] rom_data;

Code 14 Server used variables

Applied Protocols in Smart Control Graduation Project 2010

81

d. TCP_Server constructor

This is used to make initialization for the variables also it is called every time a

create and object from it. This constructor is shown in the following block code.

e. WaitingForClient Method

This method is used to add each new connected client to the dataHolder hash table also to

indicate the ID of connects. This method is called inside a thread inside the constructor

//==

 public TCP_Server(IPAddress ip, int portno, Form1 f)

 {

 InitializeComponent();

 tcpLsn = new TcpListener(ip, portno);

 tcpLsn.Start();

 statusBar1.Text = "Listen at: " +

tcpLsn.LocalEndpoint.ToString();

 tcpThd = new Thread(new ThreadStart(WaitingForClient));

 tcpThd.Start();

 form_1 = f;

 // pass = form_1.getpass();

 ROM= new Sheimy_RS485();

 }

//==

Code 15 TCP_Server constructor

//===

 public void WaitingForClient()

 {

 ClientData CData;

 while (true)

 { /* Accept will block until someone connects */

 CData.structSocket = tcpLsn.AcceptSocket();

 Interlocked.Increment(ref connectId);

 CData.structThread = new Thread(new

ThreadStart(ReadSocket));

 lock (this)

 { // it is used to keep connected Sockets and active

thread

 dataHolder.Add(connectId, CData);

 upDateDataGrid("Connected > " + connectId + " "

+ DateTime.Now.ToLongTimeString());

 }

 CData.structThread.Start();

 }

 }

//==

Code 16 Waiting for Client Method

Applied Protocols in Smart Control Graduation Project 2010

82

f. Read Socket Method

This method read is called inside anew thread for every connected new client to handle

the data from this client and to get the control data from it to send it to the devices after

checking for the password and insure it is correct. It is in the following code block

Code 17 ReadSocket Method

 public void ReadSocket()

 {

 /* realId will be not changed for each thread, but

connectId is

 * changed. it can't be used to delete object from

Hashtable*/

 long realId = connectId;

 Byte[] receive;

 ClientData cd = (ClientData)dataHolder[realId];

 Socket s = cd.structSocket;

 int ret = 0;

 while (true)

 {

 byte room1_pass,room2_pass;

 room1_pass = form_1.getRoom1_pass();

 room2_pass = form_1.getRoom2_pass();

 if (s.Connected)

 {

 receive = new Byte[100];

 try

 { /* Receive will block until data coming ret is

0 or Exception

 * happen when Socket connection

is broken*/

 ret = s.Receive(receive, receive.Length, 0);

 if (ret > 0)

 {

 if ((receive[0] == 160 && receive[1] ==

room1_pass) || (receive[0] == 170 && receive[1] == room2_pass))

 {

 ROM.set_add(receive[0]);

 ROM.set_data(receive[2]);

 rom_data = ROM.get_data();

 form_1.send_data(rom_data);

 }

 else

 {

 form_1.speak_text("Dear User : someone

try Hacking your Device");

 }

 foreach (ClientData clntData in

dataHolder.Values)

 {

 if (clntData.structSocket.Connected)

 clntData.structSocket.Send(receive,

ret, SocketFlags.None);

 }

 }

 else { break; }

 }

 catch (Exception e)

Applied Protocols in Smart Control Graduation Project 2010

83

g. CloseTheThread Method

This method is used to close the thread assigned to specific client when it is disconnected

from the server. Also to display this in the server data grid.

foreach (ClientData clntData in dataHolder.Values)

 {

 if (clntData.structSocket.Connected)

clntData.structSocket.Send(receive, ret, SocketFlags.None);

 }

 }

 else { break; }

 }

 catch (Exception e)

 {

 upDateDataGrid(e.ToString());

 if (!s.Connected) break;

 }

 }

 }

 CloseTheThread(realId);

 }

Code 18 ReadSocket Method (continued)

//===

 private void CloseTheThread(long realId)

 {

 try

 {

 ClientData clientData =

(ClientData)dataHolder[realId];

 clientData.structThread.Abort();

 }

 catch (Exception e)

 {

 lock (this)

 {

 dataHolder.Remove(realId);

 upDateDataGrid("Disconnected > " + realId + " "

+ DateTime.Now.ToLongTimeString());

 }

 }

 }

//===

Code 19 CloseTheThread Method

Applied Protocols in Smart Control Graduation Project 2010

84

h. The complete Code

For the complete code see appendix…………………………………………..

3.5.7.2 TCP/IP client Program

The client program is that will be run in the client PC so that it can control in the devices

connected to the server .this software is send the following pattern to the server

Device ID Device Pass Control Data

Figure 52 send pattern from the client

3.5.7.2.1 The software implementation of the client

Figure 53 TCP client login form

Applied Protocols in Smart Control Graduation Project 2010

85

When the connect to Server button is pressed the following window will displayed

Figure 54 required data to connect to the server

The IP Address is the Address of the Server that it will connect to it. Also the port

number is the same that is opened in the server PC and the User Name is the name of the

client

.

Figure 55 control of client PC software

Applied Protocols in Smart Control Graduation Project 2010

86

In the above window the user have to specify the password of the Room that he wants to

connected to .after this he can control in all devices in the room by sending the data to the

server to send it to the room ID connected to it.

The following is the monitoring of the important parts of the client TCP program.

a. Client used library

b. Client used variables

c. Convert bool to byte Method

This method is used to convert the bool value of the switches to byte value to be

transmitted over TCP/IP protocol

using System.Net.Sockets;

using System.IO;

using System.Threading;

Code 20 client used library

public Thread tcpThd;

public byte[] readBuffer;

public byte[] writeBuffer;

public Stream stm;

public Socket socket;

public TcpClient tcpclnt;

public string loginName = "";

private LoginInfo loginForm;

Code 21 Client used variables

//=========================convert bool to byte ========================

 private byte bool_to_byte(bool[] a)

 {

 int i = 0;

 byte result = 0;

 foreach (bool d in a)

 {

 if (d == true)

 result += (byte)Math.Pow(2, i);

 i++;

 }

 return result;

 }

//===

Code 22 convert bool to byte Method

Applied Protocols in Smart Control Graduation Project 2010

87

d. Start Server Method

This method is used to connect to the server with specific IP address and port Number

and the name of the connected client

e. Send data to server Method

This Method is used to write a the chosen specific pattern value to the server

f. 5- Read Socket Method

//===

 public void startServer(string ipAddress, int portNumber,

string loginName)

 {

 this.loginName = loginName;

 tcpclnt = new TcpClient();

 tcpclnt.Connect(ipAddress.Trim(), portNumber);

 textBoxWindow.AppendText("Connecting to server...");

 writeToServer("Hello " + loginName + " Now you are

connected to the server" + "\r\n");

 stm = tcpclnt.GetStream();

 tcpThd = new Thread(new ThreadStart(ReadSocket));

 tcpThd.Start();

 }

//===

//==

 private void switchArray1_ValuesChanged(object sender, EventArgs

e)

 {

 ledArray1.SetValues(switchArray1.GetValues());

 writeBuffer = new byte[3];

 writeBuffer[0] = 160;

 writeBuffer[1] = byte.Parse(rom1_pass.Text);

 writeBuffer[2] =bool_to_byte(switchArray1.GetValues());

 if (stm != null) stm.Write(writeBuffer, 0,

writeBuffer.Length);

 }

//==

Code 24 Send data to server Method

Code 23 startServer Method

Applied Protocols in Smart Control Graduation Project 2010

88

This Method is used to read data from Socket that is connected to the server

//===

 public void ReadSocket()

 {

 while (true)

 {

 try

 {

 readBuffer = new Byte[100];

 stm.Read(readBuffer, 0, 100);

 /* If the text box exceed the maximum lenght, then

get

 * remove the top part of the text*/

 if (textBoxWindow.Text.Length >

textBoxWindow.MaxLength)

 {

 textBoxWindow.Select(0, 300);

 textBoxWindow.SelectedText = "";

 }

textBoxWindow.AppendText(System.Text.Encoding.ASCII.GetString(readBuff

er) + "\r\n");

 }

 catch (Exception e)

 { break; }

 }

 }

//===

Code 25 client Read Socket Method

Applied Protocols in Smart Control Graduation Project 2010

89

Chapter IV: Quick User Guide

4.1 Use cases

4.1.1 Server Use Case

User

Open Server

Software

Connect Project to

PC

Figure 56 Server use Case

Open Server

Software

open Serial port

COM
Open Server

Open COM Port

Send Packet

Get the TCP/IP

Packet

Form RS485

Packet

Convert TCP/IP

Packet to RS485

Figure 57 Server use Case (Continued)

Applied Protocols in Smart Control Graduation Project 2010

90

Send Packet
Microcontroller

Receiver 2

Microcontroller

Receiver 1

Microcontroller

Receiver 3

Controlled Devices

Figure 58 Server use Case (Continued)

4.1.2 Client Use Case

Actor

Opening Clients

Software

Open Connection

of TCP/IP

Send data to

Server

Server Convert

TCP/IP to RS485

Send to

Microcontroller Microcontroller

Receivers
Controlled Devices

Figure 59 Client Use Case

Applied Protocols in Smart Control Graduation Project 2010

91

4.1.3 X10 Transmitter/receiver use Case

Actor

Connect Device
Open Software and

com

Chose Home ID

and UNIT ID and

Command

Send it to the

Device

Figure 60 X10 Transmitter/receiver use Case

4.2 Basic Settings

4.2.1 Server Basic Settings

4.2.1.1 COM Port Settings:

a. Port Name (e.g. COM1, COM2).

b. Port Baud rate (e.g. 9600, 1400).

c. RTS(request to transmit)in this project it is true if we Want to Receive and false if

we want to transmit

d. Parity (in this project it is none).

e. Data Bits(in this project it is 8 bits)

f. Stop Bits(in this project it is One)

4.2.2.2 TCP/IP Server Settings

a. IP address (it is the IP of the PC the server running in it).

b. Port number that will be used to send and receive data over it.

c. The password of each room

Applied Protocols in Smart Control Graduation Project 2010

92

4.2.2.3 TCP/IP client Settings

a. the IP Address of the Server

b. the port Number

c. the user name

4.2.2.4 Microcontroller settings

a. the crystal oscillator must be like that used by the compiler program

b. the Serial port baud rate must be like that used by the software

c. the all RS485 boards must be connected to the A and B wires

d. for long distance the ground wire must be common for all boards

4.2.2.5 Power settings

a. all devices works by 5 V DC

b. for stable voltage the Voltage Regulator is used(12 V to 5 V)

c. for + and – of the source the diode is used to save the device if the polarity is not

true

Applied Protocols in Smart Control Graduation Project 2010

93

4.3 Training Mode

4.3.1 RS485 Transmitter

The training is done using firstly the simulation programs (Proteus 7 Professional) and

with the help of the Virtual Serial Port Driver program to make a connection between the

simulation program and the first developed test program. The following is the first RS485

transmitter test program

Figure 61 first RS485 transmitter test program

After the successful simulation the test board is used to make the second training

operation. And after the successful of that the PCB was made.

4.3.2 RS485 Receiver

After the success of sending the RS485 packet the RS485 receiver was developed to

receive data from the serial port and display it also the used simulation and virtual serial

port driver used to simulate the transmitter is also used. The following is the transmitter

circuit used in simulation to measure the temp and send it to the program

Applied Protocols in Smart Control Graduation Project 2010

94

Figure 62 RS485 Receiver simulation circuit

Figure 63 RS485 Receiver test program

Applied Protocols in Smart Control Graduation Project 2010

95

4.3.3 RS485 Transmitter/ Receiver

After the success of sending the RS485 and Receiving it individually both of the

transmitter and receiver program are combined in one program .also only one

microcontroller can be programmed for transmitting and receiving operations. The

following is the pictures of the transmitter/receiver program developed.

Figure 64 RS485 Transmitter/ Receiver(transmitter screen)

Applied Protocols in Smart Control Graduation Project 2010

96

Figure 65 RS485 Transmitter/ Receiver (receiver screen)

4.3.4 X10 Transmitter/ Receiver

There was many tries to generate the X10 signal and to transmit it over the power lines

the following is sample of this tries.

4.3.4.1 120 KHz carrier Generator

We start to generate a 120 KHz carrier generator using the PWM available in our PIC

16F877A

Desired PWM frequency is : 120 kHz,

Fosc = 20 MHz

TMR2 prescale = 1

1/120 kHz= [(PR2) + 1] • 4 • 1/20 MHz • 1

8.33 us = [(PR2) + 1] • 4 • 50 ns • 1

PR2 =40

The generated frequency will be 125 KHz

Applied Protocols in Smart Control Graduation Project 2010

97

20/40 = 50% duty cycle

Initialize TIMR 2: setup_timer_2(T2_DIV_BY_1, 40, 1); // 125 KHz

Code:

Code 26 120 KHz carrier Generator

Result:

Figure 66 120 KHz carrier Generator

Applied Protocols in Smart Control Graduation Project 2010

98

Figure 67 Together with 220 V 50 Hz AC

4.3.4.2 Tramitting X10 Signals

As a test we want to transmit the following array

Byte const d [6]={1,0,1,0,1,0};

The array will be transmitted as the following:

1-transmit „1‟: by the present of the 125 KHz generated signal

2-transmite „0‟: by the absence of 125 KHz signal

Code:

Applied Protocols in Smart Control Graduation Project 2010

99

Code 27 X10 Data Transmitter

And this is the Result:

Figure 68 X10 Generated data

Applied Protocols in Smart Control Graduation Project 2010

100

4.3.4.3 Merge data with the power signal

The following circuit was developed to merge data with the power signal every ZERO crossing

Figure 69 X10 Transmitter

The data transmitted over the power line was as the following:

Applied Protocols in Smart Control Graduation Project 2010

101

Figure 70 Data transmitted every Zero crossing

4.4 Step by step tutorial

4.4.1 How to connect the Hardware

4.4.1.1 Connect RS232 to RS485 converter

Connect the following board to the PC over the Serial port also it is tested by connecting

it using USB to serial converter

Figure 71 Real R232 to RS485 converter PCB

Applied Protocols in Smart Control Graduation Project 2010

102

4.4.1.2 connect RS485 receiver or Transmitter board

The First is to connect the power to the board and then connect the two wires of the

max485 (A and B) that are responsible for the transmitting and receiving of the RS485

packet. This is like the following figure

Figure 72 Real RS485 Transmitter PCB

4.4.1.3 connect light sensor

The laser led must be in front of the light sensor so we can indicate any thing that will cut

the path between the laser led and the light sensor like that in the following figure

Figure 73 Light Sensor

Applied Protocols in Smart Control Graduation Project 2010

103

4.4.2 How to Run the Software

The following is step by step tutorial of how to run the project software to send and

receive data from the devices connected to the server PC

4.4.2.1 Server Software tutorial

1-

Figure 74 Enter User Name (login)

2-

Figure 75 Enter password

Applied Protocols in Smart Control Graduation Project 2010

104

3-

Figure 76 Click to Login

4- Select the Port ID

Figure 77 Select the Port ID

Applied Protocols in Smart Control Graduation Project 2010

105

5- Click to OPEN PORT button

Figure 78 Click to OPEN PORT button

6- Click the OUT DOORS button

Figure 79 Click the OUT DOORS button

Applied Protocols in Smart Control Graduation Project 2010

106

7- Click to search for camera1

Figure 80 search for camera1

8- Select the Camera

Figure 81 select the Camera

Applied Protocols in Smart Control Graduation Project 2010

107

9- Start Camera

Figure 82 Start Camera

10-Stop Camera

Figure 83 Stop Camera

Applied Protocols in Smart Control Graduation Project 2010

108

11-control in camera angle

Figure 84 control in camera angle

12- Enter the Room 1 Control panel

Figure 85 Enter the Room 1 Control panel

Applied Protocols in Smart Control Graduation Project 2010

109

13- Turn on/off Specific Device

Figure 86 Turn on/off Specific Device

14- read the temperature

degree

Figure 87 read the temperature degree

Applied Protocols in Smart Control Graduation Project 2010

110

15- Select the track

Figure 88 Select the track

16- Enter the Room 2 Control panel

Figure 89 Room 2 Control panel

Applied Protocols in Smart Control Graduation Project 2010

111

17- Turn on Device 3

Figure 90 Turn on Device 3

18- Change Room password

Figure 91 change Room password

Applied Protocols in Smart Control Graduation Project 2010

112

19- Read Temp

Figure 92 Read Temp

20- Back to Login

Figure 93 back to Login

Applied Protocols in Smart Control Graduation Project 2010

113

21- Open TCP/IP Server

Figure 94 Open TCP/IP Server

22- The TCP Server window

Figure 95 The TCP Server window

Applied Protocols in Smart Control Graduation Project 2010

114

4.2.2 Client Software tutorial

1- Enter User Name

Figure 96 Enter User Name

2- Enter Password

Figure 97 Enter Password

Applied Protocols in Smart Control Graduation Project 2010

115

3- Connect to Server

Figure 98 Connect to Server

4- The LoginInfo window opens

Figure 99 The LoginInfo window opens

Applied Protocols in Smart Control Graduation Project 2010

116

5- Get the IP address of the Server

Figure 100 IP address of the Server

6- Enter the IP address of the Server

Figure 101 IP address of the Server

Applied Protocols in Smart Control Graduation Project 2010

117

7- Enter to connect to server

Figure 102 connect to server

8-Server window in Server PC indicate the connected client

Figure 103 Server PC indicate the connected client

Applied Protocols in Smart Control Graduation Project 2010

118

9- ENTER ROM 1 Control panel

Figure 104 ROOM 1 Control panel

10- Enter the Room password

Figure 105 Room password

Applied Protocols in Smart Control Graduation Project 2010

119

11- Now you can control in Devices

Figure 106 control in Devices

12- ENTER Room 2 Control Panel

Figure 107 Room 2 Control Panel

Applied Protocols in Smart Control Graduation Project 2010

120

Glossary

PLC Power Line Communication

TX Transmitter

RX Receiver

X10 Zero crossing protocol

TW Two-way

RS485 Recommended Standard 485

RS232 Recommended Standard 232

Ack Acknowledgement

PCB Printed Circuit Board

PWM Pulse Width Modulation

Applied Protocols in Smart Control Graduation Project 2010

121

Bibliography

Burroughs, J. (2002). X-10 Home Automation Using the PIC16F877A. Microchip

Technology Inc.

embededtronic.com. (n.d.). Connecting Microcontrollers to Nokia 3310 .

http://www.mytutorialcafe.com/.

Embedtronics. (n.d.). Nokia F-Bus Protocol. http://www.embedtronics.com/.

Falquez, J. (Spring 2009). X‐10 Protocol & Power Line Communication. The George

Washington University.

FAZELA M. VOHRA, M. C. (n.d.). Power Line Carrier Communications. K.J.Somaiya

College of Engg.

LABABIDI, S. (1998). Mobile Home Automation .

POWERLINE COMMUNICATION-Using X10 Protocol. (n.d.).

PRO, X.-1. (n.d.). X-10 Communications Protocol. X-10 PRO.

smarthome.com. (n.d.). Smart Home. www.smarthome.com.

mikroe.com.(n.d).Mikroelektronika.www.mikroe.com

c-sharpcorner.com.(n.d). c-sharpcorner forum.www. c-sharpcorner.com

Tony Northrup, c.-a. o. (2005). Introduction to X10 Home Automation Technology.

http://oreilly.com/.

Applied Protocols in Smart Control Graduation Project 2010

122

Appendix A: X10 tools

X10 is just one of many home automation technologies used in my latest book, Home

Hacking Projects for Geeks. The book will guide you step by step through the process of

adding common smart home features to your home.

I. What Can You Do with X10?

X10 is a powerful, flexible, and (mostly) inexpensive technology. With X10 technology

and a little creativity, you can accomplish the following things:

A. Add a light switch to any wall without running any wires.

B. Control a lamp or built-in light with your computer.

C. Use a television at your home or a computer on the Internet to monitor multiple,

inexpensive video cameras around your home.

D. Turn off the power outlets in your kid's bedroom between 4 p.m. and 6 p.m. to

make sure he or she is studying and not playing a game or watching TV.

E. Build a custom security system that sounds an alarm if an intruder opens a

window, or sends an email to your mobile phone if there is a water leak in your

basement.

Figure 108 An X10 lamp module turns a lamp on and off when an X10 signal is sent from an X10 transmitter

Applied Protocols in Smart Control Graduation Project 2010

123

II. X10 Addressing

To identify individual devices and groups of devices, X10 uses an addressing scheme that

provides up to 256 unique addresses. House codes are written as a single letter in the

range A-P. Unit codes are a decimal number between one and 16. Examples of valid

house codes are A1, J13, and P16.

Note: If you're a network geek, think of the house code as the network portion of an IP

address, and the unit code as the host portion.

Unlike the IP addresses used on the Internet, X10 addresses do not have to be unique.

You should give a single address for each group of X10 devices that you would like to

respond to the same command. For example, if you want to turn on two lamps with a

single switch, connect an X10 lamp module to each lamp and configure both modules

with a single address. If you want all of the lamps in a room to be controlled by a single

command, they should all be assigned a single address.

While most X10 devices are one-way (because they are only capable of either sending or

receiving), some devices are two-way. For example, one-way X10 light switches can

receive X10 commands to enable them to be turned on and off remotely. You can also

use the one-way light switch to control the light locally, just as you control a

conventional light switch. However, when you flip the switch, a one-way X10 light

switch does not transmit a signal. Therefore, while flipping the switch can turn the light

on and off, it cannot turn on other X10 switches.

Two-way X10 light switches can receive X10 commands, and can also transmit an X10

command when you flip the switch. This allows you to use the switch to control both the

light and another X10 device simultaneously. For example, if I replace the switch that

controls my kitchen's under-cabinet lighting with a one-way X10 switch, and then replace

the switch that controls my kitchen's overhead lighting with a two-way X10 switch, I

could turn on both the overhead light and the under-cabinet light by using the overhead

light switch.

Applied Protocols in Smart Control Graduation Project 2010

124

Appendix B: RS485 Protocol

start byte address byte
number of

data bytes
first data byte

second data

byte

third data

byte

redundancy

check (CRC)
End Byte

Figure 109 RS485 frame

I. start byte

Is the first byte in the packet which is always is equal 0X96

II. address byte

The address of the device this byte can take the value from 0 to 255 but it can’t take the value

50 decimal which is used for broadcast

III. number of data bytes

This byte indicate the number of data bytes being transmitted from the slave and the number of

data being transmitted from the M aster plus 128

IV. first data byte

This is the first byte of data being transmitted

V. second data byte
This is the second byte of data to be transmitted

VI. third data byte

This is the third byte to be transmitted

VII. redundancy check (CRC) byte
The algorithm for calculating the CRC is also given as;

CRC = NOT ($aa XOR $bb XOR $dd [XOR $dd XOR $dd])

Where;

$aa = one byte address

$bb = one byte showing number of data bytes (slave) and 128+number of bytes(master)

$dd = one to three data bytes (depending on what was put in RS485 send command)

$cc = cyclic redundancy check (CRC) byte

ie XOR $aa, $bb and all $dd bytes then invert all the bits in the answer then if the answer is $96

or $A9 add one

Applied Protocols in Smart Control Graduation Project 2010

125

Appendix C: TCP/IP Protocol

I. Overview

 Transmission Control Protocol (TCP) is an upper-layer protocol from the IP point of

view. The first question that always occurs to a beginner is "Why do we need two

protocols, IP and TCP?"

While IP transmits data between individual computers on the Internet, TCP transfers data

between two actual applications running on these two computers. IP is used for data

transfers between computers. An IP address is the address only of a computer's network

interface, while TCP uses a port number as its address. If we were to compare this to a

standard postal system, the IP address would be the building address and the port number

(the address in TCP) would be the name of an actual resident in the building.

TCP is connection oriented. In other words, this is a service that establishes a connection

between two applications, i.e., creates a virtual circuit for the time of connection. This is

a full duplex circuit; data is simultaneously transferred in both directions independently

as shown in Figure. The transferred bytes are numbered. Lost or damaged data is

requested again. The integrity of the transferred data is ensured by a checksum.

Figure 110 TCP creates a fully two-way link between the ends of the connection

In other words, an application that uses TCP does not have to worry about data getting

lost during transfer or being modified by a transfer error. This safeguard is only effective

against technical errors. It does not attempt to protect data from intelligent attackers, who

could modify the data and also recalculate the checksum.

 A TCP segment is inserted into an IP datagram. IP datagrams are inserted into a link

frame. If the size of the TCP segment is too big to be entered into an IP datagram without

exceeding the maximum capacity of the link frame (MTU), the IP has to perform

fragmentation on the TCP datagram. See Figure 55

 Fragmentation increases overhead, which is why we try to create segments that are not

long enough to require fragmentation. Note that the TCP header is transported in the first

IP fragment only.

Applied Protocols in Smart Control Graduation Project 2010

126

II. TCP/IP Layering

Figure 111 Encapsulation of data

1. The link layer: sometimes called the data-link layer or network interface layer

normally includes the device driver in the operating system and the corresponding

network interface card in the computer. IEEE 802.3 is a collection of IEEE

standards defining the Data Link Layer's media access control (MAC) sub layer

of wired Ethernet

2. The network layer: sometimes called the internet layer handles the movement of

packets around the network. Routing of packets.

3. The transport layer provides a flow of data between two hosts, for the application

layer above. In the TCP/IP protocol suite there are two vastly different transport

protocols: TCP provides a reliable flow of data between two hosts. It is concerned

with things such as dividing the data passed to it from the application into

appropriately sized chunks for the network layer below, acknowledging received

packets, setting timeouts to make certain the other end acknowledges packets that

are sent, and so on. Because this reliable flow of data is provided by the transport

layer.

4. The application layer handles the details of the particular application. There are

many common TCP/IP applications that almost every implementation provides.

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Data_Link_Layer
http://en.wikipedia.org/wiki/Media_access_control
http://en.wikipedia.org/wiki/Ethernet

Applied Protocols in Smart Control Graduation Project 2010

127

III. IEEE 802.3 Ethernet Frames
 Bits flowing across the Ethernet are grouped into structures called frames. A

frame must be between 46 and 1500 octets in size.

Figure 112 Ethernet/802.3 Frame Structure

Figure 113 IEEE 802.3 Ethernet standard frame

Applied Protocols in Smart Control Graduation Project 2010

128

IV. TCP Segments

The source port is the port of the TCP segment source while the destination port is

the port of the TCP segment destination. The sequence number is the sequence

number of the first byte of a TCP segment in the data flow from the source to the

destination (TCP transfers bytes from the sequence number of the transferred byte to

the length of the segment). Header length specifies the length of the TCP segment

header in multiples of 32 bits (4 bytes), similar to the format of IP headers See figure

58.Window size specifies the maximum increment of the sequence number that will

be still accepted by the destination.

Figure 114 Segmentation and fragmentation

Figure 115 Window

Applied Protocols in Smart Control Graduation Project 2010

129

Figure 116 IP and TCP Header

V. Establishing and closuring a Connection with TCP

 The core of IP was the IP datagram description. Since IP is a datagram-oriented

(connectionless) service, there was not much of a need to prepare for cases in which the

IP datagram was not delivered.

TCP uses IP for transferring data over the Internet, even though it establishes a reliable

stream-oriented service over this protocol. It must solve the problems of establishing and

closing a connection, confirming received data, and re-requesting lost data, and also solve

problems with keeping the communication paths passable. The TCP segment description

is obviously only one small part of TCP. A larger part of the protocol is the description of

TCP segment exchange (handshaking) between both ends of the TCP connection. See

figure 58.

Applied Protocols in Smart Control Graduation Project 2010

130

Figure 117 establishing a connection

Figure 118 Connection closure

Applied Protocols in Smart Control Graduation Project 2010

131

VI. Network Architecture

 Network architecture is a design for the physical network and a collection of

specifications defining communications on that physical network. The communication

details are dependent on the physical details, so the specifications usually come together

as a complete package. These specifications include considerations such as the following:

a. Access method: an access method is a set of rules defining how the computers

will share the transmission medium. To avoid data collisions, computers must

follow these rules when they transmit data.

b. Data frame format: The IP-level datagram from the Internet layer is

encapsulated in a data frame with a predefined format. The data enclosed in the

header must supply the information necessary to deliver data on the physical

network.

c. Cabling type: The type of cable used for a network has an effect on certain other

design parameters, such as the electrical properties of the bit stream transmitted

by the adapter.

d. Cabling rules: The protocols, cable type, and electrical properties of the

transmission have an effect on the maximum and minimum lengths for the cable

and for the cable connector specifications.

Applied Protocols in Smart Control Graduation Project 2010

132

Appendix D: FBUS Protocol

The general idea is like this

A. Microcontroller asks for some data

B. Phone say, “I understood what you want”

C. Phones send what Microcontroller wanted.

D. Phone waits to see if Microcontroller got what he wants.

E. If Microcontroller does not say that he received the data, Phone sends the data one

more time.

F. Phone waits to see if Microcontroller got what he wants

G. If Microcontroller does not say that he received the data, Phone sends the data one

more time.

H. Now Phone stop sending data.(Since Microcontroller is really deaf or he is rude)

I. On the contrary if Microcontroller says he got the data the very first time, Phone

stop sending more data.

Just like 2 people are talking!

I. How to connect microcontrollers to your Nokia 3310

Most Nokia phones have F-Bus and M-Bus connections that can be used to connect a

phone to a PC or in our case a microcontroller. The connection can be used for

controlling just about all functions of the phone, as well as uploading new firmware etc.

This bus will allow us to send and receive SMS messages. Want to turn your air-

conditioner on remotely?

Figure 119 3310 Phone and FBUS connection

Applied Protocols in Smart Control Graduation Project 2010

133

The very popular Nokia 3310/3315 has the F/M Bus connection under the battery holder.

This is a bit of a pain to get to and requires a special cable to make the connection. The

left picture above shows the 4 gold pads used for the F and M Bus. The right picture

shows the F-Bus cable connected to my Nokia 3310.

Figure 120 Nokia 3310 and it's download cable

Nokia download cable is available from most mobile phone shops and some electronics

stores.

The cable contains electronics to level convert 3V signals to RS232 type signals. There

are also M and F bus switching in most cables.

You can use PC software like Logomanager from (here) and Oxygen Phone Manager

from (here) to upload ringtones, graphics, phone numbers etc. No more paying for those

cools ringtones, just download them off the internet or record your own!

http://www.logomanager.co.uk/
http://www.opm-2.com/

Applied Protocols in Smart Control Graduation Project 2010

134

Appendix E: Used Software and Hardware

I. Used Software
Table 5 Used Software

NO Software Name Company Website

1 Visual Studio 2008 Microsoft http://www.microsoft.com

2 MikroC Pro Mikroelektronika http://www.mikroe.com

3 Measurment

Studio 8.6

National

Instruments

http://www.ni.com/

4 ComponentOne ComponentOne http://www.componentone.com/

5 DotNetBar DevComponents http://www.devcomponents.com/dotnetbar/

6 Proteus 7

Professional

Labcenter

Electronics

http://www.labcenter.com/

7 CCS PIC C Compiler CCS http://www.ccsinfo.com/

8 Eagle cadsoft. http://www.cadsoft.de/

9 Sprint-Layout 5.0 abacom http://www.abacom-online.de/

II. Used Hardware
Table 6 Used Hardware

NO Name Company Website

1 PIC16F877A Microchip http://www.microchip.com/

2 XM10 Modula marmitek http://www.marmitek.com/

3 LM35DZ National

Semiconductor

www.national.com

4 MAX232 maxim http://www.maxim-ic.com/

5 MAX485 maxim http://www.maxim-ic.com/

6 ULN2003 ---------- ---------------------------

7 Relay --------------- ----------------------------

http://www.microsoft.com/
http://www.mikroe.com/
http://www.ni.com/
http://www.componentone.com/
http://www.devcomponents.com/dotnetbar/
http://www.labcenter.com/
http://www.ccsinfo.com/
http://www.cadsoft.de/
http://www.microchip.com/
http://www.marmitek.com/
../AppData/Roaming/Microsoft/Word/www.national.com
http://www.maxim-ic.com/
http://www.maxim-ic.com/

Applied Protocols in Smart Control Graduation Project 2010

135

Appendix F: All Project software codes

F.1-Main Program(server program)
using NationalInstruments;

using NationalInstruments.UI;

using NationalInstruments.UI.WindowsForms;

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using DevComponents;

using System.IO.Ports;

using AForge.Video;

using AForge.Video.DirectShow;

using System.Net;

using System.Speech.Synthesis;

namespace WindowsApplication1

{

 public partial class Form1 :

DevComponents.DotNetBar.Office2007RibbonForm

 {

 string Audio_Path;

 string mp3paz;

 SerialPort port;

 Sheimy_RS485 ROM_160,ROM_170;

 SpeechSynthesizer syn;

 private bool DeviceExist = false;

 private FilterInfoCollection videoDevices;

 private VideoCaptureDevice videoSource = null;

 private VideoCaptureDevice videoSource2 = null;

 public Form1()

 {

 InitializeComponent();

 ROM_160 = new Sheimy_RS485();

 ROM_170 = new Sheimy_RS485();

 syn = new SpeechSynthesizer();

 groupPanel2.Enabled = false;

 outdoor.Enabled = false;

 ROM1.Enabled = false;

 ROM2.Enabled = false;

 string[] ports = SerialPort.GetPortNames();

 foreach (string port in ports)

 {

 coms.Items.Add(port);

 }

 }

//===

======

 // Get VEDIO Devices

Applied Protocols in Smart Control Graduation Project 2010

136

//===

======

 private void getCamList()

 {

 try

 {

 videoDevices = new

FilterInfoCollection(FilterCategory.VideoInputDevice);

 cam1device.Items.Clear();

 if (videoDevices.Count == 0)

 throw new ApplicationException();

 DeviceExist = true;

 foreach (FilterInfo device in videoDevices)

 {

 cam1device.Items.Add(device.Name);

 }

 cam1device.SelectedIndex = 0; //make dafault to first

cam\

 }

 catch (ApplicationException)

 {

 DeviceExist = false;

 cam1device.Items.Add("No capture device on your

system");

 }

 }

//===

======

//===

======

 // Get VEDIO Devices

//===

======

 private void getCamList2()

 {

 try

 {

 videoDevices = new

FilterInfoCollection(FilterCategory.VideoInputDevice);

 cam2device.Items.Clear();

 if (videoDevices.Count == 0)

 throw new ApplicationException();

 DeviceExist = true;

 foreach (FilterInfo device in videoDevices)

 {

 cam2device.Items.Add(device.Name);

Applied Protocols in Smart Control Graduation Project 2010

137

 }

 cam2device.SelectedIndex = 0; //make dafault to first

cam

 }

 catch (ApplicationException)

 {

 DeviceExist = false;

 cam2device.Items.Add("No capture device on your

system");

 }

 }

//===

======

 // Close Vedio Devices1

//===

======

 private void CloseVideoSource()

 {

 if (!(videoSource == null))

 if (videoSource.IsRunning)

 {

 videoSource.SignalToStop();

 videoSource = null;

 }

 }

//===

======

//===

======

 // Close Vedio Devices2

//===

======

 private void CloseVideoSource2()

 {

 if (!(videoSource2 == null))

 if (videoSource2.IsRunning)

 {

 videoSource2.SignalToStop();

 videoSource2 = null;

 }

 }

//===

======

 //Get New fram for cam 1

//===

======

 private void video_NewFrame(object sender, NewFrameEventArgs

eventArgs)

 {

 Bitmap img = (Bitmap)eventArgs.Frame.Clone();

Applied Protocols in Smart Control Graduation Project 2010

138

 pictureBox1.Image = img;

 }

//===

======

//===

======

 //Get New fram for cam 2

//===

======

 private void video_NewFrame2(object sender, NewFrameEventArgs

eventArgs)

 {

 Bitmap img = (Bitmap)eventArgs.Frame.Clone();

 pictureBox2.Image = img;

 }

//===

======

 //convert bool to byte

//===

======

 private byte bool_to_byte(bool []a,bool []b)

 {

 int i=0;

 byte result=0;

 foreach (bool d in a)

 {

 if (d == true)

 result +=(byte) Math.Pow(2, i);

 i++;

 }

 foreach (bool d in b)

 {

 if (d == true)

 result += (byte)Math.Pow(2, i);

 i++;

 }

 return result;

 }

//===

======

 private void switchlight_ValuesChanged(object sender, EventArgs

e)

 {

 ledlight.SetValues(switchlight.GetValues());

ROM_160.set_data(bool_to_byte(switchlight.GetValues(),switchlight1.GetV

alues()));

 send_data(ROM_160.get_data());

 byte []asd=ROM_160.get_data().ToArray<byte>();

 labelX8.Text=""+asd[4];

 }

Applied Protocols in Smart Control Graduation Project 2010

139

//========================choseAudio===================================

======

 private void comboBoxEx1_SelectedIndexChanged(object sender,

EventArgs e)

 {

 Audio_Path = Application.ExecutablePath;

 mp3paz = Audio_Path.Remove(Audio_Path.Length - 23) +

@"Audio\" + comboBoxEx1.Text+ ".mp3";

 player.URL = mp3paz;

 }

//===

======

//==================================openport===========================

======

 private void buttonX2_Click(object sender, EventArgs e)

 {

 port = new SerialPort(coms.Text, 9600, Parity.None, 8,

StopBits.One);

 if (port.IsOpen) port.Close();

 try

 {

 //open serial port

 port.Open();

 port.DataReceived += new

SerialDataReceivedEventHandler(serialPort1_DataReceived);

 Control.CheckForIllegalCrossThreadCalls = false;

 port.RtsEnable = false;

 }

 catch (System.Exception ex)

 {

 if (port.IsOpen) port.Close();

 }

 outdoor.Enabled = true;

 ROM1.Enabled = true;

 ROM2.Enabled = true;

 }

//===

======

//===

====== //Recive Data From Serial

//===

======

 private void serialPort1_DataReceived(object sender,

SerialDataReceivedEventArgs e)

 {

 int bytes = port.BytesToRead;

 if (bytes >= 8)

 {

 // bytes = 7;

 byte[] buffer = new byte[8];

 port.Read(buffer, 0, 8);

 string m = buffer[1] + " " + buffer[3] + " " +

 buffer[4] + " " + buffer[5];

 textBoxX2.Text = m;

 if (buffer[1] == 160)

 {

Applied Protocols in Smart Control Graduation Project 2010

140

 ROM1_Temp.Value = buffer[3];

 syn.Speak("Eng sheimy : temperature change and now

it is : " + buffer[3]);

 }

 if (buffer[1] == 170)

 {

 ROM2_Temp.Value = buffer[3];

 syn.Speak("Eng sheimy : temperature change and now

it is : " + buffer[3]);

 }

 }

 }

//===

======

//=====================================login===========================

======

 private void buttonX1_Click(object sender, EventArgs e)

 {

 if ((user.Text == "AA") && (pass.Text == "AA"))

 {

 groupPanel2.Enabled = true;

 }

 }

//===

======

//==============================refreshcam1============================

======

 private void refresh_Click(object sender, EventArgs e)

 {

 getCamList();

 }

//=================================startcam1===========================

======

 private void Start_Click(object sender, EventArgs e)

 {

 if (Start.Text == "&Start")

 {

 if (DeviceExist)

 {

 videoSource = new

VideoCaptureDevice(videoDevices[cam1device.SelectedIndex].MonikerString

);

 videoSource.NewFrame += new

NewFrameEventHandler(video_NewFrame);

 CloseVideoSource();

 videoSource.DesiredFrameSize = new Size(362, 253);

 //videoSource.DesiredFrameRate = 10;

 videoSource.Start();

 // label2.Text = "Device running...";

 Start.Text = "&Stop";

 // timer1.Enabled = true;

 }

 else

 {

Applied Protocols in Smart Control Graduation Project 2010

141

 // label2.Text = "Error: No Device selected.";

 }

 }

 else

 {

 if (videoSource.IsRunning)

 {

 // timer1.Enabled = false;

 CloseVideoSource();

 // label2.Text = "Device stopped.";

 Start.Text = "&Start";

 }

 }

 }

//================================closeform

=================================

 private void Form1_FormClosed(object sender,

FormClosedEventArgs e)

 {

 CloseVideoSource();

 CloseVideoSource2();

 }

//===========================refresh cam list

2==============================

 private void refresh2_Click(object sender, EventArgs e)

 {

 getCamList2();

 }

//===

======

//========================start cam 2

=======================================

 private void start2_Click(object sender, EventArgs e)

 {

 if (Start2.Text == "&Start")

 {

 if (DeviceExist)

 {

 videoSource2 = new

VideoCaptureDevice(videoDevices[cam2device.SelectedIndex].MonikerString

);

 videoSource2.NewFrame += new

NewFrameEventHandler(video_NewFrame2);

 CloseVideoSource2();

 videoSource2.DesiredFrameSize = new Size(362, 253);

 //videoSource.DesiredFrameRate = 10;

 videoSource2.Start();

 // label2.Text = "Device running...";

 Start2.Text = "&Stop";

 // timer1.Enabled = true;

 }

 else

 {

 // label2.Text = "Error: No Device selected.";

 }

 }

 else

Applied Protocols in Smart Control Graduation Project 2010

142

 {

 if (videoSource2.IsRunning)

 {

 // timer1.Enabled = false;

 CloseVideoSource2();

 // label2.Text = "Device stopped.";

 Start2.Text = "&Start";

 }

 }

 }

//==========================ROM

1==

 private void ROM1_Click(object sender, EventArgs e)

 {

 ROM_160.set_add(160);

 }

//==================================last 4

switchs===========================

 private void switchlight1_ValuesChanged(object sender,

EventArgs e)

 {

 ledlight1.SetValues(switchlight1.GetValues());

 ROM_160.set_data(bool_to_byte(switchlight.GetValues(),

switchlight1.GetValues()));

 send_data(ROM_160.get_data());

 }

//===

======

//=========================== Send

Data======================================

 public void send_data(byte []sbuffer)

 {

 if (port.RtsEnable)

 {

 port.RtsEnable = false; //Enable request to send

 }

 port.Write(sbuffer, 0, sbuffer.Length);

 }

//=========================== ROM 2

===

 private void ROM2_Click(object sender, EventArgs e)

 {

 ROM_170.set_add(170);

 }

 private void switchlight2_ValuesChanged(object sender,

EventArgs e)

 {

 ledlight2.SetValues(switchlight2.GetValues());

 ROM_170.set_data(bool_to_byte(switchlight2.GetValues(),

switchlight3.GetValues()));

 send_data(ROM_170.get_data());

 }

 private void switchlight3_ValuesChanged(object sender,

EventArgs e)

 {

Applied Protocols in Smart Control Graduation Project 2010

143

 ledlight3.SetValues(switchlight3.GetValues());

 ROM_170.set_data(bool_to_byte(switchlight2.GetValues(),

switchlight3.GetValues()));

 send_data(ROM_170.get_data());

 }

 private void comboBoxEx2_SelectedIndexChanged(object sender,

EventArgs e)

 {

 Audio_Path = Application.ExecutablePath;

 mp3paz = Audio_Path.Remove(Audio_Path.Length - 23) +

@"Audio\" + comboBoxEx2.Text + ".mp3";

 player.URL = mp3paz;

 }

 private void readtemp_Click(object sender, EventArgs e)

 {

 port.RtsEnable = true; //Disable request to send

 }

 private void Read_temp2_Click(object sender, EventArgs e)

 {

 port.RtsEnable = true; //Disable request to send

 }

//======================== TCP connect

======================================

 private void buttonX3_Click(object sender, EventArgs e)

 {

 IPHostEntry ipHostInfo = Dns.Resolve(Dns.GetHostName());

 IPAddress ipAddress = ipHostInfo.AddressList[0];

 ip.Text = "" + ipAddress;

 TCP_Server tcp = new

TCP_Server(ipAddress,portnumber.Value,this);

 tcp.Show();

 }

//===

======

 public SerialPort getport()

 {

 return port;

 }

//===

======

 //====================Get Romm1 pass=====================\\

 public byte getRoom1_pass()

 {

 byte b = byte.Parse(room1_pass.Text);

 return b;

 }

//===

======

 //

 public byte getRoom2_pass()

 {

 byte b = byte.Parse(room2_pass.Text);

 return b;

 }

Applied Protocols in Smart Control Graduation Project 2010

144

//===

======

//=============================== speak_text

================================

 public void speak_text(string s)

 {

 syn.Speak(s);

 }

//===

======

 }

 }

F.2- TCP_Server:
using System;

using System.Collections;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using DevComponents;

using System.Threading;

using System.Net.Sockets;

using System.IO;

using System.IO.Ports;

using System.Net;

namespace WindowsApplication1

{

 public partial class TCP_Server

:DevComponents.DotNetBar.Office2007RibbonForm

 {

 /* This stores data about each client */

 public struct ClientData

 {

 public Socket structSocket;

 public Thread structThread;

 }

 // Required designer variable.

 private TcpListener tcpLsn;

 private Hashtable dataHolder = new Hashtable();

 private static long connectId = 0;

 private Thread tcpThd;

 private string ipAddress = "192.168.1.100";

 delegate void SetTextCallBack(string text);

 Form1 form_1;

 Sheimy_RS485 ROM;

 private byte[] rom_data;

 SerialPort p;

 byte pass;

//===

======

Applied Protocols in Smart Control Graduation Project 2010

145

 public TCP_Server(IPAddress ip, int portno, Form1 f)

 {

 InitializeComponent();

 tcpLsn = new TcpListener(ip, portno);

 tcpLsn.Start();

 statusBar1.Text = "Listen at: " +

tcpLsn.LocalEndpoint.ToString();

 tcpThd = new Thread(new ThreadStart(WaitingForClient));

 tcpThd.Start();

 form_1 = f;

 // pass = form_1.getpass();

 ROM= new Sheimy_RS485();

 }

//===

======

 public void WaitingForClient()

 {

 ClientData CData;

 while (true)

 { /* Accept will block until someone connects */

 CData.structSocket = tcpLsn.AcceptSocket();

 Interlocked.Increment(ref connectId);

 CData.structThread = new Thread(new

ThreadStart(ReadSocket));

 lock (this)

 { // it is used to keep connected Sockets and active

thread

 dataHolder.Add(connectId, CData);

 upDateDataGrid("Connected > " + connectId + " " +

DateTime.Now.ToLongTimeString());

 }

 CData.structThread.Start();

 }

 }

 public void ReadSocket()

 {

 /* realId will be not changed for each thread, but

connectId is

 * changed. it can't be used to delete object from

Hashtable*/

 long realId = connectId;

 Byte[] receive;

 ClientData cd = (ClientData)dataHolder[realId];

 Socket s = cd.structSocket;

 int ret = 0;

 while (true)

 {

 byte room1_pass,room2_pass;

 room1_pass = form_1.getRoom1_pass();

 room2_pass = form_1.getRoom2_pass();

 if (s.Connected)

 {

 receive = new Byte[100];

 try

Applied Protocols in Smart Control Graduation Project 2010

146

 { /* Receive will block until data coming ret is

0 or Exception

 * happen when Socket connection

is broken*/

 ret = s.Receive(receive, receive.Length, 0);

 if (ret > 0)

 {

 if ((receive[0] == 160 && receive[1] ==

room1_pass) || (receive[0] == 170 && receive[1] == room2_pass))

 {

 ROM.set_add(receive[0]);

 ROM.set_data(receive[2]);

 rom_data = ROM.get_data();

 form_1.send_data(rom_data);

 }

 else

 {

 form_1.speak_text("Dear User : someone

try Hacking your Device");

 }

 foreach (ClientData clntData in

dataHolder.Values)

 {

 if (clntData.structSocket.Connected)

 clntData.structSocket.Send(receive,

ret, SocketFlags.None);

 }

 }

 else { break; }

 }

 catch (Exception e)

 {

 upDateDataGrid(e.ToString());

 if (!s.Connected) break;

 }

 }

 }

 CloseTheThread(realId);

 }

 private void CloseTheThread(long realId)

 {

 try

 {

 ClientData clientData = (ClientData)dataHolder[realId];

 clientData.structThread.Abort();

 }

 catch (Exception e)

 {

 lock (this)

 {

 dataHolder.Remove(realId);

Applied Protocols in Smart Control Graduation Project 2010

147

 upDateDataGrid("Disconnected > " + realId + " " +

DateTime.Now.ToLongTimeString());

 }

 }

 }

 public void upDateDataGrid(string displayString)

 {

 if (this.textBox1.InvokeRequired)

 {

 SetTextCallBack t = new

SetTextCallBack(upDateDataGrid);

 this.Invoke(t, new object[] { displayString });

 }

 else

 {

 textBox1.AppendText(displayString + "\r\n");

 }

 }

 private void TCP_Server_FormClosed(object sender,

FormClosedEventArgs e)

 {

 tcpLsn.Stop();

 foreach (ClientData cd in dataHolder.Values)

 {

 if (cd.structSocket.Connected) cd.structSocket.Close();

 if (cd.structThread.IsAlive) cd.structThread.Abort();

 }

 tcpThd.Abort();

 }

 }

}

F.3- class Sheimy_RS485

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace WindowsApplication1

{

 class Sheimy_RS485

 {

 string InputData = String.Empty;

 byte[] sbuffer;

 byte[] rbuffer;

 char[] chars;

 byte add,data,bytes_no=129, crc;

 int t4;

Applied Protocols in Smart Control Graduation Project 2010

148

//==

 //Not Method

//==

 public double takeNOT(int b)

 {

 int t, j = 7;

 string g = string.Empty;

 double k = 0;

 for (t = 128; t > 0; t = t / 2)

 {

 if ((b & t) != 0) g += "0";

 if ((b & t) == 0) g += "1";

 }

 chars = g.ToCharArray();

 foreach (char c in chars)

 {

 if (c == '1')

 {

 k += Math.Pow(2, j);

 }

 j--;

 }

 return k;

 }

//==

 // get data Method

//==

 public byte[] get_data()

 {

 t4 = (add ^ bytes_no ^ data);

 crc = (byte)takeNOT(t4);

 sbuffer = new byte[] { 150, add, bytes_no, data, crc, 169

};

 return sbuffer;

 }

//===

======

 // set add ,data and get them

//===

====== public void set_add(byte d)

 {

 this.add = d;

 }

//===

======

 public void set_data(byte da)

 {

 this.data = da;

 }

//===

======

 }

}

Applied Protocols in Smart Control Graduation Project 2010

149

F.4-Software Controller Client
using NationalInstruments;

using NationalInstruments.UI;

using NationalInstruments.UI.WindowsForms;

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using DevComponents;

using System.Net.Sockets;

using System.IO;

using System.Threading;

namespace Smart_Home_Clinte

{

 public partial class Form1

:DevComponents.DotNetBar.Office2007RibbonForm

 {

 public Thread tcpThd;

 public byte[] readBuffer;

 public byte[] writeBuffer;

 public Stream stm;

 public Socket socket;

 public TcpClient tcpclnt;

 public string loginName = "";

 private LoginInfo loginForm;

 public Form1()

 {

 InitializeComponent();

 }

//=========================convert bool to byte

=============================

 private byte bool_to_byte(bool[] a)

 {

 int i = 0;

 byte result = 0;

 foreach (bool d in a)

 {

 if (d == true)

 result += (byte)Math.Pow(2, i);

 i++;

 }

Applied Protocols in Smart Control Graduation Project 2010

150

 return result;

 }

//===

======

 public void startServer(string ipAddress, int portNumber,

string loginName)

 {

 this.loginName = loginName;

 tcpclnt = new TcpClient();

 tcpclnt.Connect(ipAddress.Trim(), portNumber);

 textBoxWindow.AppendText("Connecting to server...");

 writeToServer("Hello " + loginName + " Now you are

connected to the server" + "\r\n");

 stm = tcpclnt.GetStream();

 tcpThd = new Thread(new ThreadStart(ReadSocket));

 tcpThd.Start();

 }

//===

======

 public void ReadSocket()

 {

 while (true)

 {

 try

 {

 readBuffer = new Byte[100];

 stm.Read(readBuffer, 0, 100);

 /* If the text box exceed the maximum lenght, then

get

 * remove the top part of the text*/

 if (textBoxWindow.Text.Length >

textBoxWindow.MaxLength)

 {

 textBoxWindow.Select(0, 300);

 textBoxWindow.SelectedText = "";

 }

textBoxWindow.AppendText(System.Text.Encoding.ASCII.GetString(readBuffe

r) + "\r\n");

 }

 catch (Exception e)

 { break; }

 }

 }

//===

======

 public void writeToServer(string strn)

 {

 System.Text.ASCIIEncoding encord = new

System.Text.ASCIIEncoding();

 writeBuffer = encord.GetBytes(strn);

Applied Protocols in Smart Control Graduation Project 2010

151

 if (stm != null) stm.Write(writeBuffer, 0,

writeBuffer.Length);

 }

 private void buttonX3_Click(object sender, EventArgs e)

 {

 loginForm = new LoginInfo();

 loginForm.infoChecker(this);

 }

 private void buttonX1_Click(object sender, EventArgs e)

 {

 writeToServer(loginName + " > " + textBoxX1.Text.Trim() +

"\r\n");

 textBoxX1.Text = "";

 }

//===

======

 private void switchArray1_ValuesChanged(object sender,

EventArgs e)

 {

 ledArray1.SetValues(switchArray1.GetValues());

 writeBuffer = new byte[3];

 writeBuffer[0] = 160;

 writeBuffer[1] = byte.Parse(rom1_pass.Text);

 writeBuffer[2] =bool_to_byte(switchArray1.GetValues());

 if (stm != null) stm.Write(writeBuffer, 0,

writeBuffer.Length);

 }

//===

======

 private void switchArray2_ValuesChanged(object sender,

EventArgs e)

 {

 ledArray2.SetValues(switchArray2.GetValues());

 writeBuffer = new byte[3];

 writeBuffer[0] = 170;

 writeBuffer[1] = byte.Parse(rom2_pass.Text);

 writeBuffer[2] = bool_to_byte(switchArray2.GetValues());

 if (stm != null) stm.Write(writeBuffer, 0,

writeBuffer.Length);

 }

//===

======

 }

}

F.5-X10 TR Program
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

Applied Protocols in Smart Control Graduation Project 2010

152

using System.Text;

using System.Windows.Forms;

using DevComponents;

using System.IO.Ports;

namespace X10TR

{

 public partial class Form1 :

DevComponents.DotNetBar.Office2007RibbonForm

 {

 SerialPort port;

 public Form1()

 {

 InitializeComponent();

 string[] ports = SerialPort.GetPortNames();

 foreach (string p in ports)

 {

 coms.Items.Add(p);

 }

 }

 //==

 private void serialPort1_DataReceived(object sender,

SerialDataReceivedEventArgs e)

 {

 string m;

 m = port.ReadExisting();

 t.Text += "\n\r";

 t.Text +="Recive :"+m+"\n\r";

 }

 private void openbutton_Click(object sender, EventArgs e)

 {

 port = new SerialPort(coms.Text, 9600);

 if (port.IsOpen) port.Close();

 port.Open();

//=========================Defin

this==

 port.DataReceived += new

SerialDataReceivedEventHandler(serialPort1_DataReceived);

 Control.CheckForIllegalCrossThreadCalls = false;

//===

======

 }

 private void send_Click(object sender, EventArgs e)

 {

 string s = comboBoxEx1.Text + comboBoxEx2.Text;

 t.Text += "\n\r";

 t.Text += "Send :" + s + "\n\r";

 port.Write(s);

 }

 private void buttonX1_Click(object sender, EventArgs e)

 {

 t.Text = "";

Applied Protocols in Smart Control Graduation Project 2010

153

 }

 //===

 }

}

Applied Protocols in Smart Control Graduation Project 2010

154

Appendix G: All Project Microcontroller codes
All of the following codes are written using mikroC PRO for PIC V3.8 from

mikroelektronika company

G.1-RS485 Receiver
char dat[9]; // buffer for receving/sending messages

char i,j;

sbit rs485_rxtx_pin at RC1_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine

void interrupt() {

 RS485Slave_Receive(dat);

}

void main() {

 ADCON1.PCFG3=0; // Configure AN pins as digital I/O

 ADCON1.PCFG2=1;

 ADCON1.PCFG1=1;

 ADCON1.PCFG0=0;

 CMCON.CM0=1;

 CMCON.CM1=1;

 CMCON.CM2=1;

 PORTB = 0;

 PORTD = 0;

 TRISB = 0;

 TRISD = 0;

 UART1_Init(9600); // initialize UART1 module

 Delay_ms(100);

 RS485Slave_Init(160); // Intialize MCU as slave, address 160

 dat[4] = 0; // ensure that message received flag is 0

 dat[5] = 0; // ensure that message received flag is 0

 dat[6] = 0; // ensure that error flag is 0

 RCIE_bit = 1; // enable interrupt on UART1 receive

 TXIE_bit = 0; // disable interrupt on UART1 transmit

 PEIE_bit = 1; // enable peripheral interrupts

Applied Protocols in Smart Control Graduation Project 2010

155

 GIE_bit = 1; // enable all interrupts

 PORTB=0xFF;

 Delay_ms(1000);

 while (1) {

 if (dat[5]) { // if an error detected, signal it by

 PORTD = 0xAA; // setting portd to 0xAA

 dat[5] = 0;

 }

 if (dat[4]) { // upon completed valid message receive

 dat[4] = 0;

 PORTB = dat[0];

 } // data[4] is set to 0xFF

 }

}

G.2-RS485 Transmitter
char dat[9]; // buffer for receving/sending messages

char i,j;

sbit rs485_rxtx_pin at RC1_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine

void interrupt() {

 RS485Slave_Receive(dat);

}

void main() {

 PORTB = 0;

 PORTD = 0;

 TRISB = 0;

 TRISD = 0;

 UART1_Init(9600); // initialize UART1 module

 Delay_ms(100);

 RS485Slave_Init(160); // Intialize MCU as slave, address 160

 dat[4] = 0; // ensure that message received flag is 0

Applied Protocols in Smart Control Graduation Project 2010

156

 dat[5] = 0; // ensure that message received flag is 0

 dat[6] = 0; // ensure that error flag is 0

 RCIE_bit = 1; // enable interrupt on UART1 receive

 TXIE_bit = 0; // disable interrupt on UART1 transmit

 PEIE_bit = 1; // enable peripheral interrupts

 GIE_bit = 1; // enable all interrupts

 while (1) {

 PORTB=dat[0]; // increment received dat[0]

 Delay_ms(1000);

 RS485Slave_Send(dat,1); // and send it back to master

 PORTB=~PORTB;

 }

}

G.3-RS485 Temperature sender
char dat[9]; // buffer for receiving/sending messages

char i,j;

long y,x;

sbit rs485_rxtx_pin at RC1_bit; // set transceiver pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transceiver pin direction

// Interrupt routine

void interrupt() {

 RS485Slave_Receive(dat);

}

void Read_AD(){

 y=ADC_Read(2);

 y=y*5000; // Convert to

 y=y/1023; // MV OR Convert from level to voltage

 y=y/10;

}

void main() {

 ADCON1.PCFG0=0; //ALL PORT A AS Analog AND reference are VDD

 ADCON1.PCFG1=1;

 ADCON1.PCFG2=0;

 ADCON1.PCFG3=0;

 CMCON.CM0=1;

 CMCON.CM1=1;

 CMCON.CM2=1;

Applied Protocols in Smart Control Graduation Project 2010

157

 PORTB = 0;

 PORTD = 0;

 TRISB = 0;

 TRISD = 0;

 UART1_Init(9600); // initialize UART1 module

 Delay_ms(100);

 RS485Slave_Init(160); // Initialize MCU as slave, address 160

 dat[4] = 0; // ensure that message received flag is 0

 dat[5] = 0; // ensure that message received flag is 0

 dat[6] = 0; // ensure that error flag is 0

 RCIE_bit = 1; // enable interrupt on UART1 receive

 TXIE_bit = 0; // disable interrupt on UART1 transmit

 PEIE_bit = 1; // enable peripheral interrupts

 GIE_bit = 1; // enable all interrupts

 y=0;

 PORTB=0xFF;

 Delay_ms(1000);

 PORTB=0x00;

 while (1) {

 if (dat[5]) { // if an error detected, signal it by

 PORTB = 0xFF; // setting portd to 0xAA

 dat[5] = 0;

 }

 x=y;

 Read_AD();

 if(x!=y){

 dat[0] =y; // increment received dat[0]

 dat[1]=4;

 dat[2]=5;

 Delay_ms(2000);

 RS485Slave_Send(dat,3); // and send it back to master

 }

 }

}

G.4-RS485 Transceiver
char dat[9]; // buffer for receving/sending messages

char i,j;

Applied Protocols in Smart Control Graduation Project 2010

158

long y,x;

sbit rs485_rxtx_pin at RC1_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine

void interrupt() {

 RS485Slave_Receive(dat);

}

void Read_AD(){

 y=ADC_Read(2);

 y=y*5000; // Convert to

 y=y/1023; // MV OR Convert from level to voltage

 y=y/10;

}

void main() {

 ADCON1.PCFG0=0; //ALL PORT A AS Analog AND refrance are VDD

 ADCON1.PCFG1=1;

 ADCON1.PCFG2=0;

 ADCON1.PCFG3=0;

 CMCON.CM0=1;

 CMCON.CM1=1;

 CMCON.CM2=1;

 PORTB = 0;

 PORTD = 0;

 TRISB = 0;

 TRISD = 0;

 UART1_Init(9600); // initialize UART1 module

 Delay_ms(100);

 RS485Slave_Init(160); // Intialize MCU as slave, address 160

 dat[4] = 0; // ensure that message received flag is 0

 dat[5] = 0; // ensure that message received flag is 0

 dat[6] = 0; // ensure that error flag is 0

 RCIE_bit = 1; // enable interrupt on UART1 receive

 TXIE_bit = 0; // disable interrupt on UART1 transmit

 PEIE_bit = 1; // enable peripheral interrupts

 GIE_bit = 1; // enable all interrupts

 y=0;

Applied Protocols in Smart Control Graduation Project 2010

159

 PORTB=0xFF;

 Delay_ms(1000);

 PORTB=0x00;

 while (1) {

 if (dat[5]) { // if an error detected, signal it by

 PORTB = 0xFF; // setting portd to 0xAA

 dat[5] = 0;

 }

 if (dat[4]) { // upon completed valid message receive

 dat[4] = 0; // data[4] is set to 0xFF

 PORTB = dat[0];

 }

 x=y;

 Read_AD();

if(x!=y){

 dat[0] =y; // increment received dat[0]

 dat[1]=4;

 dat[2]=5;

 Delay_ms(2000);

 RS485Slave_Send(dat,3); // and send it back to master

 }

 }

}

G.5-X10 Transceiver
The following code is written an compiled by CCS C compiler

#if defined(__PCB__)

#include <16C56.h>

#fuses HS,NOWDT,NOPROTECT

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2)

#elif defined(__PCM__)

#include <16F877A.h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=4000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#elif defined(__PCH__)

Applied Protocols in Smart Control Graduation Project 2010

160

#include <18F452.h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#endif

#include <x10.c>

#include <input.c>

void main() {

 char house_code;

 BYTE key_code;

 printf("Online\n\r");

 while (TRUE) {

 if(kbhit()) {

 house_code = getc();

 if((house_code>='A') && (house_code<='P')) {

 putc(house_code);

 key_code=gethex();

 x10_write(house_code,key_code);

 x10_write(house_code,key_code);

 printf("Eng");

 }

 }

 if(x10_data_ready()) {

 putc('>');

 x10_read(&house_code, &key_code);

 printf("%c%2X", house_code, key_code);

 }

 }

}

G.6- FBUS

/*Routine for starting the fbus Protocol*/

void startfbus()

 {

Applied Protocols in Smart Control Graduation Project 2010

161

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

} // end method

/*Refresh the 3310 fbus link*/

void refresh()

{

UART1_Write(0x1E);UART1_Write(0x00);UART1_Write(0x0C);UART1_Write(0xD1);

UART1_Write(0x00);UART1_Write(0x07);UART1_Write(0x00);UART1_Write(0x01);

UART1_Write(0x00);UART1_Write(0x03);UART1_Write(0x00);UART1_Write(0x01);

UART1_Write(0x40);UART1_Write(0x00);UART1_Write(0x52);UART1_Write(0xD5);

} // end method

Applied Protocols in Smart Control Graduation Project 2010

162

/*Message1(getting the version of phone software) here*/

void mess()

{

UART1_Write(0x1E);UART1_Write(0x00);UART1_Write(0x0C);UART1_Write(0x02);

UART1_Write(0x00);UART1_Write(0x35);UART1_Write(0x00);UART1_Write(0x01);

UART1_Write(0x00);UART1_Write(0x01);UART1_Write(0x02);UART1_Write(0x00);

UART1_Write(0x07);UART1_Write(0x91);UART1_Write(0x36);UART1_Write(0x19);

UART1_Write(0x08);UART1_Write(0x00);UART1_Write(0x10);UART1_Write(0x10);

UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

UART1_Write(0x15);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

UART1_Write(0x0A);UART1_Write(0x0C);UART1_Write(0x91);UART1_Write(0x36);

UART1_Write(0x39);UART1_Write(0x19);UART1_Write(0x13);UART1_Write(0x21);

UART1_Write(0x70);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

UART1_Write(0x00);UART1_Write(0xA7);UART1_Write(0x00);UART1_Write(0x00);

UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

UART1_Write(0x65);UART1_Write(0x39);UART1_Write(0x3D);UART1_Write(0x2F);

UART1_Write(0xA7);UART1_Write(0xE7);UART1_Write(0xCB);UART1_Write(0xF2);

UART1_Write(0x3C);UART1_Write(0x01);UART1_Write(0x47);UART1_Write(0x00);

UART1_Write(0xA2);UART1_Write(0x08);

} // end method

/*Message2 here*/

void burglar_alert()

{

 UART1_Write(0x1E);UART1_Write(0x00);UART1_Write(0x0C);UART1_Write(0x02);

 UART1_Write(0x00);UART1_Write(0x56);UART1_Write(0x00);UART1_Write(0x01);

 UART1_Write(0x00);UART1_Write(0x01);UART1_Write(0x02);UART1_Write(0x00);

 UART1_Write(0x07);UART1_Write(0x91);UART1_Write(0x36);UART1_Write(0x19);

 UART1_Write(0x08);UART1_Write(0x00);UART1_Write(0x10);UART1_Write(0x10);

 UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

 UART1_Write(0x15);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0xF0);

 UART1_Write(0x2F);UART1_Write(0x0C);UART1_Write(0x91);UART1_Write(0x36);

 UART1_Write(0x39);UART1_Write(0x19);UART1_Write(0x13);UART1_Write(0x21);

 UART1_Write(0x70);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

 UART1_Write(0x00);UART1_Write(0xA7);UART1_Write(0x00);UART1_Write(0x00);

 UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);

 UART1_Write(0xC2);UART1_Write(0xBA);UART1_Write(0xFC);UART1_Write(0xCC);

 UART1_Write(0x0E);UART1_Write(0xCB);UART1_Write(0x41);UART1_Write(0x41);

 UART1_Write(0x76);UART1_Write(0x59);UART1_Write(0x4E);UART1_Write(0x0F);

 UART1_Write(0x81);UART1_Write(0x84);UART1_Write(0xEF);UART1_Write(0xF9);

 UART1_Write(0x9C);UART1_Write(0x05);UART1_Write(0xCA);UART1_Write(0xBE);

 UART1_Write(0xEB);UART1_Write(0x72);UART1_Write(0xD0);UART1_Write(0x38);

Applied Protocols in Smart Control Graduation Project 2010

163

 UART1_Write(0x2C);UART1_Write(0x07);UART1_Write(0xA1);UART1_Write(0xC3);

 UART1_Write(0x73);UART1_Write(0x90);UART1_Write(0xB8);UART1_Write(0x5C);

 UART1_Write(0x76);UART1_Write(0x83);UART1_Write(0xE6);UART1_Write(0xF4);

 UART1_Write(0x37);UART1_Write(0xBB);UART1_Write(0xEC);UART1_Write(0x0E);

 UART1_Write(0x81);UART1_Write(0x00);UART1_Write(0x01);UART1_Write(0x45);

 UART1_Write(0x0F);UART1_Write(0x30);

} // end method

void main()

{

 // Analogs are off

 ADCON1=0x0F;

 CMCON=0x07;

 // portb output

 TRISB=0x00;

 // TX output, RX input

 TRISC.F7=1;

 TRISC.F6=0;

 // Initialize Uart at 115200 baud rate

 UART1_Init(115200);

 // Wait for Uart to stablize

 delay_ms(100);

 do

 {

 // Start protocol

 startfbus();

 // Wait for uart to stablize

 delay_ms(100);

 // Message 1 sending

 // Refresh link

 refresh();

 // Send message 1

 mess();

 // Stabilize

 delay_ms(100);

 //Message 2 sending

 // Refresh Link

Applied Protocols in Smart Control Graduation Project 2010

164

 refresh();

 //Send message 2

 burglar_alert();

 // Stabilize

 delay_ms(100);

 } while(0);//Execute Once

 // If data is ready, read it:

 if (UART1_Data_Ready() == 1) {

 // Recieved parameter

 char r;

 // Assign received data to a variable r

 r = UART1_Read();

 // display data on portB

 portB = r;

 } // end if

} // end main

Applied Protocols in Smart Control Graduation Project 2010

165

Appendix H: Data Sheets

I. PIC16F877A

Applied Protocols in Smart Control Graduation Project 2010

166

II. MAX232

Applied Protocols in Smart Control Graduation Project 2010

167

III. MAX485

Applied Protocols in Smart Control Graduation Project 2010

168

IV. ULN2003

Applied Protocols in Smart Control Graduation Project 2010

169

V. XM10

Applied Protocols in Smart Control Graduation Project 2010

170

Index

A

ACK, 52, 53

B

baud rate, 31, 32, 44, 57

C

checksum, 51, 52, 54, 55

com, 51, 65

D

devices, 4, 6, 7, 14, 20, 21, 29, 30, 31, 33,

38, 40, 44, 62, 64, 66, 68, 70, 72, 74, 83

DTR, 51

F

F/M Bus, 50, 87

I

ID, 38, 48, 53, 64, 66, 68, 69, 74

Internet Protocol Suite, 62

IP Address, 73

L

LAN, 6, 64, 65, 66

library, 43, 67, 74

M

MAX232, 26, 44

microcontroller, 4, 33, 38, 43, 44, 45, 50, 51,

53, 87

Microcontroller, 4, 26, 33, 35, 43, 44, 45,

59, 86, 87, 91

N

Nokia phones, 50, 87

P

password, 64, 65, 66, 70, 74

PCB, 23, 36, 37, 39, 40, 42, 59

Phone, 54, 86, 87, 88

PIC, 33, 43, 44

PLC, 14, 21

Power line communications, 14

Programming, 43, 45

PWM, 24

R

Receiver, 38

RS-232, 29, 31, 32

RS485 Protocol, 5, 6, 29, 84

S

sensor, 40

serial port, 26, 31, 65, 68, 69

Server, 10, 64, 66, 67, 68, 69, 73, 75, 77, 78

T

TCP/IP, 4

TCP/IP protocol, 6, 62, 75

U

UART, 51, 60

User Name, 73

X

X10 protocol, 6, 20

XM10 Module, 7, 21

Z

zero, 16, 21, 24, 25

