Applied Protocols in Smart Control Graduation Project 2010

APPLIED PROTOCOLS IN SMART CONTROL

By
Ahmed Abdel Kareem Mourad
Ragab Mustafa Abdel Gawad
Mohamed Sayed Mohamed
Asmaa Mohammed Zohri
Asmaa El Sayed Ahmed

A Graduation Project submitted in
partial fulfillment of the requirements
for the degree of

BSc in Electronics and Communication
Engineering

Fayoum University

2010

Approved by Amr M. Gody

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Program
to Offer Degree Bachelor in Electronics and Communication
Engineering

Date July 2010

Applied Protocols in Smart Control Graduation Project 2010

FAYOUM UNIVERSITY

APPLIED PROTOCOLS IN SMART CONTROL

By
Ahmed Abdel Kareem Mourad
Ragab Mustafa Abdel Gawad
Mohamed Sayed Mohamed
Asmaa Mohammed Zohri
Asmaa El Sayed Ahmed

Supervisory Committee: Associate Professor Amr M. Gody
Department of Electrical engineering

A work presented on Smart home and how to automate your home with low cost and high
reliability, also representing some technologies and how can using it to utilize the home
automation.

——
w
| —

Applied Protocols in Smart Control Graduation Project 2010

TABLE OF CONTENTS

EXECULIVE SUMIMAIY ...ttt sttt 17
ABSTRACT ettt e e et b et e et b e e et a e ntae s 18
Chapter 12 INErOTUCTIONccuiiiiieiii ettt 19
1.1 INEFOTUCTION ..ttt ettt ettt nnb e nree s 19
1.2 Statement OF ProbIemooviiii e 19
1.3 ODJECTIVES ...ttt ettt ettt ettt 20
Chapter 11: Conceptual FramewWorK............ooouiiiiiiiiiii e 21
2.1 StatiC ClasS QIAGIAM........iiiieiieeiie ettt 21
2.2 INTEIaCHIVILY SCENAIIO ... viiuveeieieeiee ettt ettt 24
2.2.1 X 10 NEEWOTKS ...ttt 24
2.2.2 RSA85 NEtWOIK(SEIVET) ...eiiiiiiiiiieeiie ettt 24
2.2.3 RSA85 NEtWOIK(CHENL) ...eeviieeiiie et 24
2.2 4 TCP/IP NEIWOTK ...ttt 25
2.2.5 FBUS CONNEBCLION.....c.viiiiiiiiiieesieesieeie et 25
Chapter H1: MethodolOgYc.vvveiiieeiie et eaee e 26
3.1 Power line communication and X100ccceiveiiiiieniiiesiese e 26
B L L INEOTUCTION ...t 26
3.1.2 Advantages and Disadvantages 0f PLC...........ccccoveiiiie i 26
3.1.3The ChallENGEcoeeeeeee e e e e eree e 27

3.2 XLO PrOLOCOLttt 28
3. 2.1 What 1S The XLO? ...ttt 28
3.2.2 Transmission theory of X-10 SignalS..........ccccceeviiieiiiie e 28
3.2.3 Why X10 TeChNOIOQY?....cciiieeiiiie ettt 32
3.2.4 What Are the TradeoffS?.........oooiiiiiii 32

——
IS
| —

Applied Protocols in Smart Control Graduation Project 2010

3.2.5 X10 IMPIEMENTALION ...t 33
3.3 RSA8BS ProtOCOL ...t 41
3.3.1 What IS RS485 ProtOCOI?ccocuiiiieiiieiiieiee et 41
3.3.2 The RS485 AGVANTAJES:ccviiiiiieiieiiie sttt 42
3.3.3 How does the hardware WOrk?...........ccooviiiiiiiieiiieie e 43
3.3.4 How does the Software WOrK? ..o 44
3.3.5 Important t0 COMMUNICALEeeeiiiiiiieiiii e 45
3.3.6 RS485 Hardware implementationcccooveiieiiiiiieiiie e 45
3.3.7 Microcontroller Programming...........oceeieiereiieeniienee e 55
3.3.8 SOTWAIE PrOQram.....ccuvieiieiiie ittt 57
34 FBUS PrOTOCOL.....cciiiiiiiiiie ettt 62
B4 L INTFOTUCTION .. ettt ettt 62
3.4.2 FBUS ProtOCOIc.oveiiiiieeee e 62
3.4.3 FBUS COMMUNICALION.......viiieiiieiiieiieiieee et 67
3.4.4 FBUS IMPIeMENTALIONccviieiiiie ettt e e eesnree e 70
3.5 TCP/IP PrOtOCOL ...c.vveeeiiie ettt et e e srae e e sraaeesnnea e 74
3.5.1 What is TCP/IP ProtoCoI?.........ccooiiiiiiiiiieiic e 74
3.5.2 The Advantages of using TCP/IP in coONtrol:ccccovevviveiiie e 75
3.5.3 How does the hardware WOrK?ccooviieiieiieiieieeeee e 76
3.5.4 How does the SOTtWare WOIK?ccvoiiiieiiiiieiie e 76
3.5.5 Steps to begin COMMUNICALIONccvvveeiiieeeiiee e 77
3.5.6 TCP/IP Hardware implementationcccceeeviuieeiiie e 78
3.5.7 TCP/IP SOftware Programcoccueeiiieeiiiee et srae e 78
Chapter IV: QUICK USEI GUIAEecoiuieeiiiee ettt ettt e e saaa e eana e 89
4.1 USE CASES ... ettt ettt ettt 89

——
ul
| —

Applied Protocols in Smart Control Graduation Project 2010

4.1.1 SEIVEI USE CASE.......uiiiiiiiiiiiie ettt ettt 89
4.1.2 CHENE USE CASE ...ttt 90
4.1.3 X10 TranSmItter/reCeiVEr USE CASEccvueeiiieriieiiiesiieesiee et 91

4.2 BASIC SEELINGS ...eiuveiiitieiiiteie ettt ettt 91
4.2.1 SErver BaSIC SELHINGScccvviireiiieriieitie et 91

4.3 TraiNING MOTE ...ttt 93
4.3.1 RSA85 TranSIMITIEN.....cuvieiiiiiiie it 93
4.3.2 RSA85 RECEIVET ...ttt ettt 93
4.3.3 RS485 TransSmitter/ RECEIVEToiuiiiiiiiieiiieiee et 95
4.3.4 X10 TranSMIter/ RECEIVETccouiiiiiiiee ittt 96

4.4 Step DY StEP TULOTIAL.c..eiiiee e 101
4.4.1 HOw to cONNECt the HardwWare...........cocveiiiiiiiiiieiesee e 101
4.4.2 HOW t0 RUN the SOMWArE.........ooiiiiiiic e 103
4.4.2.1 Server SOftware tUtOrialcoooviiiiiiiic 103
4.2.2 Client Software tUtorial...........c.ccovoiiiiiiiie e 114

(€] 10 PSSP 120
2 710] [0 o =T o])V PSP OPSOPSRRN 121
APPENdIX A XLO t0O0IS.....ueeieciie e 122
I. What Can YOou DO With X107ccciiiiiiiiieiieiie e 122

] T K0 o [0 [€150 Vo PR TRP 123
AppendiX B: RS485 ProtOCON.........cccuviiiiii et 124
I = A o), (- PSPPI 124
T o [0 =TIy o)V (PRSPPI 124
L. number of data DYLESc.oeeeiiieeee e 124
IV, fiIrst data DYLe ..o 124

——
(o)}
| —

Applied Protocols in Smart Control Graduation Project 2010

V. second data DYLEoooiiie i 124
VI third data DYEE ... 124
VII. redundancy check (CRC) DYLecooiiiiiiiiiiie e 124
ApPpPendix C: TCP/IP ProtOCOIcoouiiiiiiiiieiie it 125
L. OVBIVIBW ...ttt ettt e e et 125
1. TCP/IP LAYEIING . ..cttiitieiiieiite ettt ettt nbn et 126
1. 1EEE 802.3 Ethernet Framescccoiviiiiiiiieiiienie e 127
IV, TCP SEOMENLS... ..ot 128
VI, NetWOrk ArChiteCUIooiiiiii e 131
AppendixX D: FBUS ProtOCOIcoouiiiiiiiii i 132
I. How to connect microcontrollers to your Nokia 3310ccccoevviiiiiiienienninen, 132
Appendix E: Used Software and Hardware..............ccoooveiiiiiieiiieniceiee e 134
[, USEO SOTIWAIE ... 134
[, USEA HAIOWATE ... 134
Appendix F: All Project SOftWare COUBS.........covuieiiiieiiiie e 135
F.1-Main Program(Server Program)..........cceeccueeirueeessreeeasueeesnsessneesssesesssesesssseesnns 135
e 1 O T VT OO TP PPPPP PPN 144
F.3- Class Sheimy RSABSooiiie ittt 147
F.4-Software Controller CHENt ..ot 149
F.5-X10 TR PrOQram ..cccc ettt r e e e e e nsrenn s 151
Appendix G: All Project Microcontroller COdes...........coovveiiiieiiiee i 154
G.1-RSA85 RECEIVET ...ttt ettt 154
G.2-RS485 TraNSMILLENeiiiiiiiie ettt 155
G.3-RS485 TemMPErature SENUETcciureeiieeeeiee et ettt e e s e e aane e 156
GL4-RSABS TTANSCEIVEeiiiiiiiiieiite ettt 157

——
~
| —

Applied Protocols in Smart Control Graduation Project 2010

G.5-X10 TIANSCEIVET ...ttt ettt ettt ettt ettt 159
G.B- FBUS ...ttt a e 160
APPENdIX H: Data SNEELSiiiiiiiie e 165
L. PICLBFBTTA. ettt e sbaea e e 165
L. MIAX 232 ettt e 166
L MIAXABS ..ttt ettt e e et e e e 167
IV, ULNZ003 ...ttt e e st e e e nntbe e e e s snbneaeeaa 168
V.o XIMILO e a e nrae s 169
FAX et 170

——
(0]
| —

Applied Protocols in Smart Control Graduation Project 2010

LIST OF FIGURES
Figure 1 Class diagram for Software interface (Server) 1......cccccovveiiiiiniiieiiiieenieeene, 21
Figure 2 Class diagram for software interface (SEVEr) 2.......ccceviiiiiiiieniieneeee e 22
Figure 3 Class diagram for Software interface (CHent)cccooveiiiiiieniiini e 23
Figure 4 Class diagram of X-10 TranSmitter..........cocoeiiieiiiiiiesieesee e 23
Figure 5 Sine wave with the injection of an X-10 signalc.cccooiiiiiiinicie e, 29
Figure 6 Sending of binary Signals 1 and Occooiiiiiiiiiie e 29
Figure 7 Standard X-10 Transmission ROULINEc.coovveiiiiiieiiieiieciee e 30
Figure 8 Standard Frame 0 X-10cooiiiiiiiiieiie e 30
Figure 9 Example Of X-10 FIameccoiiiiiiiieiie e 30
FIQUIE 10 X-10 COUBSveeiiieiieiiiee sttt beeanae e 31
Figure 11 General structure of @ power line NOE............covviiiiiiiiiiieee e 32
Figure 12 XIML0 MOGUIEociiie et e e e 33
Figure 13 TW523 Connection Block diagram............ccccoecveeiiiieiiie e 34
Figure 14 X-10 Transmitter SCNEMALICcccceovuieiiiie e 34
Figure 15 X10 Board LaYOUL.........cccouiieiiiieeiiiie et 35
Figure 16 3D VIEW TOF PCB ...ttt 35
Figure 17 Zero Cross Detection CIrCUILc.eeoiveeiiiie e 36
Figure 18 120 KHZ Carrier Generation CirCUIt..........c..covvuveeiiieeiiiie e 37
Figure 19 Open Com INLErfaCeccvvveiiii it 38
Figure 20 Send data INterfaceccveeiiiiiiii e 39
Figure 21 RS485 Network arChiteCture..........ccocovvveiiiie e 41
Figure 22 Devices connection in the Network...........cccoeoiiieiiii e 42
Figure 23 RS485 SIGNAISoeeiieiie et 43
Figure 24 Max485 CONNECTIONcciiiiiiieiiiiiee et e e a e e 44

——
(Vo]
| —

Applied Protocols in Smart Control Graduation Project 2010

Figure 25 Total RS485 NEtWOrK CIFCUILc.vveiiiiiiieiiieie e 46
Figure 26 RS232 to RS485 Converter SChemMatiC..........c.vevvviiieriieiieeiie e 47
Figure 27 RS232 t0 485 CONVEITEr PCBcoiiiiiiiiieiiiee e 48
Figure 28 RS232 t0 485 CoNVErter PCB 2cooiiiiieiiece e 48
Figure 29 RS232 to 485 Converter DOttOM VIEWccceeiiiiiiiiiieice e 49
Figure 30 RS232 t0 485 CONVEITEr TOP VIEWccuviiiiiiiiesiieeiee st 49
Figure 31 RS485 receiVer SCNEMALICcueivieiiiiiie e 50
Figure 32 RS485 reCeIVEr PCBoouiiiiiiiie st 51
Figure 33 RS485 reCeiVEr PCB 2.......oiiiiiiiie e 51
Figure 34 RS485 receiVer PCB 3.......oii it 52
Figure 35 RS485 transmitter SCNEMALICc.eeiiiiiiiiiiieiie e 53
Figure 36 RS485 transmitter PCB..........cooiiiiiiiieiie e 54
Figure 37 RSA85 TeSt PrOQIaM.......ccvvieiiieeiiiieciiie e siee e stee e stee e s iaa e s e e snaaeesnnaeesnneeeanes 61
Figure 38 Nokia 3310/3315 F/M BUS CONNECLION.........eeeivieeiiiieciiee s e 62
Figure 39 a part of the FBUS communication of the Nokia Data Suite........................... 67
Figure 40 the start of FBUS communication measured with the test circuit.................... 68
Figure 41 A close-up view to the FBUS data sent by the PC............cccovi e, 69
Figure 42 FBUS data sent by the phone.ccoouvi i 69
Figure 43 FBUS Interfacing SChematiCccccouveiiiii i 70
Figure 44 FBUS Interfacing LayOuUL............coovvviiiiie i 70
Figure 45 3D VIEW OF PCB ..ottt 71
Figure 46 TCP/IP CONNECLION.......eieiiieeciie ettt ettt e e snaee e 75
Figure 47 TCP/IP CONtrol STFUCKUIEccovveeeiiiec et 76
Figure 48 how does the TCP/IP software WOrkcooveeiiiieiiiee i 77
Figure 49 Client and Server CONNEBCTIONeieiiiiiiee e 78

Applied Protocols in Smart Control Graduation Project 2010

Figure 50 TCP/IP part in I0gin SCrEENeiiiieiiiiiie e 78
Figure 51 TCP Server WINAOWooiiiiiieiiieiee et 79
Figure 52 send pattern from the CHent...........ocooiii i 84
Figure 53 TCP client [0gin fOrMoooiiiiiii e 84
Figure 54 required data to cONNECt t0 the SEIVENcociiiiiiiiiiie e 85
Figure 55 control of client PC SOTtWAIEc.coiiiiiiiiiieie e 85
FIQUIE 56 SEIVET USE CASEeouveiiuiieiiiieiee ettt ettt ettt snne e 89
Figure 57 Server use Case (CONLINUE)coiviiiiiiiieiiieie e 89
Figure 58 Server use Case (CONtINUE).........oouiiiiiiiieiiieiee e 90
FIQUre 59 CHIENT USE CASEcveiiiieiiiieiie ettt ettt ettt 90
Figure 60 X10 Transmitter/reCeiVEr USE CaSEcccveeiuierieiiiieiiiesieeeiee e et 91
Figure 61 first RS485 transmitter teSt Programceeivieieeiieeiiiesie e 93
Figure 62 RS485 Receiver Simulation CIFCUIL............ccuveeiieeeiiiiecee e 94
Figure 63 RS485 ReCeiVer teSt PrOgramcc.eceiureiiereeiieeesieeesiieesstreessneeeessaneesneeeeenes 94
Figure 64 RS485 Transmitter/ Receiver(transmitter SCreen)ccceevvveeviveeesiieeesiineenn 95
Figure 65 RS485 Transmitter/ Receiver (reCeIVEr SCrEEN)vecvvveeevveeerieeesreeesieeenns 96
Figure 66 120 KHZ Carrier GENEIrator..........coivreiiiieeiiieeesiieesieeesiaaessree e e siae e snaeeesneee e 97
Figure 67 Together with 220 V 50 HZ ACcooiii it 98
Figure 68 X10 Generated data...........c.ccoiveeiiieeiiiee e 99
Figure 69 X210 TranSMILLErcccuvieiiie e s e e sre e e e e s nee e 100
Figure 70 Data transmitted every Zero CroSSINGcccueeeveeeiirreeiiieeesiieessieeesneeesnneens 101
Figure 71 Real R232 to RS485 converter PCBcccveiiiie i 101
Figure 72 Real RS485 Transmitter PCBcocivviiiiii e 102
FIGUIE 73 LIGNT SENSOKeceiee ettt e e e e e saee e 102
Figure 74 Enter User Name (I0giN)ocooiiiiiiiiiiiie e 103

Applied Protocols in Smart Control Graduation Project 2010

FIQure 75 ENter PASSWOITeiiiieiiiiiee et 103
FIQUre 76 CHICK t0 LOGINviiiiiiiieiie et 104
Figure 77 Select the POIT IDc.ooiiiiiieiieie e 104
Figure 78 Click t0 OPEN PORT DUTTONooiiiiiieiiieieeeee e 105
Figure 79 Click the OUT DOORS DULEONcuviiiiiiiieiiieie e 105
Figure 80 Search fOr Cameral.........ccciiiiiiiieiiieiee et 106
Figure 81 Select the CamMEIa.........c.iiiiiiiie e 106
FIQUIE 82 STArt CaIMEIA.viiiieiiieitie ettt 107
FIQUIE 83 STOP CAMEIA....ccueiiiieiiieie ettt 107
Figure 84 control in camera angle..........cooouioiiiiiie i 108
Figure 85 Enter the Room 1 Control panel...........ccoooiiiiiiiii i 108
Figure 86 Turn on/off SPecifiC DEVICE.........cccuiiiiiiiieiiieie e 109
Figure 87 read the temperature egreeccvveiiveeiiiee e 109
Figure 88 SeleCt the traCkcuveeiiie e 110
Figure 89 Room 2 Control panel...........cocvviiiiiiiie e 110
Figure 90 TUIN ON DEVICE 3.....cciieeeciee ettt s e et e et e e sbe e e snee e 111
Figure 91 change ROOM PASSWOITcccuvviiiiieeiiiie e se e 111
FIgUrE 92 REad TEIMP ...vviee ettt ettt e et a e e s ntae e e nna e e e snaeeesnnee e 112
Figure 93 Dack t0 LOGIN......ccuviiiiiee et 112
FIgure 94 Open TCP/IP SEIVERcccuiieiiie ettt sta e e saee e sree e 113
Figure 95 The TCP Server WINAOW............cciiviiiiiiieeiiee e ciee st siee e sive e svn e saee e snne e 113
Figure 96 ENter USEr NAMEccuveiiiiie ettt tae et e e e snnee e snea e 114
Figure 97 ENter PaSSWOIT.........cooueiiiiie et sttt era e 114
FIgure 98 CONNECE t0 SEIVENccuviieiiie ettt st e e 115
Figure 99 The LoginIinfo WiNAOW OPENScooviiiieiiiiiie et 115

Applied Protocols in Smart Control Graduation Project 2010

Figure 100 IP address Of the SEIVENooiiiiiiiieiie e 116
Figure 101 IP address Of the SEIVENooiiiiiiiieee e 116
Figure 102 CONNECE 10 SEIVETccuuieiiiiiee ittt ettt 117
Figure 103 Server PC indicate the connected CHentcccoeiiiiieniii i 117
Figure 104 ROOM 1 Control Panel..........cocuveiiiiiiiiieieee e 118
Figure 105 ROOM PASSWOITeeiuiieiiiiiieiiie ettt ettt 118
Figure 106 CONLrOl IN DEVICES........coiiiiiiiiiieiie ettt 119
Figure 107 Room 2 CONtrol Panelooiiiiiiiieiie e 119
Figure 108 An X10 lamp module turns a lamp on and off when an X10 signal is sent

From an XLO TraNSIMITEETocuviiieiieieee e 122
FIgure 109 RSA8S TramMe.ooiieiiieiie ettt 124
Figure 110 TCP creates a fully two-way link between the ends of the connection........ 125
Figure 111 Encapsulation of data............ccceiiiiiiiiie i 126
Figure 112 Ethernet/802.3 Frame SIrUCIUIEcc.veeiieeeciie e e 127
Figure 113 IEEE 802.3 Ethernet standard framecccceeviee i 127
Figure 114 Segmentation and fragmentation............cccccveeviveeiiie e 128
FIGUPE 115 WINGOW....cciiiee ettt st e e taa e e sna e e e nnte e e snnee e 128
Figure 116 IP and TCP HEAUENccvvveiiiie ittt 129
Figure 117 establishing @ CONNECLIONeeiiiieiiiie e 130
Figure 118 ConNECLION CIOSUNEcccuviieiiie et 130
Figure 119 3310 Phone and FBUS CONNECLION..........ccceeeiiiieiiiee e 132
Figure 120 Nokia 3310 and it's download cable.............cccoeeiiiiiiiiiic i 133

13

——
| —

Applied Protocols in Smart Control Graduation Project 2010

LIST OF TABLES
Table 1 F/M-BUS Signal DIr€CHIONccoviiiiiiiieiie e 62
Table 2 frame of bytes sent to the Nokia 3310/5110ccccvviiiveiiiieeiiiee e see e 63
Table 3 ACK fTAIME ...t 64
Table 4 ACK TTAIME ..ot 65
Table 5 USEd SOTIWAIEooiiiiiiiiiiee e 134
Table 6 USEd HarGWAreooiuiiiiiiiii e 134

14

——
| —

Applied Protocols in Smart Control Graduation Project 2010

LIST OF CODES
Code 1 Send data METNOccueiiiieie e 39
Code 2 Receive data MEthOdc.ooiiiiiiiiic e 40
Code 3 RSA85 VariabIes.coouiiiiieie e 57
Code 4 set_add IMEthOUccuiieiiie e e e nraee e 58
Code 5 Set_data MethOd...........ooe i e naee e 58
Code 6 Take NOt IMENOMcueiiiiiiii e 59
Code 7 get_data MEthOod.coouiiiiiei e 60
Code 8 StartFhus METNOUooiiiiiii e 71
Code 9 get the Phone software version Methodccccoviiiiiiiiiiiiiicce 72
Code 10 INItIAlIZE the UAIT........c.ooiiieiii e 72
Code 11 reading frOmM PRONEooviiiiiiie e 73
Code 12 Used Library in SErver TCP/IPoociie et 79
Code 13 Struct CHENEDALA.ceiveeieeiieiiie e 80
Code 14 Server used VariabIesccovoiiiiiiiiiic e 80
Code 15 TCP_Server CONSIIUCTON.ccuveeiiiieeecieeeesieeestee e e eeesiea e stre e et e e e e e snreeesnee e 81
Code 16 Waiting for Client Method...........c.oooiiiiiiiie e 81
Code 17 ReadSocket MEthOM..........cviiiiiiiiecc e 82
Code 18 ReadSocket Method (CONLINUEA)cuvveeiiieeiiie e 83
Code 19 CloseTheThread Methodccooiiiiiiiiieieeee e 83
Code 20 client USEd HDFArYcooiiieeie e 86
Code 21 Client used Variables............cccooiiiiiiiiiee e 86
Code 22 convert bool to byte Methodcocvviiiiiicce e 86
Code 23 StartServer IMEtOUcoueiiiiii e 87
Code 24 Send data to Server Method..............cooviiiiiiiiiii e 87

file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547431
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547433
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547434
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547435
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547436
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547437
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547438
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547439
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547440
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547441
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547442
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547443
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547444
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547445
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547446
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547447
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547448
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547449
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547450
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547451
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547452
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547453
file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547454

Applied Protocols in Smart Control Graduation Project 2010

Code 25 client Read SOCKet MEINOGoouneeeeeee e,

Code 26 120 KHZ CArTIEr GENEIALON ...ttt e et e e e e e eeean

Code 27 X10 Data Transmitter

16

——
| —

file:///H:/Applied%20Protocols%20In%20smart%20control.doc%23_Toc266547455

Applied Protocols in Smart Control Graduation Project 2010

Executive Summary

Technology in today’s world is advancing at a very rapid rate. Once a rare commodity,
computers can now be found in hundreds of millions of homes and businesses. A
growing trend involving computers is industrial control and home automation, a practice
in which electrical devices are controlled with little or no human interaction. Although
this may sound like a noble concept, many of these control systems suffer from poor
performance in terms of data communications capability. They also require the user to
configure them locally, which makes it difficult to check the status of the systems from
afar. Also, many systems carry a steep price tag that many potential buyers find
Unappealing.

To remedy the first of these issues, a new data communications system will be
developed. The system will consist of one or more host units and multiple target units.
The host units will initiate all data communications processes to the target units, and a
target unit may reply only to the host that hails it. Only one communications process may
exist at any given time per host, preventing data communication collisions. EXxisting
electrical wiring will serve as the communications medium, preventing the expense of
installing additional wiring in the building.

The access issue will be remedied by designing a software package for a personal
computer. The software will allow the host device to connect to a PC, as well as the
Internet using TCP/IP. The user will therefore be able to access the host device through a
standard Internet connection.

A third issue is the cost of comparable control systems. Presently-available systems that
are used in industry cost thousands of dollars. By programming a microcontroller to
emulate traditional hardware, less electronic components will be required to build a
working system. As a result, overall production costs will be substantially lower than
comparable systems.

We will approach this project by dividing it into several key components. An X10
Transmitter will be designed that will allow the host and target units to communicate over
the power line. Microcontroller firmware will be created to control the functionality of
both host and target units. Circuitry and firmware will be implemented to interface the
host unit to a PC. Software will be written to allow user-control over host and target
units.

Our design will be superior to presently-available device control systems in that ours will
reduce the number of control errors due to corrupted data transmissions, thereby
enhancing the reliability of the system. It will also provide an easy-to-use interface that
will allow users to render remote control over all host and target units and all of their
associated peripherals.

Considering the ongoing growth in popularity of home and industrial control systems,
this project has an abundant future. Potential design enhancements include improving the
data transfer rate of the modems and enhancing the remote web interface.

17

——
| —

Applied Protocols in Smart Control Graduation Project 2010

ABSTRACT

As the need for control automation systems increases, the number of commercially
available systems is broadening every day. Of these systems, the most reliable ones can
cost thousands of dollars. The inexpensive ones suffer from poor reliability and must be
controlled locally. To solve these issues, a system that is reliable, affordable, and easily
accessible is needed. This system is the PLCS Using X10 Protocol, RS485 Protocol,
TCP/IP Protocol and finally FBUS Protocol. This automation system will improve the
addressed issues by utilizing the capabilities of both customized hardware and software.
The system will use communications chips that have costs comparable to Inexpensive
systems, but with reliability found in more robust systems. Users will also be able to
access the system through a network, such as the Internet, thereby eliminating the
constraint of requiring local control.

18

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Chapter I: Introduction

1.1 Introduction
The purpose of this project is to design and implement a device control system that
utilizes a building’s existing electrical wiring as a communications medium. This design
will give consumers a more cost-efficient device control solution. The design approach
will consist of simulation, construction, and field testing of the system. The significance
of the device is that all host and target units may be controlled by any computer
connected to the network.
In the early 1970’s, Pico Electronics Ltd. was founded by a group of investors who
wanted to develop integrated circuits for the handheld calculator market. Each time Pico
Electronics started a new project, the project was given an experiment number. Their
ninth experiment, “experiment #9”, was an integrated circuit for a programmable record
changer for a phonograph. Shortly after this, Pico Electronics was asked to build a
wireless remote control system for the record changer. This became “experiment #10” for
Pico Electronics, or “X-10" for short.
The X-10 systems were designed to use existing household wiring to control devices
throughout the household. Pico engineers soon realized that this system had many other
uses besides controlling record changers. In 1978, Pico Electronics signed contract with
several large retail stores to sell the X-10 system. The system was soon being advertised
in 1979, and now, 20 years later, it is still growing in popularity.
In more recent years, several enhanced carrier-current networking solutions have been
introduced. CEBus and Lon Works boast improved data transmission rates over X-10, as
well as improved error detection, but they also “boast” much higher price tags.

1.2 Statement of Problem

Industrial control and home automation has rapidly been gaining popularity for the past
decade. Although many automation and control products are available on the market,
many of them suffer from low data rate as X10 Protocol Communication and the other
suffer from that has high Cost and not reliable as CEBus and LonWorks.

A second issue encountered with these systems is some of them need cables (LAN) to
extend to control in the devices as LonWorks, and that is not preferred in home
automation and also for the users.

To remedy the communications issue, our team will develop a more reliable method to
communicate with and control in the home devices. This will be high data rate and less
cable will extend and low error probability. This done by combining more than one
system with them we mean X10 protocol communication, RS485 Protocol
communication, TCP/IP protocol communication and Fbus protocol for Nokia Phones.

The accessibility issue will be resolved by designing a user-friendly computer interface
for the system. With this interface, users will be able to remotely check the status of their

19

——
| —

Applied Protocols in Smart Control Graduation Project 2010

systems, therefore eliminating the worry of discovering that their “controlled” devices are
on the blink. Users will also be able to remotely make changes to the operation of their
devices to comply with their schedules.

1.3 Objectives

A.

Data Transfer Rate: Most inexpensive automation systems have a data
transmission rate of only approximately 100 bits-per-second (bps), whereas the
more costly ones have a rate of several thousand bps. Our system’s rate will be a
compromise between the two, with a minimum rate of 600 bps and a desired rate
of 1200 bps.

. Error Rate: Low-cost carrier-current data transmission systems can have a less-

than-appealing rate of errors. Our system will have a maximum bit error rate of
0.01%.

System Structure: The most common low-cost automation system can support a
maximum of only 256 target units, and in this Project the number of devices increased by
using the RS485 Network and the TCP/IP Network.

Power Usage: this Project made specifically to utilize the usage of the power because
the one of three controlling signal is carried by the power line (signal of X10 Protocol
communication), and the other devices use only power source of value +5V, So the user
can’'t worried about power usage.

Cost: the cost will be low because the basic devices and the protocols are cheaper as
example the most expensive device is the XM10 Module with approximately price 40$
and all other devices will be approximately with price 10$.

20

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

Chapter II: Conceptual Framework

2.1 Static class diagram

’ ™)
Form1 3

Class

=+ Office2007RibbonForm

Fields

= Methods
2¥ bool_to_byte
2¥ buttonX1_Click
2% buttonX2_Click
2% buttonX3_Click
2% CloseVideoSource
&% CloseVideoSourceZ
2% comboBoxExl_Selectedindes...
2% comboBoxEx2_SelectedIndex...
7% Dispose
% Forml
2¥ Forml_FormClosed
27 getCamList
&% getCamList2
W getport
‘¥ getRooml_pass
% getRoom?2_pass
2* InitializeComponent
2" Read_tempZ_Click
2% readtemp_Click
2% refresh_Click
2% refresh?_Click
2" ROMIL_Click
2% ROM2_Click
W zend_data
2% =zerialPortl_DataReceived
W speak_text
% Start_Click
2% start?_Click
¥ switchlight_ValuesChanged
2% switchlightl_ValuesChanged
2% =witchlightZ_ValuesChanged
2% =witchlight3_ValuesChanged
2% video_MewFrame
2% video_MewFrameZ

Figure 1 Class diagram for Software interface (Server) 1

——

21

/'

Applied Protocols in Smart Control

Graduation Project 2010

——————————— 5
| Program @y
| StaticClass '
! 1
| 3 Methods !
: ‘:.‘Q Main :
B S
TCP Server £
Class

=+ Office2007RibbonFom

=l Fields

buttonlteml
buttonlteml2
buttonltem13
buttonltem2
buttonltem3
buttonltemd
buttonltem5
buttonltemf
buttonltem?7
components
connectld
dataHolder
form_1
ipAddress
itemCentainerl
itemCeontainer2
itemContainer3
itemCeontainerd
office2007 Start...
g

pass
gatCustomizelt...
ribbonControll
ROM

rom_data
statusBarl
styleManagerl
teplsn

tcpThd
textBoxl

= Metheds

CloseTheThread
Dispose

LT LLLLLRLLPLLLE LR LR RY YR %

o
'

2
<

InitializeCompo..
ReadSecket
TCP_Server
TCP_Server_For...
upDateDataGrid
WaitingForClient

MNested Types

r 3 '

-
Settings #

. o

~,

Sealed Class
-+ ApplicationSettingsBa...

=l Fields
_‘.0 defaultInstance

= Properties
= Default

ClientData (#
Struct

= Fields
@ structSecket
@ structThread

Resources (#
Class

=/ Fields
&% resourceCulture
-g,o resourceMan
= Properties
% _ldownarrowl _...
% _lleftarrow 48
ﬁ _lrightarrow_48
ﬁ _luparrow_48
% Culture
ﬁ ResourceMana...
= Methods

2% Resources

——

22

Sheimy_RS485
Class

=l Fields
add
bytes_no
chars
cre
data
InputData
riuffer
sbuffer
4
= Methods
W get_data
W set_add
iy cet data
W takeNOT

2% %% %%

E3

TCP_Connector (&
Class

= Fields
components
connectld
dataHolder
ipAddress
teplsn
tcpThd
= Methods
&% CloseTheThread
&% Exit
% ReadSocket
& TCP_Connector
% WaitingForClient
MNested Types

Te%% %%

Figure 2 Class diagram for software interface (Sever) 2

'

Applied Protocols in Smart Control

Graduation Project 2010

- \
I Program E3
: Static Class :
! I
| & Methods .
: 27 Main :
‘-----------#

- \
I Program 3
| StaticClass !
| I
| & Methods .
% Main :
\-----------J

Class

Form1

=+ Cifice2007RibbonForm

Fields
= Methods

.
®

bool_to_byte
buttonX1_Click
buttonX3_Click
Dispose

Forml
InitializeCompo...
ReadSocket
startServer
switchArrayl_V...
switchfrray2_V...
writeToSener

r

* ™)
LoginInfo E3

Class
=+ Form

=l Fields

cmdCancel

¢ cmdEnter
components
forml

lakell

label2

label2
textBoxPaddress
texwtBoxMame
textBoxPort

= Methods

buttonZ_Click
cmdCancel_Click
Dispose
infoChecker
InitializeCompo...

e veeoeeye

a7
v
"
iy
v
W Loginlnfo

A

Figure 3 Class diagram for Software interface (Client)

Class

Form1

=+ Ciffice2007RibbonFom

Fields
= Metheds

buttonX1_Click

Dispose

Forml
InitializeComponent
cpenbutton_Click
zend_Click
zerialPortl_DataReceived

.
3

A

Figure 4 Class diagram of X-10 Transmitter

23

——
| S—

Applied Protocols in Smart Control Graduation Project 2010

2.2 Interactivity scenario

2.2.1 X 10 Networks

a. X10 Code required send to the XM10 Module.

b. XM10 Module padding the required code to satisfy the X10 frame and send the
frame over the powerline at the Zero Cross.

c. Every receiver in this network receives this frame and read the unit ID if match its
unit ID then execute the order in the frame.

d. [Ifthe unit ID doesn’t match its unit ID then nothing happens.

2.2.2 RS485 Network(Server)

a. Opening the Server Software.
b. Opening the Serial port (COM) connected to the Server Software.
c. Sending the Messages over the RS485 Network Cables.

d. Every receiver in the Network receives those messages and accepts its mine and
rejects the others based upon its ID.

2.2.3 RS485 Network(Client)

a. Opening the client software.
b. Opening the serial port (COM) connected to the client software.

c. Sending its ID to the Server.

24

——
| —

Applied Protocols in Smart Control Graduation Project 2010

2.2.4 TCP/IP Network

a. Opening the Server Software.

b. Opening the Serial port (COM) connected to the Server Software.
c. Opening the Server connected to TCP/IP Network.

d. Getting the IPs from the Network.

e. Sending the TCP/IP Packets.

f. Converting TCP/IP Packets into RS485 Frames.

g. Sending the Frames to the clients.

2.2.5 FBUS Connection

a. Establishing the FBUS Connection between Microcontroller and the Phone.
b. Sending the Starting FBUs Message to start the FBUS communication.
c. Refreshing the FBUS Connection by sending the starting message again.

d. Reading the message reached to the phone from the GSM by the microcontroller.

25

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Chapter III: Methodology

3.1 Power line communication and X10

3.1.1 Introduction

Power line communications (PLC) refers to the concept of transmitting information using
the electrical power distribution network as a communication channel. This technology
allows a flow of information through the same cabling that supplies electrical power. This
novel idea of communication helps in bridging the gap existing between the electrical and
communication network. It offers the prospect of being able to construct intelligent
buildings, which contain many devices in a Local Area Network.

There are two main applications for power line communication - one for broadband
Internet access to the home and the other for home and office networking. This work
focuses on using power lines for home networking. Home networks typically use
Ethernet or wireless devices. Ethernet provides high speed networking, but requires
dedicated category 5 (CAT5) cabling which would need to be installed in the home.
Wireless devices are now becoming more popular and work quite well. One major
attraction of power line communication is the high availability of power outlets. “As long
as there is a power socket, there is a connection to the network”. The high node
availability is why this technology has tremendous market potential. Power line
communication technology has been slow to evolve because the lines were designed
solely for the purpose of 50Hz main power distribution. But after development of X-10
protocol for convenient transmission over power line, it became easy.

3.1.2 Advantages and Disadvantages of PLC

3.1.2.1 Advantages of PLC

A. PLC integrates the transmission of communication signal and 50/60 Hz power
signal through the same electric power cable.

B. The data link appears ‘transparent’ to the user. Although the devices are connected
through the power line, consumers perceive that there is a “separated” link
available for data communications.

C. Since the existing power lines are used for signal transmission, the initial heavy
cost and investment for setting up a data communications system is avoided.

3.1.2.2 Disadvantages of PLC

A. Minimum-security levels: power lines do not necessarily provide a secure media.

B. Data attenuation: due to the presence of numerous elements on a power line
network, data Attenuation is like issue.

C. High costs of residential appliances: the cost of a power line network modem is
not always competitive with the cost of a standard modem used to connect to a
phone line network.

D. lack of global standards: there are several different standards for power line

26

——
| —

Applied Protocols in Smart Control Graduation Project 2010

E. communication, and the development of a global standard for distributing data
over existing in-home power line systems does not seem to be the trend of the
international market

F. Noise: the greater amount of electrical noise on the line limits practical
transmission speed (vacuum cleaners, light dimmers, kitchen appliances and drills
are examples of noise sources that affect the performance of a power line-based
home network).

3.1.3 The Challenge

Since the power line was devised for transmission of power at 50/60 Hz and at most 400
Hz, the use of this medium for data transmission (especially at high frequencies) presents
some technically challenging problems. It is one of the most electrically contaminated
environments, which makes it very hostile for transmission of data signals.

The channel is characterized by high noise levels and uncertain (or varying) levels of
impedance and attenuation. In addition, the line offers limited bandwidth in comparison
to cable or fiber-optic links.

Power line networks are usually made of a variety of conductor types and cross sections
joined almost at random. Therefore a wide variety of characteristic impedances are
encountered in the network .This imposes interesting difficulties in designing the filters
for these communication networks.

27

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.2 X10 Protocol

3.2.1 What is the X10?

X10 is a remote-control system used for home automation. Its chief benefit is that it
requires no additional wiring - it uses the electric power wiring in your house to send
control signals.

This system was originally offered by BSR, a company that made audio equipment. Over
the years, the product line spun off into a separate company, the local manifestation of
which is called "X10 USA".

The X-10 technology is one of the oldest power line communications protocol and uses a
Form of Amplitude Modulation (ASK Modulation) to transmit information. Although it
was originally unidirectional (controller to controlled modules) recent developments
indicate that some bi-directional products are being implemented. X-10 controllers send
their signals over the power line to simple receivers that are used mainly to control
lighting and other appliances.

Some controllers available today implement some sort of gateway between the power line
and other medium such as RF and infrared.

A 120 kHz AM carrier, 0.5 watts signal is superimposed into the ac power line at zero
Crossing to minimize the noise interference. Information is coded by way of bursts of this
high frequency signal. To increase communications reliability, every bit of information is
sent twice, requiring a full line cycle, which limits the transmission rate to 60 BPS (in a
60 Hz line). A normal X-10 command consists of two packets with a 3-cycle gap between
packets. As mentioned, each packet contains two identical messages of 11 bits each,
which yields a 48-cycle command length of about 0.8 second. This represents a poor
bandwidth while the reliability of the transmission is severely compromised in a noisy
environment. These are the main reasons why this technology has limited applications.

3.2.2 Transmission theory of X-10 signals

The X-10 communication is based on the "injection™ of high-frequency signals (120 kHz)
on the 220Vac network, representing binary signals (1 or 0). The signal is inserted
immediately after the passage through the origin of the sine wave of 50Hz, with a
maximum delay of 200 microseconds. This special feature is used by receivers to know
when to listen to the line. The signal is sent through the electric energy network to the X-
10 receivers connected to the network.

To allow the use in three-phase electrical networks, the 120 kHz signs are transmitted
three times in each cycle, in moments that coincide with the passage of zero voltage of
each of the phases. Thus, using its own couplers, it is possible to communicate with any
device, regardless of the phase in which it is installed. In order to simplify the
explanation, this fact will be omitted in the continuation of the text, referring only to the
signals of a single phase.

28

——
| —

Applied Protocols in Smart Control Graduation Project 2010

H 170 KHz

Ly

4—=0 HZ

1nE |‘_

£70s s L~

LE5EE ME . o

£.222 =

Figure 5 Sine wave with the injection of an X-10 signal

Since the means of distribution of energy is electrically very noisy, a policy in which a bit
is never sent alone was adopted, and the bit is always sent together with its complement.
In practice this means that whenever you want to send the bit 1, it corresponds to sending
a 1 (120 kHz sign at the source) followed by a 0 (lack of signal). The sending of bit O
corresponds to send a 0 (lack of signal) followed by a 1 (120 kHz frequency at the
source). This is illustrated in Figure 3. This aims to minimize the probability of the
electrical noise being confused with a valid signal. However, it has disadvantage of
reducing the rate of transmission, which is thus restricted to a mere 50 bps (a bit is sent
per cycle of the electricity network).

|

1 (120 KHz) o

Figure 6 Sen'ding of binary signals 1 -and 0

A complete transmission of an X-10 command includes the transmission of four fields
that "occupy" eleven cycles of the electric wave. The first field (2 cycles) represents the
"Start Code" - sequence of bits (1 1 1 0). It should be pointed out that this is the exact
sequence indicated and that the rule of each bit being followed by its complement is not
confirmed. The following field, represented by 4 cycles, presents the home code and their
respective supplements. Similarly 4 more bits are followed, which occupy 4 cycles that
represent the device code or the code of the function. In order to distinguish this last field
a bit is sent (and its respective supplement), which identifies whether the previous field
refers to the number of a unit (bit = 0) or to the code of a function (bit = 1).

29

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

Each complete package must be sent in two groups (the first to indicate the device and
the second the function to be executed) with a maximum of three cycles of the sine wave
alternating between each group. The commands Dim and Bright are exceptions to this
rule and should be continuously transmitted without a cycle interval between them.

Robust
foundation for ‘ Taols | Eclipse plug-ins, Concurrency Refactorings
higher level
programming
models and Very High Level Languages (WHLL's), Implicit paralielism,
too!
ol Domain Specific Languages (DSL's) Implicit data distributions

‘ Components |

Domain-specific frameworks

‘ Libraries | Collections, concurrency utilifies, ...
Design goals:
safety, analyzability, | x10 | anguage | X10 Activities, Places, PGAS
scalability
Mapping of places & activities io
| Deplapren nodes in NUCC Platform
| Virtual Maching Safety checks + dynamic compilation

Exploitation of

Low Level Parallel/Communication Runtime

Integration of high-performance

scalable {MPI + LAPI + RDMA + OpenMP + threads) threadiing and data transfer
performance at
lower levels of
NUCC platform Operating System Resource management in user space

Figure 7 Standard X-10 Transmission Routine

Power Line Cycles

1 2 d =)
ot et i »le |
staRT | HOusE |HUMEER| ST4RT | HOUSE |HUMEER
CODE | CODE CODE | CODE | CODE CODE
Code transmitted when a number button is pressed
START | HOUSE [FUNCTION START | HOUSE [FUNCTION
CODE | CODE | CODE | CODE | CODE

Code transritted when a Function button is presse
Figure 8 Standard Frame of X-10

Starttudet\mL\HEL\HdL\HE mmtz\ﬁliﬁlﬂs\ﬁtfm
N

'I'I'II:IEI'IIIZIIEIEI'IIIZIIEI'IEIEIIIZI'I
11100 1 1 0 1 1 1 o 0
N — TT—

10 oo 11100
Start Code House Code & Key Humber "2

Figure 9 Example of X-10 Frame

30

——
| —

Applied Protocols in Smart Control Graduation Project 2010

An X-10 command usually includes two actions: activate a particular device (message
code indicating device), and then send the function to be executed (message with the
function code). Note that after a certain device is activated, it will remain active until
another is located. While a device is active you can send it multiple commands. Sine
wave with the injection of an X-10 signal sending of binary signals 1 and 0 Example of
the transmission of an A2 ON command.

List of X-10 commands

House Codes Unit/Function Codes
H3 H4 HZ Hi Dg o4 D D F

A o1 1 1] 1 1] 1 1 1] 1]
B 1 1 1 1 2 1 1 1 1] 1
[oo 1 1 3 1] 1] 1] 1
D 1 o1 1] 4 1 1] 1 1] 1]
E oo o 1 a 1] 1] 1] 1 1
F 1 oo 1] 1 1] 1] 1 1]
G no1 no1 7 1] 1 N 1 1]
H 1 1 o1 g 1 1 1] 1 1]
| o1 1 1] 1] 1 1 1 1
J 1 1 1 1 10 1 1 1 1 1]
k. oo 1 1 11 1] 1] 1 1 1]
L 1 o1 1 12 1 1] 1 1 1]
hl oo 0o o 13 1] 1] 1] 1] 1
] 1 o o 0 14 1 1] 1] 1] 1
] oo oo 14 1] 1 1] 1] 1]
F 1 1 oo 16 1 1 1] 1] 1]
All Units Off 1] 1] 1] 1] 1
All Units ©n 1] 1] 1 1 1
2 1] 1] 1 1] 1
Ot 1] 1] 1 1 1
Diirm 1] 1 1] 1] 1
Bright 1] 1 1 1 1
All Lights Off 1] 1 1 1] 1
Extended Code 1] 1 1 1 1

Hail Request 1 I} I 1] 1Mote 1
Hail Acknowdedge 1 1] 1 1 1

Pre-Set Dim 1] 1 H 1Mote 2

Extended Data 1 1 0 0 1hote 3
Status is On 1 1 I 1 1
Status i Off 1 1 1 1] 1

Status request 1 1 1 1 1Mote 4

Figure 10 X-10 Codes

Note 1: Hail Request is transmitted to see if there are any other X10 compatible
transmitters within listening range.

Note 2: In a Pre-Set Dim function, the D1 bit represents the MSB of the level and the 4
House code bits represent the 4 least significant bits. No known X10 device responds to
the Pre-Set Dim function.

Note 3: The Extended Data code is followed by eight-bit bytes which can be any data you
might want to send (like temperature). There must be no delay between the Extended
Data code and the actual data bytes, and no delay between data bytes.

Note 4: The X10 RF to AC Gateway model RR501 is a two-way module. If the RR501 is
addressed by transmitting its House Code and Unit Code and then the STATUS

31

——
| —

Applied Protocols in Smart Control Graduation Project 2010

REQUEST is transmitted, the RR501 will respond by transmitting Status ON if it's turned
on or Status OFF if it's off.

3.2.3 Why X10 Technology?
There are two main reasons why choosing the X10 protocol.

A. It is easy. Power line communication is patented. There is no need for 'control
wires' or 'buses’. The modules simply plug in or replace existing switches, there is
no complicated wiring. It is easily expandable to over 250 modules and it has the
widest range of home control products available.

B. It is affordable. You can build a system for very little expense, and expand the
system over time to suit your needs.

:&
Line Interface TX
I
I

Transformer H
DC I Embedded hardware

power supply

Powerline signal

{Digital electronics)

Powerline Node N —

Figure 11 General structure of a power line node

3.2.4 What Are the Tradeoffs?
The following are factors in favor of X10 as a home automation system:

A. X10 equipment is inexpensive.

B. It requires no special wiring.

C. Itiseasy to set up and use.

D. Systems can be small or large - you can start with just a couple of pieces and

grow if you like it.
X10 is easily placed under computer control.

F. A radio-controlled version is available and very compatible with the rest of the
system.

The following are drawbacks of X10 as a home automation system:

A. X10 communication can be thwarted by other carrier-current devices, including
wireless intercoms.

B. X10 signals can be degraded, damped, or stopped by power-conditioning
equipment, including inexpensive "noise-suppressing™ power strips, certain
brands of computer power supplies, and my DAK bread maker. [There is a
solution for this - a "choke".]

m

32

——
| —

Applied Protocols in Smart Control Graduation Project 2010

C. There is no guarantee that an X10 command will get to its destination. If you send
a command to turn off the heater, the command might get zapped by line noise
and never have a chance to turn off the heater.

D. The limitation of 16 house codes and 16 unit codes makes the address space a bit
tight - there is no way to grow above 256 devices.

E. Most houses are wired with two separate 110 circuits. X10 signals sent from a
control panel plugged into one outlet might not get to the lamp module plugged
into the outlet across the room - if it is on the other "leg" of the 110. [There is a
solution of this - a "signal bridge".]

F. It takes about a second to send an X10 command. While that command is being
sent, you can't send another, or both commands will be lost.

3.2.5 X10 implementation

3.2.5.1 XM10 Module

Two-way PLC interface for OEM applications (xm10). The xm10 is a transmitter —
receiver that plugs into a regular AC outlet and connects to the controller via a modular
RJ 11 telephone jack. Alternatively, the xm10may be fitted inside the controller cabinet,
connected to the 230 V AC supply before the power transformer. It provides an opto-
coupled 50 HZ. Square wave, synchronized to the zero cross point of the AC line. The
controller generates X-10 compatible codes synchronized to this zero crossing point. The
two-way interface then couples the X-10 codes onto the AC line.

Figure 12 XM10 Module

33

——
| —

Applied Protocols in Smart Control Graduation Project 2010

TW523 ==

ZERO CROSSING|
DETECT

-15Y
i |
GATE '—I AMPLIFI COUPLING L
MPLIFIER TRANSFORMER
1
-3V -30V
120KHZ
OSCILLATOR
A8V 90V

Figure 13 TW523 Connection Block diagram

3.2.5.2 X-10 Transmission Circuit

8
>
vece
LiE
R7
 —
1c2 ol 10K
VoD
R1
4 worRTA B
10K PGOIRBT
& RADAND PGCRB6
e A RE5 o
= RrA2iAN2 RE4 o)
A ragana PGMRE3
-5l Rraamocki RE2
' rasiana RE1
4 reoromms INTIRBO =]
PSPTRD7 2
PSPERDS
OSCICLKIN PSPERDS
OSC2CLKOUT PSP4RD4 =
2 RCOT10S0 RXIRCT Gl
GND 5 RCTIOSI TXRCE
© RC2/CCP1 SDORCS —
RCHISCK SDIRC4

CcC

R
o f RDO/PSPO RD3/PSP3 a
ke L RD1PSP1 RD2PSP2 vee P e
7P R 1C1
GND = = 11 N
010F E o
3
T
GND 89 Selofol<l 5
¥ cov []
2
- -
o 7 T mour [4GND 2
o 201 v mouor <
> 2] riour RN ;# < M
—— R20UT R2AN p— +C
IAX232
1 D1 ol GND
| NGBaZ |G
7 2 o) ol
3 7 IC3 ST "
ol |8
DCJ020: el
GND =
PAVin]
GND GND GND El
GND

Figure 14 X-10 Transmitter Schematic

34

——
| —

Applied Protocols in Smart Control Graduation Project 2010

X TS JLBUMCINEY

{18 8 8

Al

Figure 15 X10 Board Layout

o

]
]
]
4]
B
4]
&)
Iy

¥
5
i
4]
)
']
"l
]
l':.
&

¥
by

Figure 16 3D View for PCB

35

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.2.5.3 Zero Cross Detector

In X-10, information is timed with the zero-crossings of the AC power. A zero-crossing
detector is easily created by using the external interrupt on the RBO pin and just one
external component, a resistor, to limit the current into the PICmicro MCU (see Figure
3). In India, the peak line voltage is 230V. If we select a resistor of 6 M Q, I peak =
230V/6 M Q=38 pA, which is well within the current capacity of a PICmicro MCU I/O
pin. Input protection diodes (designed into the PICmicro MCU 1/O pins) clamp any
voltage higher than VDD or lower than VSS. Therefore, when the AC voltage is in the
negative half of its cycle, the RBO pin will be clamped to VSS - 0.6V. This will be
interpreted as a logic zero. When the AC voltage rises above the input threshold, the
logical value will become a ‘1°. In this application, RBO is configured for external
interrupts, and the input buffer is a Schmitt trigger. This makes the input threshold 0.8
VDD =4V on a rising edge and 0.2 VDD = 1V on a falling edge.

Upon each interrupt, the Interrupt Edge Select bit within the OPTION_REG register is
toggled, so that an interrupt occurs on every zero-crossing.

PIC16F87XA

120 VAC @ AN RBO/JANT
R=5MQ

Figure 17 Zero Cross Detection Circuit

3.2.5.4 120 KHZ Carrier Generator

X-10 uses 120 kHz modulation to transmit information over 50 Hz power lines. It is
possible to generate the 120 kHz carrier with an external oscillator circuit. A single 1/0
pin would be used to enable or disable the oscillator circuit output. However, an external
oscillator circuit can be avoided by using one of the PICmicro MCU’s CCP modules. The
CCP1 module is used in PWM mode to produce a 120 kHz square-wave with a duty
cycle of 50%. After initialization, CCP1 is continuously enabled, and the TRISC bit for
the pin is used to gate the PWM output. When the TRISC bit is set, the pin is an input and
the 120 kHz signal is not presented to the pin. When the TRISC bit is clear, the pin
becomes an output and the 120 kHz signal is coupled to the AC power line through a
transistor amplifier and capacitor, as depicted in Figure.

36

——
| —

Applied Protocols in Smart Control Graduation Project 2010

*SVDC Migh-Pass Filter
0.1 4F
X2 Rated
500 120 VAC
PIC16F87XA C
0SC2 20002
7.680 MHz RC3/CCP AN 1MQ

e

Figure 18 120 KHZ Carrier Generation Circuit

Since the impedance of a capacitor is Zc = 1/ (2*rn *f*C), a 0.1 pF capacitor presents a
low impedance to the 120 kHz carrier frequency, but a high impedance to the 50 Hz
power line frequency. This high-pass filter allows the 120 kHz signal to be safely coupled
to the 50 Hz power line, and it doubles as the first stage of the 120 kHz carrier detector.
To be compatible with other X-10 receivers, the maximum delay from the zero crossing
to the beginning of the X-10 envelope should be about 300 ps. Since the zero crossing
detectors has a maximum delay of approximately 64 us, the firmware must take less than

236 ps after detection of the zero crossing to begin transmission of the 120 kHz envelope.

37

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.2.5.5 X-10 Transmit Software

As explained in the previous sections, the X-10 Frame consist of Start code (1110), house
code and number code , also for doing this in the software the message sent firstly to
MAX232(use RS232 Protocol)that in rule send data to Microcontroller to Packed and
prepare it to transmit over the power line.

First, choose the id of the serial port that device connected to it that is done using the
following interface

(& | : XI0TR =8

Controle

Figure 19 Open Com Interface

Second, choosing the house id and the unit id and then write the command code as in the
following interface

38

——
 —

Applied Protocols in Smart Control Graduation Project 2010

u! : ¥10TR EE—

- Controle -

Home D Unite D Commend
A [] E L] | [l

[e

Figure 20 Send data Interface

A. Send data method

private void send_Click(object sender, EventArgs e)

{ string s = comboBoxEx1l.Text + comboBoxEx2.Text;
t.Text += "\n\r";
t.Text += "Send :" + s + "\n\r";
port.Write(s);
}
private void buttonXl_Click(object sender, EventArgs e)
{
t.Text = "";
}

Code 1 Send data method

39

——
| —

Applied Protocols in Smart Control Graduation Project 2010

B. Receive data method

private void serialPortl_DataReceived(object sender,
serialDataReceivedEventhirgs e)

1
string m;
m = port.ReadExisting();
t.Text += "wnhr";
t.Text +="Recive "“+m"'nhr™;
¥

Code 2 Receive data method

40

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3 RS485 Protocol

3.3.1 What is RS485 Protocol?

RS-485 is a telecommunications standard for binary serial communications between
devices. It is the protocol or specifications that need to be followed to allow devices that
implement this standard to speak to each other. This protocol is an updated version of the
original serial protocol known as RS-232. While the original RS-232 standard allowed
for the connection of two devices through a serial link, RS-485 allows for serial
connections between more than 2 devices on a networked system.

A RS-485 compliant network is a multi-point communications network. The RS-485
standard specifies up to 32 drivers and 32 receivers on a single (2-wire) bus. New
technology has since introduced "automatic” repeaters and high-impedance drivers and
receivers such that the number of drivers and receivers can be extended to hundreds of
nodes on a network. RS-485 drivers are now even able to withstand bus contention
problems and bus fault conditions.

R5-485 Master Device 1 Device 2 Device 3

DATA (A)-
GND
DATA (B)+
DATA (A)-
DATA (B)+

Juy
g
ol
=
=
=

RD{A)-

GHND 5
s

N

e

When unit has Internal

WAV switches or Jumpers One Twisted Wire Pair on to remaining
plus Ground R5-485 Devices

Fig. 2
Z2 Wire R5-485 Connections

Figure 21 RS485 Network architecture

A RS-485 network can be constructed as either a balanced 2 wire system or a 4 wire
system. If a RS-485 network is constructed as a 2 wire system, then all of the nodes will
have equal ranking. A RS-485 network constructed as a 4 wire system has one node
designated as the master and the remaining nodes are designated as slaves.
Communication in such a system is only between master and slaves and never between
slaves. This approach simplifies the software protocol that needs to be used at the cost of
increasing the complexity of the wiring system slightly.

41

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.2 The RS485 Advantages:
A. RS485 allows multiple devices (up to 32) to communicate at half-duplex on a

single pair of wires, plus a ground wire (more on that later),

B. At distances up to 1200 meters (4000 feet).
C. Both the length of the network and the number of nodes can easily be extended

using a variety of repeater products on the market.
D. The properties of differential signals provide high noise immunity and long

distance capabilities.

+5 volt Hardware BenBus

470

ohm Up to 4000 ft. (1200 mtr)

120johm 120 ohm .

i -

470
ohm
G| |7 G| |7 6| [¥
al| |b a| | 1b all b g ?h
1 E 14 E E 14 E
% HE YW EED T W ERAY W E
a = o = g = =
SN2BRS| & SRR Is] & SRPr|s] & S|@RMs| &
'43‘ — '43‘ i '43‘ — '43‘ —
RO TD RO TD RO T RD TD
iRE DE IRE DE IRE DE IRE DE
1768 51768 T51768 51768
Haster 00 Slave 01 Slave 02 Slave 03
Up to 32 devices

Figure 22 Devices connection in the Network

42

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.3 How does the hardware work?

Data is transmitted differentially on two wires twisted together, referred to as a "twisted
pair." The properties of differential signals provide high noise immunity and long
distance capabilities. It is like the following figure.

Mark Mark Space

v

1100101

= =
I
Q aoeds

T |

Idle Idle

w
—
=
=

uels

Figure 23 RS485 Signals

A 485 network can be configured two ways, "two-wire™” or "four-wire." In a "two-wire"
network the transmitter and receiver of each device are connected to a twisted pair.
"Four-wire" networks have one master port with the transmitter connected to each of the
"slave" receivers on one twisted pair. The "slave" transmitters are all connected to the
"master” receiver on a second twisted pair.

In either configuration, devices are addressable, allowing each node to be communicated
to independently. Only one device can drive the line at a time, so drivers must be put into
a high-impedance mode (tri-state) when they are not in use. Some RS-485 hardware
handles this automatically. In other cases, the 485 device software must use a control line
to handle the driver. (If your 485 device is controlled through an RS-232 serial port, this
is typically done with the RTS handshake line.)

A consequence of tri-stating the drivers are a delay between the ends of a transmission
and when the driver is tri-stated. This turn-around delay is an important part of a two-
wire network because during that time no other transmissions can occur (not the case in a
four-wire configuration). An ideal delay is the length of one character at the current baud
rate (i.e. 1 ms at 9600 baud).

3.3.3.1 Two-wire or four-wire?

Two-wire 485 networks have the advantage of lower wiring costs and the ability for
nodes to talk amongst themselves. On the downside, two-wire mode is limited to half-
duplex and requires attention to turn-around delay. Four-wire networks allow full-duplex
operation, but are limited to master-slave situations (i.e. “master” node requests
information from individual "slave" nodes). "Slave" nodes cannot communicate with
each other. Remember when ordering your cable, "two-wire" is really two wires +
ground, and "four-wire" is really four wires + ground.

43

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.4 How does the software work?

RS485 software handles addressing, turn-around delay, and possibly the driver tri-state
features of 485. Determine before any purchase whether your software handles these
features. Remember, too much or too little turn-around delay can cause troubleshooting
fits, and delay should be a function of baud rate. If you're writing your own software or
using software written for an RS-232 application, be certain that provisions are made for
driver tri-state control. Luckily, there are usually hardware alternatives for controlling
driver tri-stating. Contact B&B Technical Support for further details.

3.3.4.1 The EIA RS485 Specification

The EIA RS485 Specification labels the data wires "A" and "B", but many manufacturers
label their wires "+" and "-". In our experience, the "-" wire should be connected to the
"A" line, and the "+" wire to the "B" line. Reversing the polarity will not damage a 485
device, but it will not communicate. This said, the rest is easy: always connect A to A and
B to B.

AN
MAR4AE
3IpF MAXAEIE
T MR 4a5E DE
. — M K47 E ol
ro [T %] il NiAK] 467E oo
— " H EU':': E
RE| 2 .
: Rt Fit
E " L
q A
o[= * Tano R Rk
(=) —
— | E
Yoo _
DE 3ANF e AL oo RE
4 |14 NAX48OF L]
TY Max481E
o—2H b 10] Rt — RO
z
12 4
1
R 11 Fit -
) 1,8,13 B
M
3|E.TU__G”D auol Toe
=

Figure 24 Max485 Connection

Applied Protocols in Smart Control Graduation Project 2010

3.3.5 Important to communicate

Signal ground, don't forget it. While a differential signal does not require a signal ground
to communicate, the ground wire serves an important purpose. Over a distance of
hundreds or thousands of feet there can be very significant differences in the voltage level
of "ground." RS-485 networks can typically maintain correct data with a difference of -7
to +12 Volts. If the grounds differ more than that amount, data will be lost and often the
port itself will be damaged. The function of the signal ground wire is to tie the signal
ground of each of the nodes to one common ground. However, if the differences in signal
grounds are too great, further attention is necessary.

3.3.6 RS485 Hardware implementation

Using microcontroller is the easy way for our devices to support RS485 as most of the
microcontroller support the serial communication (RS232) which is the bias of the RS485
.also all the microcontroller compilers support the RS232 protocol so it is easy to
implement the RS485 within it.

3.3.6.1 Microcontroller:
We select PIC microcontroller to be used in our project as we previously give the causes
for using it.

The circuit of the project as the following

45

——
| —

LBHX) LEFXVN

Graduation Project 2010

0N90_||.

—1n Vg Qv v O ' A a5 Q zxL
® =0 a €
(=] O|+“ HOTL HOZL UH+|O 208
T [BY] fat) 3P~
X O——————— o 2P —9:2 o f—O o
Q& Che,
zn N
¥LL84910)
VLI849L T4 LSOy —
o] SIS0 [
& seSanad SeSasay o=
T SdSasa FISAVQY [—
| reSavay SASAETY [
£ tasamau P
T Zasaray e
= LaSdiay OSSADTY &
5 oesanay
el] Q) T
LONHILTE HIHLEOH QO o
HOKLISOH —— AHUSIARTION 00S/S0M ==
= 00508 AHLSINETON VOSIOSAOY =
——{ ¥OsosToY BT SN IDSHOSEDY ==
= TISMOSEDY SHINYTIY [5 Emenwi3y e
] e ——{ QUSNWO3Y ZEOMSCLUIOY O oy
ZdOORSOLLADY OHSNWIO3Y [—— DOLUOSOLLOOH -
T DOLUCSCLLDOY — LNOTISSENwSYY
ANOTOISSANVIEYY 5 anoLomooury QodiEy gy
eSS LNOLIMHOLPY 2= - = 0 Q codu
09/B8Y RNENVIEVY [—— ——{ o =) Q esau
can OIS (2 o e e O cvan
e e ——| oNwiowd oLy Q ez
WO/EaY ONVIOVY —— 28y 0 eeay
zau 1 inoxndease L8y = =
[LNONTEISO =] NOIoA0so 110G () £0E
nwosy NDIOIOS0 [
€n
n -

[(EETSSen)] [E=TRSaE]

Applied Protocols in Smart Control

0L} 3ABIS 0] dAC|S

461

Figure 25 Total RS485 Network Circuit

Applied Protocols in Smart Control Graduation Project 2010

Microcontroller circuit elements

A. RS232 to RS485 converter
Our Devices will be connected to PC using serial cable but it is not use RS232 protocol it

use RS485 protocol so we need to convert RS232 interface to RS485 interface. It is like
the following

a. Schematic

(8]
(&
o
Ic2 55
J_CS i PN
2 I
Tt I ki
¢ =
I —— ca+ I
< S s
Tuf 2o GND
s DR
Ly mour -
2 riour min -
RIOUT RZIN
MARZ32 o
Ic1 e
A uee ¢ B
i H MR Fi
RO 4{‘ M E
1110 e rer | fssz
¥1-20) B A DE |
4
Dl
i

MAX34B8CPA

R2
120R
e

]
L |
LED

GND

1
470R

GND
(&)
O
=3
Ic3
17805T ! "
Wi s} —1
DA =)
1N41480035-7 GHND
N b L6
1 c5 v
2 uf 7
iaf 3 T_ATDUF T T4
DCJoz0z2 1

Figure 26 RS232 to RS485 Converter Schematic

47

——
| —

Applied Protocols in Smart Control Graduation Project 2010

b. PCB

Figure 27 RS232 to 485 Converter PCB

Figure 28 RS232 to 485 Converter PCB 2

48

——
| —

Applied Protocols in Smart Control Graduation Project 2010

final PCB

Figure 29 RS232 to 485 Converter bottom view

Figure 30 RS232 to 485 Converter Top view

49

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.6.2 RS485 Receiver

The following circuit will receive the data from the computer over a pair of wire as
explained in the previous sections. Every RS485 receiver circuit has a microcontroller
with a unique address in which they can control in up to 3 bytes of data which means that
by only one microcontroller we can drive up to 24 devices. The circuit receives data from
the computer check for their ID address if it is the check the entire message and
calculates the CRC if it is equal to that transmitted by the computer it means that the
message was correct so the micro will appears the message at its outputs

a. RS485 receiver schematic

> -
(5]
=
[od]
= \
WETRITHY
10K pooirer [
2 Ranann POCIRDE [
A Ratsan s |28
A Razianz rEs AL
= Razan: PoMiRE: 2
B Ragmuck rB2 |22
R RE1 |32
B reomomEs [N T B
A RetwrEG GHD
- 10 RE2rcsmART parTROT |20
I—G_I__\ PAPRRDE |23
yw ey = ﬁ OBC1TLKIN PSPSIRDS 2—_?
8 14 oscacLkour PsParDs I 13
18 Renmioso FOURCT
uw e 18 Recimios TaRCE |23 voo [
GND & 1 Reacepr sooRes (2 1 ro
" 18 peamor sOURCS |22
18 ppoesko ROWPEP3 |22 24 Rer B {7 o2
2 RD1PERI ro2PEPz 2 4{ \
s -oE A Ozt
=|2| PIC16FETTR 1 Ll
= H 14
0.1UF GhD U=
e MAX3468CPA -
GO

Ic2

7805T
o1 1y
1NA148D035-7

noo c4
2

3 AT0uF
DCJo202

GMND

Figure 31 RS485 receiver schematic

50

——
| —

Applied Protocols in Smart Control Graduation Project 2010

b. RS485 receiver PCB

Figure 32 RS485 receiver PCB

c. Final PCB

Figure 33 RS485 receiver PCB 2

51

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Figure 34 RS485 receiver PCB 3

3.3.6.3 RS485 Transmitter
The transmitter circuit is used to transmit data from the device to our PC to display it
.also every transmitter circuit is addressable so we can receive data from devices up to 32

devices and the data size to be transmitted is up to 3 bytes which is very good to transmit
what we want to transmit.

In the transmitter circuit it will be used to transmit data from:

1. temperature sensor
2. Light sensor (used in security)

52

——
| —

Applied Protocols in Smart Control Graduation Project 2010

a. RS485 transmitter schematic

Q (0]
g g oy woe e
0 6666060
it
L
1 o -
YOO y Vg3
WCLRITHY 1T R
FoDReT |40 i
A rapiann POCRES |22)
3 ratian res |28 R
4 razianz res | R
S Razians FouRE: |28 el
A ruaimock rez |8 el
A rasians ret | =}
B reroRs ITRaD 22 TR}
GND A petwvRs 220R
W pe st psprRDT |2
—l g PEPERDS |22
= }j OSCAICLHN PEPSRDS % L
0 g 08CaCLKOUT PAPURDS 2] I3 GND
—l 13 rcomoso RURCT
uw e 18 ceimos) THRCE [veo [
GND 5 1 aeaceer soores |2 " o
n 18 ceamck SDIRCH 12
3 coorgeo RDIPERE |2 A ey Al
A fppgpy Rozpsez |2 {
V33 A e Afs
=1 PICIEFGTTF Ju 1 g 5 .
Towr GO = a8
I MAXI4BRCPA -
GD

IC2
78057

Ll

GND

N

1

1

3 470uF 1uF -
DCJoz202

GND

Figure 35 RS485 transmitter schematic

53

——
| —

Applied Protocols in Smart Control Graduation Project 2010

b. RS485 transmitter PCB

Figure 36 RS485 transmitter PCB

54

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.7 Microcontroller Programming

The used microcontroller is the PIC microcontroller it can be programmed using
Assamply,C,Basic,and Pascal .also there are more than one compiler like MicroC,CCS
and High-Tec. and each differ from other by its offered library to make programming
easily and efficient.

In this project the used compiler for this part of it is the MicroC compiler it is very easy
to be used also it offer a RS485 library which contain Master and slave classes in
Appendix there is more information about this library.

3.3.7.1 Data Send and received format

start byte address byte

number of
data bytes

second data third data redundancy

first data byte byte byte check (CRC)

End Byte

o

Start byte
Is the first byte in the packet which is always is equal 0X96

Address byte
The address of the device this byte can take the value from 0 to 255 but it can’t
take the value 50 decimal which is used for broadcast

Number of data bytes
This byte indicate the number of data bytes being transmitted from the slave and
the number of data being transmitted from the M aster plus 128

First data byte
This is the first byte of data being transmitted

Second data byte
This is the second byte of data to be transmitted

Third data byte
This is the third byte to be transmitted

Redundancy check (CRC) byte
The algorithm for calculating the CRC is also given as;

CRC = NOT ($aa XOR $bb XOR $dd [XOR $dd XOR $dd])
Where;

$aa = one byte address

55

——
| —

Applied Protocols in Smart Control Graduation Project 2010

$bb = one byte showing number of data bytes (slave) and 128+number of bytes
(master)

$dd = one to three data bytes (depending on what was put in RS485 send
command)

$cc = cyclic redundancy check (CRC) byte

I.e. XOR $aa, $bb and all $dd bytes then invert all the bits in the answer then if
the answer is $96 or $A9 add one

3.3.7.2 Some important configuration for RS485

a. Buad Rate
The baud rate can be configured in both master and slave devices but it must be the same
for the data to be received correctly in this project the slave is a PIC microcontroller and
the Maser is the PC and the used buad rate is 9600 bps

b. RTS (Request to Send) bin
Control RS-485 Transmit/Receive operation mode this bin must be connected to the RTS
bin of the DB9 connector via the MAX232 IC to control the transmit and receive
operation from and to the PC this also will be configured in the software program

3.3.7.3 Complete Microcontroller codes
For the complete microcontroller code see appendix G

56

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.8 Software Program

In this project the programming language used is the C# because its facility in interfacing
the hardware with the software .the start with the interfacing with hardware using serial
cable with the protocol RS232 but in this project the used protocol is the RS485 so the
software must be to written to send RS485 packet instead of RS232 packet .in the
following is the work done by us to develop a new class that can send RS485 packets

3.3.8.1 RS485 Class

In the previous section (Microcontroller Programming) the RS485 packet details was
introduced .and now the computer is the master so our software must send the packet
with the same specification and also has to calculate the CRC to make our slave device
which is the microcontroller to receive data correctly so we develop the following class to
take data and format it with the same specification to be transmitted

3.3.8.1.1 RS485 Variables

byte add,data,bytes no=129, crc,start_byte=150,end_byte=169;

byte[] sbuffer;

Code 3 RS485 Variables

Data: is the data to be send to the specific added.
bytes_no: is the number of data bytes to be transmitted +128 (for now it is only 1 byte).
Crc: redundancy check byte (check for error in the following we will explain how)

start_byte: the start byte which used to indicate to the receiver the start of the message it
is constant for now and equal to 150 in decimal

End byte: the end byte which used to indicate to the receiver the end of the message it is
constant for now and equal to 169 in decimal.

Sbuffer: the packet to be transmitted.

57

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.8.1.2 RS485 Methods
a. Set_add Method

This method is used to specify the address to the new created object of our class. It is like
the following

//===
// set add Method
//===
public void set_add(byte d)
{
this.add = d;
}
//===

Code 4 set_add Method

b. Set_data Method

This method is used to specify the data to the new created object with the specific add of
our class. It is like the following

//===
// set data Method
//===
public void set_data(byte da)
{
this.data = da;
}
//:::

Code 5 Set_data Method

58

——
| —

Applied Protocols in Smart Control Graduation Project 2010

c. Take Not Method

This method is apart from the method that used to calculate the CRC. This method take
an integer convert it to its binary representation then invert each bit and return the
equivalent integer

//==
//Not Method
//==
public double takeNOT(int b)
{
int t, j = 7;
string g = string.Empty;
double k = 0;
for (t =128; t > 0; t =t / 2)
{
if ((b & t) !=0) g += "0";
if ((b & t) ==0) g += "1";
}
chars = g.ToCharArray();
foreach (char c in chars)
{
if (c == '1")
{
k += Math.Pow(2, j);
}
J--5
}
return k;
}
//::

Code 6 Take Not Method

59

——
| —

Applied Protocols in Smart Control Graduation Project 2010

d. get_data Method

This method responsible for calculating CRC for the current ID address and data of the
object that called for it. The CRC calculation algorithm has been explained in the
previous section (2.1-Data Send and received format).

//==ss==sSssss==sss====
// get data Method
//==s===sssss==sss====
public byte[] get_data()
{
t4 = (add ~ bytes_no ~ data);
crc = (byte)takeNOT(t4);
sbuffer = new byte[] { 150, add, bytes_no, data, crc, 169 };
return sbuffer;
}
[[==

Code 7 get_data Method

3.3.8.1.3 The Complete Code
For the Complete Code see Appendix F

60

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.3.8.1.4 Screen Shot of Test Program

r ™y
W | v SHEIMY RS485 CONTROLLER =™
COM PORTS Send Data ABOUT

Device ID: |10 []
Data : [2s3 |
[Send Data |
~ »,

Figure 37 RS485 Test Program

61

——
| S—

Applied Protocols in Smart Control Graduation Project 2010

3.4 FBUS Protocol

3.4.1 Introduction
Most Nokia phones have F-Bus and M-Bus connections that can be used to connect a

phone to a PC or in our case a microcontroller. The connection can be used for
controlling just about all functions of the phone, as well as uploading new firmware etc.
This bus will allow us to send and receive SMS messages.

Figure 38 Nokia 3310/3315 F/M Bus connection

The very popular Nokia 3310/3315 has the F/M Bus connection under the battery holder.
This is a bit of a pain to get to and requires a special cable to make the connection. The
picture above shows the 4 gold pads used for the F and M Bus. The Table below shows
the F/M- Bus connection signal direction.

Table 1 F/M-BUS Signal Direction

Pin Number Pin Name Direction
1 MBUS <-->
2 GND
3 RX <--
4 X -->

3.4.2 FBUS Protocol
The F-Bus is bi-directional serial type bus running at 115,200bps, 8 data bits. The serial

cable contains electronics for level conversion and therefore requires power. The first
thing to do is supply power to the cable electronics and this is done by setting the DTR

62

——
| S—

Applied Protocols in Smart Control Graduation Project 2010

(Data Terminal Ready) pin and clearing the RTS (Request to Send) pin. Connect the
DTR pinto a +3to 12 Volt supply and RTS to a -3 to -12Volt supply. The easy way to
achieve this is by using a Max232 or similar transceiver for the RS232 TX and RX pins
and then connecting the DTR pin on the serial cable to the V+ pin on the Max232. Do the
same for the RTS; however connect it to the V- pin on the Max232. The V+ and V- pins
are derived from internal charge pumps that double the input voltage. I.e. for a 5V
Max232, the V+ will +10V and the V- will be -10V.

The next step is to synchronize the UART in the phone with your PC or microcontroller.
This is done by sending a string of 0x55 or 'U' 128 times. Simple! The bus is now ready
to be used for sending frames.

The Nokia protocol has a series of commands that allow the user to make calls, send and
get SMS messages and lots more (see appendix D AT Commands).

So here’s the difficult part. The FBUS protocol is made up of numerous bytes and always
start with ‘Ox1E’ for cable type of connection (we are really not worried for IR or
Bluetooth here)

Let’s see a frame of bytes which when sent to the Nokia 3310/5110 phone will reply back

with the h/w and s/w version of the phone.
Table 2 frame of bytes sent to the Nokia 3310/5110

Byte |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 [10]11)12 |13 14 |15

HEX | 1E |00 | OC 00 |01 |00 |03 |00 |01 |60 |00 72 D5

cable cell PC seq | Padd | even | odd

ByteO=Frame id 1E=cable

Bytel=Destination address=00=phone

Byte2=Source address=0C=terminal/micro/PC

Byte3=Type of command (D1=get version)

Byte4=MSB of frame length

Byte5=LSB of frame length=07 (7bytes ahead and more)
Byte6=Byte7=Byte8=Byte9=Byte10=Bytel 1=don’t need to worry about them! J
Byte12=Sequence number or Seq.No. (Very important)
Bytel3=is padding byte and is present if Frame length is odd.
Bytel4=Even checksum

Byte15=0dd checksum (embedtronics.com was wrong here)

Byte5 has the info of how many more bytes there are about to come till Seg.No.. comes
(which means that after Seq.No.., minimum 2 bytes checksum are always present and a
padding byte=0x00 is inserted to make the whole frame even .In our case padding
byte=0x00 is present since frame length is 0odd=0x07)

63

——
| —

Applied Protocols in Smart Control Graduation Project 2010

A little more about the sequence number here: The Seq.No. as the name suggests defines
the sequence of frames and goes from 0 to 7 and back to 0.and so on.

E.g: In above example if we were to send the same Get version frame 9 times in a row,
what should be done? You are absolutely correct! In the first frame, Seq.No.. is 0x60,
next its 0x61,next 0x62...... 0x67 (and back to..) 0x60. That’s all. The phone will be
having a count of the source’s (micro) Seq.No.’s, and if it’s incorrect, then phone will not
respond. And you will have to re-initiate the whole ‘U’ sending again.

Now about the checksums. These are nothing but the XOR of all bytes. In our case they
are XOR of all bytes in even positions and odd positions

E.g.: in above example the even checksum will be calculated like this

ByteO XOR Byte2 XOR Byte4 XOR Byte6 XOR Byte8 XOR Byte1l0 XOR Byte12

OxIE "~ Ox0C ~ O0x00 ~ O0x00 ~ 0Ox00 ~ 0Ox00 A 0x60

=0x72

Whereas odd check sum is obtained by XORing all odd placed bytes
Byte1/Byte3"Byte5”Byte7”Byte9"Byte11°Byte13=0xD5

When such a frame is sent, the nokia phone replies with 2 frames
A. An acknowledge frame to tell us that ‘he’ read the frame.
B. Actual data frame.

Let’s see how the ACK frame is made up

Table 3 ACK frame

Byte | 0 1 |2 |3 |4 |5 |6 Il 8 9
HEX |1E | 0C |00 D1 |00 |[CF |71

cable PC (cell Type | seq | even | Odd

Keep in mind, the above frame is sent by Nokia. (Nokia is source now)

ByteO=Frame id 1E=cable

Bytel=Destination address=0C= terminal/micro/PC

Byte2=Source address=00= phone

Byte3=Type of command (7F=acknowledge frame)

Byte4=MSB of frame length

Byte5=LSB of frame length=02 (2 bytes)

Byte6= (replying to what was sent/asked by micro) D1=get version

Byte7=Seq.No. (No padding byte present after Seq.No. since Frame length=0x02=even)

64

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Byte8=Even check sum
Byte9=0dd check sum
After this ACK frame, the phone will send the actual data frame, with the h/w and s/w

version (check my excel sheet on this)

It isn’t over yet! The phone also wants a confirmation that we/microcontroller have
received the data, so it will be waiting for the ACK frame that we are supposed to send. If
we don’t send this ACK frame, the phone sends the data two more times (after the first
frame) which means that we are entitled to the data 3 times before phone stops sending
data.

This also means we need to send an ACK frame to the phone now. This too is quite
simple .The ACK frame that we should send is like this

Table 4 ACK frame

Byte |0 |1 |2 [3 |4 |5 |6 |7 |8 |9
HEX | 1E |00 |OC D2 |01 |CO |7C

cable (Cell micro Type | seq | even | Odd

I think there’s no need to explain the bytes now, but for the sequence number.

When we/micro sends an ACK frame, the sequence number is not the one we are
generating (from x0 to x7) but it is the last three bits of the Seq.No. Of previous received
data frame. No? Haven’t got it? Let’s take the example of the Get-version frame.

The phone had sent 0x41 as the sequence number in its h/w, s/w data frame
Ox41= 0100 0001 b

Sample frame sent to my Nokia 3310 (showed as a Hex dump)

Byte: 00 01 02 03 04 05 06 O7 08 09 10 11 12 13 14 15
Datax 1E 00 OC D1 00 07 00 O1 00 03 00 01 60 00 72 D5
this sample frame is used to get the hardware and software version from a Nokia phone.
It is a good starting point to test if our implementation of the protocol is working.

Byte 0: All frames sent by cable will start with the character Ox1E first. This is the F-Bus
Frame ID. Cable is OX1E and IR is Ox1C. Byte 1: This is the destination address. When
sending data, it's the phone's device ID byte. In our case it's always 00 for the phone.
Byte 2: This is the source address. When sending data, it's the PC's device ID byte. In our
case it's always 0x0C (Terminal).

Byte 3: This is the message type or ‘command'. 0xD1 is Get HW & SW version.

65

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Byte 4 & 5: Byte 4 & 5 is the message length. In our case it is 7 bytes long. Byte 4 is the
MSB and byte 5 is the LSB.

Byte 6: The data segment starts here and goes for 7 bytes in our case. As The Nokia is a
16 bit phone and therefore requires an even number of bytes. As ours is odd the last byte
will be a padding byte and the message will end at location 13.

The last byte in the data segment (Byte 12 above) is the sequence number. The last 3 bits
of this byte increment from 0 to 7 for each frame. This part needs to be sent back to the
phone in the acknowledge frame. The other bits | am unsure about what they mean!
Bytes 14 & 15: The second to last byte is always the odd checksum byte and the last byte
is the even checksum byte. The checksum is calculated by XORing all the odd bytes and
placing the result in the odd Checksum location and then XORing the even bytes and
then placing the result in the even byte.

Well that is our first frame for our Nokia Phone. If the phone received it is show reply
with the following data

1E oC 00 7F 00 02 D1 00 CF 71
1E 0C 00 D2 00 26 01 00 00 03 56 20 30 34 2E 34 35 0A 32 31 2D 30 36 2D 30 31 0A
4E 48 4D 2D 35 0A 28 63 29 20 4E 4D
50 2E 00 01 41 3F Ad
The first line is an Acknowledge command frame. Notice how the destination and source
addresses are now swapped. This is because the Nokia phone is now talking. This
message is two bytes long with the two bytes representing the message type received
(0xD1) and the sequence number (0x00). The last two bytes are the checksum and should
be checked to make sure the data is correct. The 3310 will be waiting for an acknowledge
frame after these two frames were sent. If the acknowledge frame is not sent the 3310
will retry sending the data. The 3310 will only send the data 3 times and then gives up.

The second frame from our Nokia 3310 is the data we requested. The message type is
0xD2. This is 'receive Get HW&SW version'. This 38-byte (0x26) message should show
0x0003 "V” "firmware\n" "firmware date\n" "model\n™ "(c) NMP." The last byte in the
data is the sequence number. As with standard F-bus frames, the last two bytes in the
frame are checksum bytes.

The received data without f-bus frame

01 00 00 03 56 20 30 34 2E 34 35 0A 32 31 2D 30 36 2D 30 31 OA 4E 48 4D 2D 35 0A
28 63 29 20 4E 4D 50 2E 00 01 41

0003V04.45n21/06/01\WnNHM-5\n(c)NM P. Sequence no.
All that is required now is to send a acknowledge frame back to the phone to say 'l got it!

66

——
| —

Applied Protocols in Smart Control Graduation Project 2010

1E 00 OC 7F 00 02 D2 01 CO 7C Ox7F is the acknowledge frame's command. We are
only required to send a two-byte message so length is set to 0x02. The message contains
the acknowledged message type (0xD2) and the sequence no. (0x01). the sequence
number is made from the last 3 bits of the sequence number in the previous frame. The
checksum needs to be calculated and sent

3.4.3 FBUS Communication

3.4.3.1 Signal levels

The FBUS data sent by the PC and the reply from the phone are shown in the following
figure. Please note that the signal level of the computer (the data burst on the left) quite
bad only because the measurement circuit attenuates the signal. It should a rail-to-rail
signal from 0 to 3 volts like the phone response. These images are captured from Nokia
Data Suite 2.0 (NDS) communication.

The FBUS data sent by the PC and the reply from the phone are shown in the figure 1.2.
Please note that the signal level of the computer (the data burst on the left) quite bad only
because the measurement circuit attenuates the signal. It should a rail-to-rail signal from
0 to 3 volts like the phone response. These images are captured from Nokia Data Suite
2.0 (NDS) communication.

S0ml) S0ml) 2ms

PO NRELY] 9O

YRR R RN N A R b WK St b b b RN H i B b R R b b 1 12 s o Kb e et |

|
all=230.Eml) rms=0. 0mll aT=20.00ms 1--T=0.050kH=

Figure 39 a part of the FBUS communication of the Nokia Data Suite

A good guess about the FBUS drivers is that there is a high-impedance input in the FBUS
Rx pin of the phone, and a real push-pull buffer output in the FBUS TX pin.

67

——
| —

Applied Protocols in Smart Control Graduation Project 2010

But it is not so simple. By looking the startup situation of the Nokia Data Suite
communication. The start is shown in figure below.

S0ml) S0ml) 2ms

PR PR R s i

|
all=22Z, 4ml) rms=0. 0wl aT=20.00ms 1--T=0.050kH=

Figure 40 the start of FBUS communication measured with the test circuit

By looking at the above figure you must see that the FBUS TX line, the phone FBUS
output (the signal without data pulses) will raise after the buffers of the measuring circuit
are powered. (The power is applied to the measurement circuit just before the first time-
division line on the picture.) The "middle” state of the phone before the power-up means
that the FBUS Tx output driver does not drive the pin high all the time, but it is a three-
state output. (Measurement on an idle phone with a current meter shows the same thing.)

By pulling the FBUS Tx down instead of the 400 kilo-ohm pull-up shows that the FBUS
Tx drives the signal up to 3 V during the data pulses, so it is not an open-collector type
output.

The above figure shows also that the Nokia Data Suite 2.0 starts the communication
immediately after supplying power to the measurement circuit (the data pulses on the PC-
to-phone line). The first pulses are possibly not transmitted correctly because the adapter
circuit is not yet correctly powered. (The power-up ramp can be seen in the upper signal
on the scope.) Fortunately, this does not cause problems with the NDS.

68

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.4.3.2 Data speed

A part of a data burst from the PC to the phone is shown in the figure below.

S0ml) S0ml) 20ps

al)=223, 4ml rms=0. 0wl aT=85.6ps l-eT=10.4kHz

Figure 41 A close-up view to the FBUS data sent by the PC

By assuming that the data format contains the typical start and stop bits, one possible data
byte is shown in the figure with the time cursors. If it contains 11 bits (2 low, 4 high, 3
low, and 2 high), then the baud rate near the standard value of 115200 baud.

A similar view to the data sent by the phone is shown in the figure below.

I,SIIImU S0ml \ 20p=s
1 1
1 1

""? "" e PR = = = = == - e - - == -=---4 s - - -
I
1

— T e
1
1

- 1
1
1
1
1
1
1
1
1
1
1
1
:

ST R SO B i I S A coni — el
|I I
1 1

al)=289, 0ml rms=0. 0wl aT=85.0ps l7eT=11.72kHz

Figure 42 FBUS data sent by the phone.

69

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

3.4.4 FBUS Implementation

3.4.4.1 Hardware Implementation

C1
30pF | Ui
— X 3 OSCCLKIN RBOMNT —33:
c2 CRYSTAL, OSC2ACLKOUT RE1 5
| | | 2 it T
RADIAND REaPCM |2
| 3 1 Ravant B4 |21 2 FBUS TX
*0pF —{ razanznvRERICURER res |22 * MBUS
D1 = | RaaaNAVRER+ RBEIPGC [—= =
11 R2 2 ”Rarmockiciout RE7/PGD |3 Copetal M2
K | 1 — rAsANAESIC20UT s
=0 . __ reomiosamica 2
——{REWANSRD RCUTIOSICCRZ [—1=
e LED = RETANGWR RC2/ceP1 [—IL It
- 20| resianrics reasciscL 2 | .
GND i RC4ISDUSDA [-0
MELRNpa/THY resispo 22 D2 1o
RCBITHICK [—5= R3 1M4148 ?_0
R1 RCT/RX/DT o
vee ® il
10k RDOFSPD —;g CONN
RD1PSP1 |—22
RD2IFSP2 —g; D3 D4
RDaPSFa |22 1M43704 143704
RD4/PSP4 E
RO5PSPs |22 |
rosiPsPs 22 L
RO7TIPSPT |—22 =
GND
e
TCTEFETTA vec
uz2
7805
J2 D6
o= DII —1 1w vo
. 14148 =
CONN-SIL2 b
c3 N ca cs
- 0.1uF 0.1uF 100uF
GND
N

Figure 43 FBUS Interfacing Schematic

Qoo oooD

o
=]
s]
o
=]
o
o
o
o

Figure 44 FBUS Interfacing Layout

——

70

]

L4

'

Applied Protocols in Smart Control Graduation Project 2010

Figure 45 3D View of PCB

3.4.4.2 Software Implementation
a. Start FBUS Method

In the Start FBUS Method should send to the phone the Starting byte 128 times
to begin the Synchronization with the Microcontroller, the Starting Byte is (0x55)
, S0 the method will be,

void StartFbus ()

{

UART1_ Write(0Ox55);UART1_Write(Ox55);UART1_Write(0x55);UART1_Write(0x55
);

UART1_Write(0Ox55);UART1_Write(Ox55);UART1_Write(0Ox55);UART1_Write(Ox55
);

UART1_Write(0Ox55);UART1_Write(0Ox55);UART1_Write(0Ox55);UART1_Write(0Ox55

Code 8 StartFbus Method

71

——
| —

Applied Protocols in Smart Control Graduation Project 2010

b. Message one Sending

/*Messagel here*/

void mess ()

{

UART1_Write (Ox1E); UART1_Write (0x00);
UART1_Write (0x0C); UART1_Write(0x02);
UART1_Write(0x00);UART1_Write(0x35);
UART1_Write(0x00);UART1_Write(0x01);
UART1_Write(0x00);UART1_Write(0Ox01);
UART1_Write(0x02);UART1_Write(0x00);
UART1_Write(0x07);UART1_Write(0x91);

} // end method

Code 9 get the Phone software version Method

c. UART Initialization

// Initialize Uart at 115200 baud rate

UART1_Init(115200);

Code 10 Initialize the Uart

72

——
| —

Applied Protocols in Smart Control Graduation Project 2010

d. Receive Reply Message

// If data is ready, read it:
If (UART1_Data_Ready () ==1) {

// received parameter
charr;
// Assign received data to a variable r
r = UART1_Read ();
// display data on portB
portB =r;

}// endif

Code 11 reading from phone

73

——
| —

Applied Protocols in Smart Control Graduation Project 2010

3.5 TCP/IP protocol

3.5.1 What is TCP/IP Protocol?

The TCP/IP model is a description framework for computer network protocols created in
the 1970s by DARPA, an agency of the United States Department of Defense. It evolved
from ARPANET, which were the world's first wide area network and a predecessor of the
Internet. The TCP/IP Model is sometimes called the Internet Model

The TCP/IP model, or Internet Protocol Suite, describes a set of general design guidelines
and implementations of specific networking protocols to enable computers to
communicate over a network. TCP/IP provides end-to-end connectivity specifying how
data should be formatted, addressed, transmitted, routed and received at the destination.
Protocols exist for a variety of different types of communication services between
computers.

TCP/IP is generally described as having four abstraction layers. This layer architecture is
often compared with the seven-layer OSI Reference Model; using terms such as Internet
Reference Model in analogy is however incorrect as the Internet Model is descriptive
while the OSI Reference Model was intended to be prescriptive, hence Reference Model.

The TCP/IP model and related protocols are maintained by the Internet Engineering Task
Force (IETF).

The TCP/IP model is a description framework for computer network protocols created in
the 1970s by DARPA, an agency of the United States Department of Defense. It evolved
from ARPANET, which were the world's first wide area network and a predecessor of the
Internet. The TCP/IP Model is sometimes called the Internet Model or the DoD Model.

The TCP/IP model, or Internet Protocol Suite, describes a set of general design guidelines
and implementations of specific networking protocols to enable computers to
communicate over a network. TCP/IP provides end-to-end connectivity specifying how
data should be formatted, addressed, transmitted, routed and received at the destination.
Protocols exist for a variety of different types of communication services between
computers.

We will use this protocol to control in devices connected to server PC from any client pc
in our network.

74

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Host Host
A Router Router B

Application «

Internet Internet

T

Link Link

Satellite,

Figure 46 TCP/IP Connection

3.5.2 The Advantages of using TCP/IP in control:
a. Setup Connection Before Transmission (handshaking)

b. Reliable, in order data transmission.
c. Flow Control (no side can overwhelm the other side with packets).
d. Congestion Control (Slow down when network is congested).

e. Example of application: HTTP, SMTP and FTP.

75

Applied Protocols in Smart Control Graduation Project 2010

3.5.3 How does the hardware work?

The hardware is that of the RS485 as explained in the previous sections. The added
section is that the LAN network between the two PCs .now it is easy to transmit the
control signal (data) between the PCs in the LAN to control in the Devices from any PC
in the network that know the IP address and the password of the devices that is
connected to the server PC. The structure is like the following

TCP/IP E
< Contol Signai > JCPIE. m ‘

gﬂﬁﬂéﬁ\ﬂ
Client PC

Figure 47 TCP/IP control Structure

As shown in the above Figure the control data is transmitted from the Clint PC to the
Server PC over the LAN cables as a TCP/IP packets .the server is translate it to RS485
Packets to send it to the specified Device .this will be shown in the next section.

3.5.4 How does the software work?

The software is a program that can receive a TCP/IP’s packets and can extract the data
and the ID address from it, also it check for the password to check if the data received
from the Clint program is Authorized or not if it is good the data and the ID address is
repackage to a RS485 packet to be send to the device that can Understood it. the
following figure is explain this structure

76

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Figure 48 how does the TCP/IP software work

3.5.5 Steps to begin Communication

There is some important settings for connection to be successful they are below:

a. PC inthe same LAN
. client PC software has to know the server IP
c. client Pc software has to know the each room password to make successful
connection with it
d. the server program must be on all time for the Clint to make successful
connection
. the hardware must be connected to the sever PC
f. the serial port com must be opened

77

——
 —

Applied Protocols in Smart Control Graduation Project 2010

3.5.6 TCP/IP Hardware implementation

The hardware is the same of the RS485 the only added hardware is the switch and the
LAN structure between the server and the client PC.

Figure 49 Client and Server connection

3.5.7 TCP/IP Software Program

As explained that the programming language used is the C# .in the following we will see
how the connection between 2 PCs will be established using the C# language. The
software is a two parts which is the client and the server. In the following the software of
the client and server will be explained.

3.5.7.1 TCP/IP Server Program

The server program is the program that will be run in the PC witch all devices is
connected to it. this software will accept the data from all client connected to it, and then
will check for some filed in the received massage like ID address, password and the data
if the ID address and the password is true it will pass the data to another part (this part is
the RS485 software part) of the software program “that is responsible for passing that
data to the specified ID address.

TCPfIP Communcation &
IP Address : |192' 168.1.102 |
PORTMumber: | 30025'
Server Password : | |
| Open Server |

Figure 50 TCP/IP part in login screen

As shown in the above figure which is apart from the login screen it responsible for
specifying the port number for the server to connect to the clients through it, also to
specify the password of the server to make a secure connection between it and its client,
the IP address is automatically gate from the PC that the server will run in it.

78

——
| —

Applied Protocols in Smart Control Graduation Project 2010

After pressing the open server button the server window will be opened .it is like the
following

-

ot | buttonItem1 = TCP_Server | = | = |ﬂh

(=]

Figure 51 TCP Server window

The black screen will display the state of the connected and the disconnected client

3.5.7.1.1 The software implementation of the server
The following is the monitoring of the important parts of the sever TCP program .

a. Server used library

The used library for the connecting over the TCP/IP is the Net library it is
imported to be used in the program using the following code.

using System.Net;
using System.Threading;

using System.Net.Sockets;
using System.IO;

Code 12 Used Library in Server TCP/IP

79

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

b. Struct Client Data

Next to store data for each client that will connect to the server

Data will be defined .it is like the following:

public struct ClientData

{

public Socket structSocket;
public Thread structThread;

Code 13 struct ClientData

c. Server used variables

private
private
private
private

TcpListener tcplLsn;

Hashtable dataHolder = new Hashtable (),
static long connectId = 0;

Thread tcpThd;

delegate void SetTextCallBack(string text);
Forml form 1;

Sheimy RS485 ROM;

private byte[] rom data;

Code 14 Server used variables

.the struct Client

tcpLsn: is a TcpListener that will listen the specified port in the specified IP assigned to

the server PC.

dataHolder: it is a Hashtable used to store the connecte ID and its data

tcpThd :is a thread used for the TCP

SetTextCallBack(string text): is a delegate Method that is used to pass data between two

threads.

form_1: is an object from Forml that is the main form so it is possible to send data to the
devices connected to it over r the serial port.

ROM : is an object from Sheimy_ RS485 class that is used to calculate the RS485 pattern
to be transmitted over the serial port.

rom_data: is a byte Array that is used to store the calculated RS485 pattern to be sends.

80

——
| —

Applied Protocols in Smart Control Graduation Project 2010

d. TCP_Server constructor
This is used to make initialization for the variables also it is called every time a
create and object from it. This constructor is shown in the following block code.

public TCP_Server (IPAddress 1ip, int portno, Forml f)
{
InitializeComponent () ;
tcplsn = new TcplListener (ip, portno);
tcplsn.Start () ;
statusBarl.Text = "Listen at: " +
tcplsn.LocalEndpoint.ToString() ;
tcpThd = new Thread(new ThreadStart (WaitingForClient));
tcpThd.Start () ;
form 1 = £;
// pass = form 1l.getpass();
ROM= new Sheimy RS485();

//
Code 15 TCP_Server constructor

e. WaitingForClient Method

This method is used to add each new connected client to the dataHolder hash table also to
indicate the ID of connects. This method is called inside a thread inside the constructor

//
public void WaitingForClient ()

{
ClientData CDhata;

while (true)
{ /* Accept will block until someone connects */

CDhata.structSocket = tcplsn.AcceptSocket();

Interlocked.Increment (ref connectId);

CDhata.structThread = new Thread(new
ThreadStart (ReadSocket)) ;

lock (this)
{ // it is used to keep connected Sockets and active

thread
dataHolder.Add (connectId, CData);
upDateDataGrid ("Connected > " + connectId + "
+ DateTime.Now.ToLongTimeString()) ;

}
CDhata.structThread.Start () ;

n

Code 16 Waiting for Client Method

81

——
| —

Applied Protocols in Smart Control Graduation Project 2010

f. Read Socket Method

This method read is called inside anew thread for every connected new client to handle
the data from this client and to get the control data from it to send it to the devices after
checking for the password and insure it is correct. It is in the following code block

public void ReadSocket ()
{

/* realld will be not changed for each thread, but

connectId is
* changed. it can't be used to delete object from

Hashtable*/

long realld = connectId;

Byte[] receive;

ClientData cd = (ClientData)dataHolder[realld];

Socket s = cd.structSocket;

int ret = 0;

while (true)

{
byte rooml pass,room2 pass;
rooml pass = form 1l.getRooml pass();
room2 pass = form 1l.getRoom2 pass();
if (s.Connected)

{

receive = new Byte[100];
try
{ /* Receive will block until data coming ret is

0 or Exception

* happen when Socket connection
is broken*/

ret = s.Receive (receive, receive.Length, 0);

if (ret > 0)
{

if ((receive[0] == 160 && receivel[l] ==
rooml pass) || (receive[0] == 170 && receive[l] == room2 pass))
{
ROM.set add(receivel[0]);
ROM.set data (receivel[2]);
rom data = ROM.get data();

form 1.send data(rom data);

}

else
{

form 1.speak text ("Dear User : someone
try Hacking your Device");

Code 17 ReadSocket Method

82

——
| —

Applied Protocols in Smart Control Graduation Project 2010

foreach (ClientData clntData in dataHolder.Values)

{
if (clntData.structSocket.Connected)

clntData.structSocket.Send (receive, ret, SocketFlags.None);
}
}

else { break; }

}

catch (Exception e)

{
upDateDataGrid (e.ToString()) ;
if (!s.Connected) break;

}

}
CloseTheThread (realld) ;

Code 18 ReadSocket Method (continued)

g. CloseTheThread Method

This method is used to close the thread assigned to specific client when it is disconnected
from the server. Also to display this in the server data grid.

//

private void CloseTheThread (long realld)
{
try
{
ClientData clientData =
(ClientData)dataHolder[reallId];
clientData.structThread.Abort () ;
}

catch (Exception e)
{
lock (this)
{
dataHolder.Remove (realld) ;
upDateDataGrid ("Disconnected > " + realld + " "
+ DateTime.Now.ToLongTimeString()) ;

Code 19 CloseTheThread Method

83

——
| —

Applied Protocols in Smart Control Graduation Project 2010

h. The complete Code

For the complete code see appendiX........c.ovvvvriiiiiiiiiiiiiiiiieienienieeenn

3.5.7.2 TCP/IP client Program
The client program is that will be run in the client PC so that it can control in the devices
connected to the server .this software is send the following pattern to the server

Figure 52 send pattern from the client

3.5.7.2.1 The software implementation of the client

ROM 1 ROM2

—’—

vse: []

psswors: [|

Figure 53 TCP client login form

84

——
 —

Applied Protocols in Smart Control Graduation Project 2010

When the connect to Server button is pressed the following window will displayed

(BB Logininfo E=E)

IP Address: [192.168.1.102 |
Port |auuz |
User Name: |5='""E“"""‘II1 |

[et | [concel |

Figure 54 required data to connect to the server

The IP Address is the Address of the Server that it will connect to it. Also the port
number is the same that is opened in the server PC and the User Name is the name of the
client

“A A A A A A A J

8 A t A (. t 4 4

Figure 55 control of client PC software

85

——
 —

Applied Protocols in Smart Control Graduation Project 2010

In the above window the user have to specify the password of the Room that he wants to
connected to .after this he can control in all devices in the room by sending the data to the
server to send it to the room ID connected to it.

The following is the monitoring of the important parts of the client TCP program.

a. Client used library

using System.Net.Sockets;
using System.IO;
using System.Threading;

Code 20 client used library

b. Client used variables

public Thread tcpThd;

public byte[] readBuffer;
public byte[] writeBuffer;
public Stream stm;

public Socket socket;

public TcpClient tcpclnt;
public string loginName = "";
private LoginInfo loginForm;

Code 21 Client used variables

c. Convert bool to byte Method

This method is used to convert the bool value of the switches to byte value to be
transmitted over TCP/IP protocol

// convert bool to byte
private byte bool to byte(bool[] a)
{

int 1 = 0;
byte result = 0;
foreach (bool d in a)
{
if (d == true)
result += (byte)Math.Pow (2, 1i);
i++;
}

return result;

Code 22 convert bool to byte Method

86

——
| —

Applied Protocols in Smart Control Graduation Project 2010

d. Start Server Method

This method is used to connect to the server with specific IP address and port Number
and the name of the connected client

public void startServer (string ipAddress, int portNumber,
string loginName)
{
this.loginName = loginName;
tcpclnt = new TcpClient();
tcpclnt.Connect (ipAddress.Trim (), portNumber)
textBoxWindow.AppendText ("Connecting to server...");

writeToServer ("Hello " + loginName + " Now you are
connected to the server" + "\r\n");

stm = tcpclnt.GetStream() ;

tcpThd = new Thread(new ThreadStart (ReadSocket));

tcpThd.Start () ;

//

Code 23 startServer Method

e. Send data to server Method
This Method is used to write a the chosen specific pattern value to the server

//

private void switchArrayl ValuesChanged(object sender, EventArgs

{
ledArrayl.SetValues (switchArrayl.GetValues());
writeBuffer = new byte[3];
writeBuffer([0] = 160;
writeBuffer[l] = byte.Parse(roml pass.Text);
writeBuffer[2] =bool to byte(switchArrayl.GetValues());
if (stm != null) stm.Write(writeBuffer, O,

writeBuffer.Length);
}

//

Code 24 Send data to server Method

87

——
| —

Applied Protocols in Smart Control Graduation Project 2010

This Method is used to read data from Socket that is connected to the server

B —— e
public void ReadSocket ()
{
while (true)
{
try
{
readBuffer = new Byte[100];
stm.Read (readBuffer, 0, 100);
/* If the text box exceed the maximum lenght, then
get

* remove the top part of the text*/
if (textBoxWindow.Text.Length >
textBoxWindow.MaxLength)
{
textBoxWindow.Select (0, 300);
textBoxWindow.SelectedText = "";

textBoxWindow.AppendText (System.Text.Encoding.ASCII.GetString (readBuff
er) + "\r\n");

}

catch (Exception e)
{ break; }

//

Code 25 client Read Socket Method

88

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Chapter IV: Quick User Guide

4.1 Use cases

4.1.1 Server Use Case

User

Figure 56 Server use Case

Figure 57 Server use Case (Continued)

89

——
 —

Applied Protocols in Smart Control Graduation Project 2010

Figure 58 Server use Case (Continued)

4.1.2 Client Use Case

Actor

Figure 59 Client Use Case

90

——
 —

Applied Protocols in Smart Control Graduation Project 2010

4.1.3 X10 Transmitter/receiver use Case

Chose Home ID
and UNIT ID and
Command

Open Software and
com

Connect Device

Actor

Send it to the
Device

Figure 60 X10 Transmitter/receiver use Case

4.2 Basic Settings
4.2.1 Server Basic Settings

4.2.1.1 COM Port Settings:
a. Port Name (e.g. COM1, COM2).

b. Port Baud rate (e.g. 9600, 1400).

c. RTS(request to transmit)in this project it is true if we Want to Receive and false if
we want to transmit

d. Parity (in this project it is none).
e. Data Bits(in this project it is 8 bits)
f. Stop Bits(in this project it is One)

4.2.2.2 TCP/IP Server Settings
a. IP address (it is the IP of the PC the server running in it).

b. Port number that will be used to send and receive data over it.

c. The password of each room

91

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.2.2.3 TCP/IP client Settings
a. the IP Address of the Server

b. the port Number
c. the user name

4.2.2.4 Microcontroller settings
a. the crystal oscillator must be like that used by the compiler program

b. the Serial port baud rate must be like that used by the software
c. the all RS485 boards must be connected to the A and B wires
d. for long distance the ground wire must be common for all boards

4.2.2.5 Power settings
a. all devices works by 5V DC

b. for stable voltage the Voltage Regulator is used(12 V to 5 V)

c. for +and — of the source the diode is used to save the device if the polarity is not
true

92

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.3 Training Mode

4.3.1 RS485 Transmitter
The training is done using firstly the simulation programs (Proteus 7 Professional) and
with the help of the Virtual Serial Port Driver program to make a connection between the
simulation program and the first developed test program. The following is the first RS485
transmitter test program

ek SHEIMY R5485 CONTROLLER =Nl X

n COMPORTS Send Data ABOUT

Device ID: |10]

Data : |25 |

‘ Send Data |

Figure 61 first RS485 transmitter test program

After the successful simulation the test board is used to make the second training
operation. And after the successful of that the PCB was made.

4.3.2 RS485 Receiver

After the success of sending the RS485 packet the RS485 receiver was developed to
receive data from the serial port and display it also the used simulation and virtual serial
port driver used to simulate the transmitter is also used. The following is the transmitter
circuit used in simulation to measure the temp and send it to the program

93

——
| —

Applied Protocols in Smart Control Graduation Project 2010

RXD

1T us U3
OSCH/CLKIN

24 REOINT 22 0 error O
141 oscaicLkout Rat 2 =
ORN0] —2— RAGAND RE3PGM [—22
L, = RAT/ANI Re4 2L
vout | RAZIANZVREF-ICVREF RES 22
2| RAUANSIVREF+ RBOIPGC [—52.
—S—| RASTOCKICTOUT R&7/PGD [~
— RASIAN4/SSIC20UT
5 e T RCOTIOSOITICK! 22
£ REOANSRD RCITiOSICCP? (9
L 2 REVANGWIR RC2ICCP1 O Re2
- 101 Rezianzics RCHSCKISCL it
, RCA/SDI/SDA
—— MCLRNpp/THV RCS/SDO —
RCGTX/CK Q T2
RCTRXIDT O Rx2
RDOPSPO
RO1/PSP1
RD2/PSP2
RDIPSF3
RD4/PSPA
RDS/PSP5
RDO/PSPS
RD7/PSPT
PICTEFB7TA
s o U4
L= RO f—————— O Rx2
R2 RE b2
120R RC2
DE 2
"o S A ol |2 O T*2
AXABT

Figure 62 RS485 Receiver simulation circuit

2 Forml EE

Recved Data

Figure 63 RS485 Receiver test program

94

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.3.3 RS485 Transmitter/ Receiver

After the success of sending the RS485 and Receiving it individually both of the
transmitter and receiver program are combined in one program .also only one
microcontroller can be programmed for transmitting and receiving operations. The
following is the pictures of the transmitter/receiver program developed.

i Ty

W | s SHEIMY RS485 CONTROLLER =N X
COM PORTS Send Data Recved Data ABOLT

Device ID: | [-]

Data: | |

‘ send Data ‘

Figure 64 RS485 Transmitter/ Receiver(transmitter screen)

95

——
| —

Applied Protocols in Smart Control Graduation Project 2010

- " Wkt R SHEIMY RS485 CONTROLLER =A=N X
COM PORTS send Data Recived Data ABOUT

Start Recive

Figure 65 RS485 Transmitter/ Receiver (receiver screen)

4.3.4 X10 Transmitter/ Receiver
There was many tries to generate the X10 signal and to transmit it over the power lines
the following is sample of this tries.

4.3.4.1 120 KHz carrier Generator

We start to generate a 120 KHz carrier generator using the PWM available in our PIC
16F877A

Desired PWM frequency is : 120 kHz,

Fosc = 20 MHz

TMR2 prescale = 1

1/120 kHz= [(PR2) + 1] *4 « 1/20 MHz * 1

833us =[(PR2)+1]*4+50ns-1

PR2 =40

The generated frequency will be 125 KHz

96

——
| —

Applied Protocols in Smart Control Graduation Project 2010

20/40 = 50% duty cycle
Initialize TIMR 2: setup_timer_2(T2_DIV_BY_1, 40, 1); // 125 KHz

Code:
1 Finclude <16FB77A.h>
2 Ffuses XTI, HOWDI, NCOPRCTECT, BROWHNCUI, PUI, HCLWVE
3 fus=e delay(clock = 4000000
= byte const d[6]={1,0,1,0,1,0
28 [void main
&
Fi output low (PIN C2); Set CCPl output low
g
= setup ccpl (CCP_PWH) ; Configure CCPZ2 as a P
10
11 setup timer 2 (T2 DIV BY 1, 40, 1): 125 KH=z
12
1z set_pwm2 duty (20 50% duty cycle on pin Cl
14
15 while (1
la
Code 26 120 KHz carrier Generator
Result:

UL

Figure 66 120 KHz carrier Generator

97

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Figure 67 Together with 220 V 50 Hz AC

4.3.4.2 Tramitting X10 Signals

As a test we want to transmit the following array

Byte const d [6]={1,0,1,0,1,0};

The array will be transmitted as the following:

1-transmit ‘1°: by the present of the 125 KHz generated signal
2-transmite ‘0’: by the absence of 125 KHz signal

Code:

98

——
| —

Applied Protocols in Smart Control Graduation Project 2010

1 #include <16F8774.h>

2 #fu=ses XTI, NOWDT, NOPROTECT, BROWNOUI, PUI, NOLVE
3 fusze delay(clock = 4000000

= byte const d[&]={1,0,1,0,1,0

o [£] void main

&

T output low (PIN C2); Set CCPl output low

: _ —

= setup ccpd (CCEF PWH) Configure CCPZ as a F
10 B -

11 setup timer 2 (T2 DIV BY 1, 40, 1): 125 kH=z
15 B h -

13 set pwmZ duty(20): 50% duty cvcle on pin C1
14 B B

15 while(l

167 Frevent PIC fro 0l to sleep Important
17 int i=0

18 for (i=0;i<6;i++

1= output_high (PIN_C2): Set CCPl output low

200 [H if (d[i]==0

21 | SET_TRIS C (0x02

22 delay m=s(l

23 B

241 else

258 | SET TRIS5 C(0x00

26 delay ms (1

27 B

28 | |

ag | [

3o [

Code 27 X10 Data Transmitter

And this is the Result:

Figure 68 X10 Generated data

99

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.3.4.3 Merge data with the power signal
The following circuit was developed to merge data with the power signal every ZERO crossing

B4 —
1
M
Vi\
U1
13 33
13] oscrrcikin RBOANT
14 1 oscarcLkout rB1 -2 |: R3
RB2 |52 750k
2 raoano REIPGM 2
= RatANT REd4 2L
——{ razanavreRCVREF Res (33
——{ RASIAN3IVREF+ ResPac (22
—2 RA4TOCKIC10UT RE7/PGD [—22
I RAS/ANA/SSIC20UT s
s —_reomosomick (—2
—£{Rewans®D ReiTiosiceP2 (2
—2{ RENANEWR rezicert L
10 Rezvan7ics ReascriscL 8
. RCAISDISDA [—22
] MELRVppTHY RCSSOO 22
RCBITXICK f—=
RC7/RX/DT |22
RDOPSRO |2 4
RD1/PSP1 T -
RD2IPSP2 [—5= [aW)
RD3/PSP3 (—22
RD4/PSP4 2L
RDS/PSPS =3
RDG/PSPS [—22
RD7/PSP7 |22

PIC16F877A

Figure 69 X10 Transmitter

The data transmitted over the power line was as the following:

100

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Figure 70 Data transmitted every Zero crossing

4.4 Step by step tutorial
4.4.1 How to connect the Hardware

4.4.1.1 Connect RS232 to RS485 converter
Connect the following board to the PC over the Serial port also it is tested by connecting
it using USB to serial converter

Figure 71 Real R232 to RS485 converter PCB

101

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.4.1.2 connect RS485 receiver or Transmitter board

The First is to connect the power to the board and then connect the two wires of the
max485 (A and B) that are responsible for the transmitting and receiving of the RS485
packet. This is like the following figure

Figure 72 Real RS485 Transmitter PCB

4.4.1.3 connect light sensor
The laser led must be in front of the light sensor so we can indicate any thing that will cut
the path between the laser led and the light sensor like that in the following figure

Figure 73 Light Sensor

102

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

4.4.2 How to Run the Software

The following is step by step tutorial of how to run the project software to send and
receive data from the devices connected to the server PC

4.4.2.1 Server Software tutorial

d
I s |
| f artor Login| (Connection Parameters)
1
Serial Communaation EY
Select Serial Port Com:
USER : IC I
4 -]
Enter User Name ‘
PASSWORD: | OPEN PORT

TCP/IP Communcation

IPAddress :

PORT Number:

Server Password :

[192.168.1.102 |
[80025

I

Open Server

Figure 74 Enter User Name (login)

Enter password

L

|
I |
| (A Loain] {Connection Parameters |
1
Serial Communcation =
Select Serial Port Com:
USER : [aal |
=]
PASSWORD: |]| OPEN PORT

TCP/IP Communcation =

P Address :

PORT Number:

Server Password @

[192.168.1.102 |

[so2=]

Open Server

Figure 75 Enter password

103

——
| —

Applied Protocols in Smart Control Graduation Project 2010

{ Connection Parameters|

Serial Communation

Select Serial Port Com:

PASSWORD: [AA|

TCP/IP Communcation

| Log N

P Address : [192.168.1.102 |

Click to Login

PORT Number: [80021

Server Password : | |

Open Server

Figure 76 Click to Login

4- Select the Port ID
| a8l | buttonttem MART HOM T o)

I (i i { Connection Parameters |

Serial Commundation

Select Serial Port Com:

PASSWORD: [AA

OPEN PORT Select the Port

TCP/IP Communcation

1P Address : [192.168.1.102 |

PORT Number : [80021

Server Password : | |

Open Server

Figure 77 Select the Port ID

104

——
 —

Applied Protocols in Smart Control Graduation Project 2010

5- Click to OPEN PORT button

| 2
\g} Login [7OUT DOORS ROMT ROM2

{ Connection Parameters|

Serial Commundation

Select Serial Port Com:

[aa

=J

PASSWORD: [AA = |

Click to OPEN PORT button

TCP/IP Communy

1P Address : [192.168.1.102 |

PORT Number : [80021

Server Password : | |

Open Server

Figure 78 Click to OPEN PORT button

6- Click the OUT DOORS button

15{ Login || OUT DOORS
‘ — — 1
~ [aamClick the OUT DOORS buttoni {Connection Parameters | |

Serial Commundation e

Select Serial Port Com:

[aa

PASSWORD: [AA OPEN PORT

TCP/IP Communcation

1P Address : [192.168.1.102 |

PORTNumber : [80021

Server Password : | |

Open Server

Figure 79 Click the OUT DOORS button

105

——
| —

Applied Protocols in Smart Control Graduation Project 2010

7- Click to search for cameral

]
|

Refrash | Refrash
| <
1 |

Click to Refresh the =
S cameral \

Figure 80 search for cameral

]
|

|cybertink webcam splitter

Start Click to select the ‘

/i’ Camera
4 P
Vv

Figure 81 select the Camera

106

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

9- Start Camera

o |buttonltem1 =M — wSMART HOME
i - =
n Login OUT DOORS ROM1 ROM2
[l {cam1}

| Refrash |

Webcam-101] [~]
| Start
Click to Start

I Recording

B - - TR e

[cAm2

‘ Refrash |

=J

Figure 82 Start Camera

10-Stop Camera

|| buttonltem 1

T T

0 Wswarthome

— . - 2 -
OUT DOORS ROM1 ROM2

[cam1

Refrash ‘

[HP webcam-101 =]

Click to Stop
I Recording

4 P
hd

B - - TR

[E=NEER)

[camz

| Refrash |

Figure 83 Stop Camera

107

——
| —

Applied Protocols in Smart Control

11-control in camera angle

ol |buttonItem1

Graduation Project 2010

.

Fy
OUTDOORS | ROM1

¥ SMART HOME
ROM2

CAM 1

Refrash |

|HP webcam-101

CAM 2

Refrash
Start
[l Click to Rotate ‘ d (B
} the Camera ‘ ‘ ‘ |
— heigh = =
hd Ad
Figure 84 control in camera angle
12- Enter the Room 1 Control panel
a5l [buttonltem1 = N x W SMART HOME TS e X
n Login OUT DOORS ROM1 ROM2
cat Click to Enter the CAM2
Room 1 Control Box

Refrash

|HP webcam-101
Start

Refrash

Start

[HP Webcam-101

Figure 85 Enter the Room 1 Control panel

< » |

108

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

13- Turn on/off Specific Device

{ groupPanels |

Enter Server Password 100FH

——[Tight Control }

dameme
Qaac

‘ Turn on lamps

| TEMP DISPLAY |

{audio control }

Select Music:

=J

@ 9 —e—

14- read the temperature

Figure 86 Turn on/off Specific Device

degree
R - oo ,
!groupPandQ_}
Enter Server Password
Light Control | | TEMP DISPLAY | {audio control |
| |
65
-~ R R =
Click to read the Select Music:
temperature degree

0000

I
0000

Figure 87 read the temperature degree

109

——
| —

Applied Protocols in Smart Control Graduation Project 2010

15- Select the track

Enter Server Password

————{Light Control | § | TEMP DISPLAY | { audio control |

‘ ‘ ‘ ‘ Select Music:
©000 o

Click to Select the
‘ track r ’

T B gy —————

.

Figure 88 Select the track

16- Enter the Room 2 Control panel

—| groupPanels |

i Click to Enter the
Room 2 Control Box |

H
Hl

Light Control | | TEMP DISPLAY | { audio control |

‘ ‘ ‘ ‘ Select Music:
©000 p— !

3

T - Kt ——"
Q000

Figure 89 Room 2 Control panel

110

——
 —

Applied Protocols in Smart Control Graduation Project 2010

17- Turn on Device 3

{ groupPanel10 |

Enter Server Password 100

{ Light Control |

{TEMP DISPLAY |

{audio control |

labelx10

Select Music:

QQQn _— .

rn on Device 3

e - - -
. | wenm e

{ groupPanel10 I

Enter Server Password wUEI

!I you can change
e il
1 A —

{ Light Control |

L (sudiocombol | ——

labelx10

Select Music:

QWOOQ Ty g

. & - N ——

VOO0V

Figure 91 change Room password

111

——
| —

Applied Protocols in Smart Control Graduation Project 2010

19- Read Temp
e MART HON JESEEEET=
BEEE o oorooons Wrow | rovz |
i {groupPanelio |
Enter Server Password
——[Light Control } | TEMP DISPLAY | {audio control |
labelx10
o N - - =

Click to Read Temp

©Q00 -
11T |

©QQ0

ct Music:

=1

‘O- 4 bl 4D —e—— ‘

Figure 92 Read Temp

20- Back to Login

back to Login {
_iter Server Passviord

{ audio control |

Light Control |

{ TEMP DISPLAY |

I
0000

Select Music:

[00s

"TITTl - B | oe——

0000

Figure 93 back to Login

112

——
 —

Applied Protocols in Smart Control Graduation Project 2010

21- Open TCP/IP Server

o |buttonlteml = ' SMART HOME L . = | B |3

m Login OUT DOORS ROM1 ROM2

Admnistartor Login Connection Parameters

Serial Commundation ES
Select Serial Port Com:
USER : AA
|com1 =
PASSWORD: AA OPEN PORT
TCP/IP Communcation 2
Log N
‘ 1P Address : 192.168.1.102
PORT Number: 8002

Server Password :

Click to Open TCP/IP Server

Figure 94 Open TCP/IP Server

22- The TCP Server window

a5l |buttonItem1 = SMART HOME o | = =

m Login OUT DOORS ROM1 ROM2

Admnistartor Login Connection Parameters

ol |buttonltemi = TCP_Server [E=NESE)
gation e
USER : AA |
PASSWORD: AA JIORT
]
. Eation a
Log N The TCP_Server window =
B 80025
-
per

Figure 95 The TCP Server window

113

——
| —

Applied Protocols in Smart Control Graduation Project 2010

4.2.2 Client Software tutorial
1- Enter User Name

Figure 96 Enter User Name

2- Enter Password

Figure 97 Enter Password

114

——
 —

Applied Protocols in Smart Control

Graduation Project 2010

3- Connect to Server

ROM 1 ROM2

PASSWORD: |

_Conact to Server

Conact to Server

'lréroupPa\dZ’l

Figure 98 Connect to Server

4- The LoginInfo window opens

Port

|
User } The Logininfo window opens i

192.168.1.102]

8002

[

Enter

J |

Figure 99 The LoginInfo window opens

115

——
| —

Applied Protocols in Smart Control Graduation Project 2010

5- Get the IP address of the Server

B e — | Connection Parameters |

Serial Communaation e

Select Serial Port Com:

|com1 -]
] [OPEN PORT I |+

TCP/IP Communcation ES
EQZ. 168.1.103 |

IPAddress :

PORT Number:
Server Password :

[Open Server

Get the IP address of the Server

Figure 100 IP address of the Server

6- Enter the IP address of the Server

ROM 1 ROM2

al Loginnfo

1P Adds 192.168.1,102)

Port 8002

| User Name: sheimy

Figure 101 IP address of the Server

116

——
| —

Applied Protocols in Smart Control Graduation Project 2010

7- Enter to connect to server

all = Forml ;‘ =] l 20 I‘

Admnistartor Login TCP/IP Communcation =

’ -
at! Logininfo mli:—hj

USER : e
| 1P Ac 2 192.168.1.103|
Port 8002
PASSWORD: |

i

LogIN Enter J l Cancel

Enter to connect to
server

Figure 102 connect to server

8-Server window in Server PC indicate the connected client

= Forml

_Admnistartor Logn 1 TCPfIP Communcation
a —
a5l | buttonitem1 2 TCP_Server L@%]

Select button

PASSWORD: |

Figure 103 Server PC indicate the connected client

117

——
| —

Applied Protocols in Smart Control Graduation Project 2010

9- ENTER ROM 1 Control panel

Figure 104 ROOM 1 Control panel

10- Enter the Room password

(e [[bumnlmx

Hile LogIN

(v e—

Enter the Room
rvwew password

A 4 X 2 X 4 A

Figure 105 Room password

118

——
 —

Applied Protocols in Smart Control Graduation Project 2010

11- Now you can control in Devices

rv vvevvvVvwv

A 4 A X X A A

Now you can control
in Devices

Figure 106 control in Devices

12- ENTER Room 2 Control Panel

ENTER Room 2 Control
Panel

| E—

J IV IVeW VoI

e e
L A

] e &
4 L 4

11

Figure 107 Room 2 Control Panel

119

——
 —

Applied Protocols in Smart Control

Graduation Project 2010

Glossary

PLC
X
RX
X10
T™W
RS485
RS232
Ack
PCB

PWM

Power Line Communication
Transmitter

Receiver

Zero crossing protocol
Two-way

Recommended Standard 485
Recommended Standard 232
Acknowledgement

Printed Circuit Board

Pulse Width Modulation

120

——

'

Applied Protocols in Smart Control Graduation Project 2010

Bibliography

Burroughs, J. (2002). X-10 Home Automation Using the PIC16F877A. Microchip
Technology Inc.

embededtronic.com. (n.d.). Connecting Microcontrollers to Nokia 3310 .
http://www.mytutorialcafe.com/.

Embedtronics. (n.d.). Nokia F-Bus Protocol. http://www.embedtronics.com/.

Falquez, J. (Spring 2009). X-10 Protocol & Power Line Communication. The George
Washington University.

FAZELA M. VOHRA, M. C. (n.d.). Power Line Carrier Communications. K.J.Somaiya
College of Engg.

LABABIDI, S. (1998). Mobile Home Automation .

POWERLINE COMMUNICATION-Using X10 Protocol. (n.d.).
PRO, X.-1. (n.d.). X-10 Communications Protocol. X-10 PRO.
smarthome.com. (n.d.). Smart Home. www.smarthome.com.
mikroe.com.(n.d).Mikroelektronika.www.mikroe.com
c-sharpcorner.com.(n.d). c-sharpcorner forum.www. c-sharpcorner.com

Tony Northrup, c.-a. 0. (2005). Introduction to X10 Home Automation Technology.
http://oreilly.com/.

121

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Appendix A: X10 tools

X10 is just one of many home automation technologies used in my latest book, Home
Hacking Projects for Geeks. The book will guide you step by step through the process of
adding common smart home features to your home.

What Can You Do with X10?

X10 is a powerful, flexible, and (mostly) inexpensive technology. With X10 technology
and a little creativity, you can accomplish the following things:

A. Add a light switch to any wall without running any wires.

B. Control a lamp or built-in light with your computer.

C. Use a television at your home or a computer on the Internet to monitor multiple,
inexpensive video cameras around your home.

D. Turn off the power outlets in your kid's bedroom between 4 p.m. and 6 p.m. to
make sure he or she is studying and not playing a game or watching TV.

E. Build a custom security system that sounds an alarm if an intruder opens a
window, or sends an email to your mobile phone if there is a water leak in your
basement.

Figure 108 An X10 lamp module turns a lamp on and off when an X10 signal is sent from an X10 transmitter

122

——
| —

IL.

Applied Protocols in Smart Control Graduation Project 2010

X10 Addressing

To identify individual devices and groups of devices, X10 uses an addressing scheme that
provides up to 256 unique addresses. House codes are written as a single letter in the
range A-P. Unit codes are a decimal number between one and 16. Examples of valid
house codes are Al, J13, and P16.

Note: If you're a network geek, think of the house code as the network portion of an IP
address, and the unit code as the host portion.

Unlike the IP addresses used on the Internet, X10 addresses do not have to be unique.
You should give a single address for each group of X10 devices that you would like to
respond to the same command. For example, if you want to turn on two lamps with a
single switch, connect an X10 lamp module to each lamp and configure both modules
with a single address. If you want all of the lamps in a room to be controlled by a single
command, they should all be assigned a single address.

While most X10 devices are one-way (because they are only capable of either sending or
receiving), some devices are two-way. For example, one-way X10 light switches can
receive X10 commands to enable them to be turned on and off remotely. You can also
use the one-way light switch to control the light locally, just as you control a
conventional light switch. However, when you flip the switch, a one-way X10 light
switch does not transmit a signal. Therefore, while flipping the switch can turn the light
on and off, it cannot turn on other X10 switches.

Two-way X10 light switches can receive X10 commands, and can also transmit an X10
command when you flip the switch. This allows you to use the switch to control both the
light and another X10 device simultaneously. For example, if | replace the switch that
controls my kitchen's under-cabinet lighting with a one-way X10 switch, and then replace
the switch that controls my kitchen's overhead lighting with a two-way X10 switch, |
could turn on both the overhead light and the under-cabinet light by using the overhead
light switch.

123

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

Appendix B: RS485 Protocol

number of first data byte second data

start byte | address byte data bytes byte

third data
byte

redundancy
check (CRC)

End Byte

Figure 109 RS485 frame

|. start byte
Is the first byte in the packet which is always is equal 0X96

I1. address byte

The address of the device this byte can take the value from 0 to 255 but it can’t take the value

50 decimal which is used for broadcast

I11. number of data bytes

This byte indicate the number of data bytes being transmitted from the slave and the number of

data being transmitted from the M aster plus 128

IV. first data byte
This is the first byte of data being transmitted

V. second data byte
This is the second byte of data to be transmitted

VI. third data byte
This is the third byte to be transmitted

VII. redundancy check (CRC) byte

The algorithm for calculating the CRC is also given as;
CRC = NOT ($aa XOR $Sbb XOR $dd [XOR $dd XOR $dd])
Where;

Saa = one byte address

Sbb = one byte showing number of data bytes (slave) and 128+number of bytes(master)

Sdd = one to three data bytes (depending on what was put in R5485 send command)

Scc = cyclic redundancy check (CRC) byte

ie XOR S$aa, Sbb and all Sdd bytes then invert all the bits in the answer then if the answer is $96

or SA9 add one

124

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Appendix C: TCP/IP Protocol

I. Overview

Transmission Control Protocol (TCP) is an upper-layer protocol from the IP point of
view. The first question that always occurs to a beginner is "Why do we need two
protocols, IP and TCP?"
While IP transmits data between individual computers on the Internet, TCP transfers data
between two actual applications running on these two computers. IP is used for data
transfers between computers. An IP address is the address only of a computer's network
interface, while TCP uses a port number as its address. If we were to compare this to a
standard postal system, the IP address would be the building address and the port number
(the address in TCP) would be the name of an actual resident in the building.
TCP is connection oriented. In other words, this is a service that establishes a connection
between two applications, i.e., creates a virtual circuit for the time of connection. This is
a full duplex circuit; data is simultaneously transferred in both directions independently
as shown in Figure. The transferred bytes are numbered. Lost or damaged data is
requested again. The integrity of the transferred data is ensured by a checksum.

."r\- fﬁ‘l
First | = Input Output [=5>)

Second
connection connection
:) Y .
side | <& [Output Input\ [side

e

Figure 110 TCP creates a fully two-way link between the ends of the connection

In other words, an application that uses TCP does not have to worry about data getting
lost during transfer or being modified by a transfer error. This safeguard is only effective
against technical errors. It does not attempt to protect data from intelligent attackers, who
could modify the data and also recalculate the checksum.

A TCP segment is inserted into an IP datagram. IP datagrams are inserted into a link
frame. If the size of the TCP segment is too big to be entered into an IP datagram without
exceeding the maximum capacity of the link frame (MTU), the IP has to perform
fragmentation on the TCP datagram. See Figure 55

Fragmentation increases overhead, which is why we try to create segments that are not
long enough to require fragmentation. Note that the TCP header is transported in the first
IP fragment only.

125

——
| —

Applied Protocols in Smart Control Graduation Project 2010

I1. TCP/IP Layering

Data A pplic ation
header | dats Transport
hc;.r;.cr IP data Internet
hoader Frame data o arme Link

Figure 111 Encapsulation of data

1. The link layer: sometimes called the data-link layer or network interface layer
normally includes the device driver in the operating system and the corresponding
network interface card in the computer. IEEE 802.3 is a collection of IEEE
standards defining the Data Link Layer's media access control (MAC) sub layer
of wired Ethernet

2. The network layer: sometimes called the internet layer handles the movement of
packets around the network. Routing of packets.

3. The transport layer provides a flow of data between two hosts, for the application
layer above. In the TCP/IP protocol suite there are two vastly different transport
protocols: TCP provides a reliable flow of data between two hosts. It is concerned
with things such as dividing the data passed to it from the application into
appropriately sized chunks for the network layer below, acknowledging received
packets, setting timeouts to make certain the other end acknowledges packets that
are sent, and so on. Because this reliable flow of data is provided by the transport
layer.

4. The application layer handles the details of the particular application. There are
many common TCP/IP applications that almost every implementation provides.

126

——
| —

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Data_Link_Layer
http://en.wikipedia.org/wiki/Media_access_control
http://en.wikipedia.org/wiki/Ethernet

Applied Protocols in Smart Control Graduation Project 2010

[II. IEEE 802.3 Ethernet Frames
Bits flowing across the Ethernet are grouped into structures called frames. A
frame must be between 46 and 1500 octets in size.

L f"*."f""“';m | Mintmum Frame Lengih - 64 octets
'm.::::rf,'. Mecvimum Frame length - 1318 octets "
- Preamble 'S Destination Source | Length Information (Dats) FCS

Toctets | F Address Address or Type

| minimum | D Goctels | Goclets | 2oclels 46 to 1500 octets 4 octels

4 " t $ Y Fthernet Frame - Type Field }
: Used to describe the Type' of Protocel Carried as data |

__ IEEE 5023 Frame - Length Field
Ulsed to describe the 'Length' af the Information Field

; ' . Source Address
' The address of the station that originated the frame

Destination Address - 3 Types .

. Unicast - Used 1o address a single stavion
' Mulricast - Used to address a group of stations
Broadeast - Used to address all stations

Frame Check Sequence (FCS)

A simple Cvelic Redundancy Check (CRC) used

' } {ved infac

Start Frame Delimiter (SFD) to ensure that the data has arrived infact

I octet used to indicate the start of the frame - Always 10101011

Preamble
T octets (min) of alternating ones and zeroes (10001010...... J01010)

Figure 112 Ethernet/802.3 Frame Structure

Destnation | Source | Typs
Preample | Afddracs Addrass | Length LLC ; Dala | CAC
Vendor | 3441 DSAP| SAP

Figure 113 IEEE 802.3 Ethernet standard frame

127

——
| S—

Applied Protocols in Smart Control

Graduation Project 2010

TCP Segments

The source port is the port of the TCP segment source while the destination port is
the port of the TCP segment destination. The sequence number is the sequence
number of the first byte of a TCP segment in the data flow from the source to the
destination (TCP transfers bytes from the sequence number of the transferred byte to
the length of the segment). Header length specifies the length of the TCP segment
header in multiples of 32 bits (4 bytes), similar to the format of IP headers See figure
58.Window size specifies the maximum increment of the sequence number that will

be still accepted by the destination.

Transmitted
application data

e S@EME@NTATION e frreroroororsons s

A

TCP
header

DATA

k-

TCP
header

DATA

TCP
header

DATA

h

IP TCP
header | header

DATA

IP
header

DATA

TCP

header DATA

Figure 114 Segmentation and fragmentation

Sent unacknowledged data
—p

Window available for sending

»

Window offered by destination

. |

1024 2048

3072

4096

5120

™

61

4 7168

1 KB

1 KB 1 KB

1 KB

1 KB

1 KB

1 KB 1 KB

Acknowledged data

Possible to send after
window opening

i
| ™

Window maovement
- =

Window closing

Window opening

-

Figure 115 Window

——

128

'

8192

Applied Protocols in Smart Control Graduation Project 2010

TCP seEmant
IP header TCR heater - .
It al)
usisally 20 bytes | usually 20 byles CP data (optional)
0 a8 16 24 31
Version [P | P header Type of sandice Chechksum +
4 hits lergti B bis 15 bits
Idaentification of IP datagram Fla Fragmeant offset
16 bits = 13 bits
Time to Live Praweal PTCL Chacksurm B2
{TTL) - 8hits & hits 1& hits m
Source IP address
32 bils
Destinatian [P address
32 bits +
Opdons (it amy)
Source port Destination port T
16 bits 16 hits
Seqguence numbsn
32 bits
ACHI‘GMME'JT’IGI'IT NLUmser B
32 bits m
Header R - UiAIPIR|S|F
Length ‘?35'&' =lrlc|s|s|v] Window size
4 bits bits g K|H[T|M|HN
TCP checksum Urgent pointer
1E bits 18 hits -
Qpwons (i amy)
DATA

Figure 116 IP and TCP Header
V. Establishing and closuring a Connection with TCP

The core of IP was the IP datagram description. Since IP is a datagram-oriented
(connectionless) service, there was not much of a need to prepare for cases in which the
IP datagram was not delivered.

TCP uses IP for transferring data over the Internet, even though it establishes a reliable
stream-oriented service over this protocol. It must solve the problems of establishing and
closing a connection, confirming received data, and re-requesting lost data, and also solve
problems with keeping the communication paths passable. The TCP segment description
is obviously only one small part of TCP. A larger part of the protocol is the description of
TCP segment exchange (handshaking) between both ends of the TCP connection. See

figure 58.

129

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

Server
Port 4433
H L]
Client LISTEN
Port 1158 !
1
é |
SYMN_SEMNT — |
5 T i
! T i
v
SYMN_RCWVD
_ __9 !
e 1
JE——
v e___—————____ .
ESTABLUISHED]
1
W
ESTABLISHED
1
= W
Figure 117 establishing a connection
ESTABLISHED
FIN_WAIT1
(active -—
closing) ____——————_FL'EE____
I—— B
CLOSE-WAIT
[(passive
___3";_}___—————____ closing)
L,
FIN_WAJT2
[-
= AR..
- LAST_ACK
Fin :n"___ e — _B' -
L
TIME_WAIT
©& — ckves
> cLosED

Figure 118 Connection closure

130

——
| —

VI.

Applied Protocols in Smart Control Graduation Project 2010

Network Architecture

Network architecture is a design for the physical network and a collection of
specifications defining communications on that physical network. The communication
details are dependent on the physical details, so the specifications usually come together
as a complete package. These specifications include considerations such as the following:

a. Access method: an access method is a set of rules defining how the computers
will share the transmission medium. To avoid data collisions, computers must
follow these rules when they transmit data.

b. Data frame format: The IP-level datagram from the Internet layer is
encapsulated in a data frame with a predefined format. The data enclosed in the
header must supply the information necessary to deliver data on the physical
network.

c. Cabling type: The type of cable used for a network has an effect on certain other
design parameters, such as the electrical properties of the bit stream transmitted
by the adapter.

d. Cabling rules: The protocols, cable type, and electrical properties of the
transmission have an effect on the maximum and minimum lengths for the cable
and for the cable connector specifications.

131

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Appendix D: FBUS Protocol

The general idea is like this
A. Microcontroller asks for some data
B. Phone say, “I understood what you want”
C. Phones send what Microcontroller wanted.
D. Phone waits to see if Microcontroller got what he wants.
E. If Microcontroller does not say that he received the data, Phone sends the data one
more time.
Phone waits to see if Microcontroller got what he wants
G. If Microcontroller does not say that he received the data, Phone sends the data one
more time.
H. Now Phone stop sending data.(Since Microcontroller is really deaf or he is rude)
On the contrary if Microcontroller says he got the data the very first time, Phone
stop sending more data.

n

Just like 2 people are talking!

How to connect microcontrollers to your Nokia 3310

Most Nokia phones have F-Bus and M-Bus connections that can be used to connect a
phone to a PC or in our case a microcontroller. The connection can be used for
controlling just about all functions of the phone, as well as uploading new firmware etc.
This bus will allow us to send and receive SMS messages. Want to turn your air-
conditioner on remotely?

Figure 119 3310 Phone and FBUS connection

132

——
| —

Applied Protocols in Smart Control Graduation Project 2010

The very popular Nokia 3310/3315 has the F/M Bus connection under the battery holder.
This is a bit of a pain to get to and requires a special cable to make the connection. The
left picture above shows the 4 gold pads used for the F and M Bus. The right picture
shows the F-Bus cable connected to my Nokia 3310.

Figure 120 Nokia 3310 and it's download cable

Nokia download cable is available from most mobile phone shops and some electronics
stores.

The cable contains electronics to level convert 3V signals to RS232 type signals. There
are also M and F bus switching in most cables.

You can use PC software like Logomanager from (here) and Oxygen Phone Manager
from (here) to upload ringtones, graphics, phone numbers etc. No more paying for those
cools ringtones, just download them off the internet or record your own!

133

——
| S—

http://www.logomanager.co.uk/
http://www.opm-2.com/

Applied Protocols in Smart Control

Graduation Project 2010

Appendix E: Used Software and Hardware

I. Used Software
Table 5 Used Software
NO | Software Name Company Website
1 | Visual Studio 2008 | Microsoft http://www.microsoft.com
2 MikroC Pro Mikroelektronika | http://www.mikroe.com
3 Measurment National http://www.ni.com/
Studio 8.6 Instruments
4 ComponentOne ComponentOne | http://www.componentone.com/
5 DotNetBar DevComponents | http://www.devcomponents.com/dotnetbar/
6 Proteus 7 Labcenter http://www.labcenter.com/
Professional Electronics
7 CCS PIC C Compiler | CCS http://www.ccsinfo.com/
8 Eagle cadsoft. http://www.cadsoft.de/
9 Sprint-Layout 5.0 abacom http://www.abacom-online.de/
II. Used Hardware
Table 6 Used Hardware
NO | Name Company Website
1 PIC16F877A Microchip http://www.microchip.com/
2 XM10 Modula marmitek http://www.marmitek.com/
3 LM35DzZ National www.national.com
Semiconductor
4 MAX232 maxim http://www.maxim-ic.com/
5 MAXA485 maxim http://www.maxim-ic.com/
6 ULN2003 | -
7 Relay | =

134

——
| —

http://www.microsoft.com/
http://www.mikroe.com/
http://www.ni.com/
http://www.componentone.com/
http://www.devcomponents.com/dotnetbar/
http://www.labcenter.com/
http://www.ccsinfo.com/
http://www.cadsoft.de/
http://www.microchip.com/
http://www.marmitek.com/
../AppData/Roaming/Microsoft/Word/www.national.com
http://www.maxim-ic.com/
http://www.maxim-ic.com/

Applied Protocols in Smart Control Graduation Project 2010

Appendix F: All Project software codes

F.1-Main Program(server program)

using NationalInstruments;
using NationalInstruments.UI;
using NationalInstruments.UI.WindowsForms;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Windows.Forms;
using DevComponents;
using System.IO.Ports;
using AForge.Video;
using AForge.Video.DirectShow;
using System.Net;
using System.Speech.Synthesis;
namespace WindowsApplicationl
{
public partial class Forml
DevComponents.DotNetBar.O0ffice2007RibbonForm
{
string Audio_ Path;
string mp3paz;
SerialPort port;
Sheimy RS485 ROM 160,ROM 170;
SpeechSynthesizer syn;
private bool DeviceExist = false;
private FilterInfoCollection videoDevices;
private VideoCaptureDevice videoSource = null;
private VideoCaptureDevice videoSource2 = null;
public Forml ()
{
InitializeComponent () ;
ROM 160 new Sheimy RS485();
ROM 170 new Sheimy RS485();
syn = new SpeechSynthesizer();
groupPanel2.Enabled = false;
outdoor.Enabled = false;
ROM1.Enabled = false;
ROM2 .Enabled = false;
string[] ports = SerialPort.GetPortNames ()
foreach (string port in ports)

{

coms.Items.Add (port) ;

// Get VEDIO Devices

135

——
| —

Applied Protocols in Smart Control Graduation Project 2010

private void getCamList ()
{
try
{
videoDevices = new
FilterInfoCollection (FilterCategory.VideoInputDevice) ;
camldevice.Items.Clear();

if (videoDevices.Count == 0)
throw new ApplicationException();

DeviceExist = true;
foreach (FilterInfo device in videoDevices)
{

camldevice.Items.Add (device.Name) ;

}

camldevice.SelectedIndex = 0; //make dafault to first

cam\
}
catch (ApplicationException)
{
DeviceExist = false;
camldevice.Items.Add ("No capture device on your
system") ;
}
}
//
//

private void getCamList2 ()
{
try
{
videoDevices = new
FilterInfoCollection (FilterCategory.VideoInputDevice) ;

cam2device.Items.Clear();
if (videoDevices.Count == 0)
throw new ApplicationException();

DeviceExist = true;
foreach (FilterInfo device in videoDevices)

{

cam2device.Items.Add (device.Name) ;

136

——
| —

Applied Protocols in Smart Control Graduation Project 2010

}

cam2device.SelectedIndex = 0; //make dafault to first
cam

}
catch (ApplicationException)

{

DeviceExist = false;

cam2device.Items.Add ("No capture device on your
system") ;

// Close Vedio Devicesl

private void CloseVideoSource ()

{
if (! (videoSource == null))
if (videoSource.IsRunning)
{
videoSource.SignalToStop () ;
videoSource = null;

private void CloseVideoSource? ()
{
if (! (videoSource?2 == null))
if (videoSource2.IsRunning)
{
videoSource2.SignalToStop () ;
videoSource?2 = null;

//Get New fram for cam 1

private void video NewFrame (object sender, NewFrameEventArgs
eventArgs)

{
Bitmap img = (Bitmap)eventArgs.Frame.Clone();

137

——
| —

Applied Protocols in Smart Control Graduation Project 2010

pictureBoxl.Image = img;

private void video NewFrame2 (object sender, NewFrameEventArgs
eventArgs)
{
Bitmap img = (Bitmap)eventArgs.Frame.Clone();
pictureBox2.Image = img;

//
//convert bool to byte
//
private byte bool to byte(bool []a,bool []b)
{
int i=0;
byte result=0;
foreach (bool d in a)
{
if (d == true)
result +=(byte) Math.Pow (2, 1);
i++;
}
foreach (bool d in b)
{
if (d == true)
result += (byte)Math.Pow (2, 1i);
i++;
}
return result;
}
//
private void switchlight ValuesChanged(object sender, EventArgs
e)

{
ledlight.SetValues (switchlight.GetValues());

ROM 160.set data(bool to byte(switchlight.GetValues(),switchlightl.GetV
alues()));
send data(ROM _160.get data());
byte []asd=ROM 160.get data () .ToArray<byte>();
labelX8.Text=""+asd[4];

138

——
| —

Applied Protocols in Smart Control Graduation Project 2010

// choseAudio

private void comboBoxExl SelectedIndexChanged(object sender,
EventArgs e)

{
Audio Path = Application.ExecutablePath;
mp3paz = Audio_ Path.Remove (Audio Path.Length - 23) +
@"Audio\" + comboBoxExl.Text+ ".mp3";
player.URL = mp3paz;

// openport

private void buttonX2 Click (object sender, EventArgs e)
{
port = new SerialPort (coms.Text, 9600, Parity.None, 8,
StopBits.One);

if (port.IsOpen) port.Close();

try

{
//open serial port
port.Open();
port.DataReceived += new

SerialDataReceivedEventHandler (serialPortl DataReceived) ;

Control.CheckForIllegalCrossThreadCalls = false;
port.RtsEnable = false;

}

catch (System.Exception ex)

{
if (port.IsOpen) port.Close();

}

outdoor.Enabled = true;

ROM1 .Enabled = true;

ROM2 .Enabled = true;

====== //Recive Data From Serial

private void serialPortl DataReceived(object sender,
SerialDataReceivedEventArgs e)

{

int bytes = port.BytesToRead;

if (bytes >= 8)

{
// bytes = 7;
byte[] buffer = new byte[8];
port.Read (buffer, 0, 8);

string m = buffer[1] + " " + buffer[3] + " " +
buffer[4] + " " + buffer[5];

textBoxX2.Text = m;

if (buffer[l] == 160)

{

139

——
| —

Applied Protocols in Smart Control Graduation Project 2010

ROM1 Temp.Value = buffer[3];
syn.Speak ("Eng sheimy : temperature change and now
it is : " + buffer[3]);
}
if (buffer[l] == 170)
{
ROM2 Temp.Value = buffer[3];
syn.Speak ("Eng sheimy : temperature change and now
it is : " + buffer([3]);
}
}

// S===
;;7777 login
- private void buttonXl Click(object sender, EventArgs e)
{ if ((user.Text == "AA") && (pass.Text == "AA"))
{ groupPanel?2.Enabled = true;
}
}
//
;;7777 refreshcaml ==
- private void refresh Click(object sender, EventArgs e)
{ getCamList () ;
// / startcaml

private void Start Click(object sender, EventArgs e)
{
if (Start.Text == "&Start")
{
if (DeviceExist)
{
videoSource = new
VideoCaptureDevice (videoDevices[camldevice.SelectedIndex] .MonikerString
) ;
videoSource.NewFrame += new
NewFrameEventHandler (video NewFrame) ;
CloseVideoSource () ;
videoSource.DesiredFrameSize = new Size (362, 253);
//videoSource.DesiredFrameRate = 10;
videoSource.Start () ;
// label2.Text = "Device running...";
Start.Text = "&Stop";
// timerl.Enabled = true;
}
else

{

140

——
| —

Applied Protocols in Smart Control Graduation Project 2010

// label2.Text = "Error: No Device selected.";

}

else

{

if (videoSource.IsRunning)

{
// timerl.Enabled = false;
CloseVideoSource () ;

// label2.Text = "Device stopped.";
Start.Text = "&Start";
}
}
}
// closeform

private void Forml FormClosed (object sender,
FormClosedEventArgs e)
{
CloseVideoSource () ;
CloseVideoSource2 () ;

// refresh cam list

private void refresh2 Click(object sender, EventArgs e)

{
getCamList2 () ;

// start cam 2

private void start2 Click(object sender, EventArgs e)
{
if (Start2.Text == "&Start")
{
if (DeviceExist)
{
videoSource?2 = new
VideoCaptureDevice (videoDevices[cam2device.SelectedIndex] .MonikerString
) ;
videoSource?2.NewFrame += new
NewFrameEventHandler (video NewFrameZ2) ;
CloseVideoSource2 () ;
videoSource?2.DesiredFrameSize = new Size (362, 253);
//videoSource.DesiredFrameRate = 10;
videoSource2.Start ()
// label2.Text = "Device running...";
Start2.Text = "&Stop";
// timerl.Enabled = true;
}
else
{
// label2.Text = "Error: No Device selected.";

}

else

141

——
| —

Applied Protocols in Smart Control Graduation Project 2010

if (videoSource2.IsRunning)

{
// timerl.Enabled = false;
CloseVideoSource?2 () ;

// label2.Text = "Device stopped.";
Start2.Text = "&Start";
}
}
}
// ROM
1
private void ROM1 Click (object sender, EventArgs e)
{
ROM 160.set add(160);
}
// last 4
switchs

private void switchlightl ValuesChanged (object sender,
EventArgs e)
{
ledlightl.SetValues (switchlightl.GetValues());
ROM 160.set data(bool to byte(switchlight.GetValues(),
switchlightl.GetValues()));
send data (ROM_160.get data());

//
// Send
Data
public void send data(byte []sbuffer)
{
if (port.RtsEnable)
{
port.RtsEnable = false; //Enable request to send
}
port.Write (sbuffer, 0, sbuffer.Length);
}
// ROM 2

private void ROM2 Click (object sender, EventArgs e)
{

ROM 170.set _add(170);
}

private void switchlight2 ValuesChanged (object sender,
EventArgs e)
{
ledlight2.SetValues (switchlight2.GetValues());
ROM 170.set data(bool to byte(switchlight2.GetValues(),
switchlight3.GetValues()));
send data(ROM _170.get data());
}

private void switchlight3 ValuesChanged (object sender,
EventArgs e)
{

142

——
| —

Applied Protocols in Smart Control Graduation Project 2010

ledlight3.SetValues (switchlight3.GetValues());
ROM 170.set data(bool to byte(switchlight2.GetValues(),
switchlight3.GetValues()));
send data(ROM_170.get data());
}

private void comboBoxEx2 SelectedIndexChanged(object sender,
EventArgs e)
{
Audio Path = Application.ExecutablePath;
mp3paz = Audio_ Path.Remove (Audio Path.Length - 23) +
@"Audio\" + comboBoxEx2.Text + ".mp3";
player.URL = mp3paz;
}

private void readtemp Click (object sender, EventArgs e)

{
port.RtsEnable = true; //Disable request to send

}

private void Read temp2 Click(object sender, EventArgs e)

{
port.RtsEnable = true; //Disable request to send

}
// TCP connect

private void buttonX3 Click(object sender, EventArgs e)
{
IPHostEntry ipHostInfo = Dns.Resolve (Dns.GetHostName()) ;
IPAddress ipAddress = ipHostInfo.AddressList[0];
ip.Text = "" + ipAddress;
TCP Server tcp = new
TCP Server (ipAddress,portnumber.Value, this);

tcp.Show () ;
}
//
public SerialPort getport ()
{
return port;
}
e
// Get Romml pass AR
public byte getRooml pass ()
{
byte b = byte.Parse(rooml pass.Text);
return b;
}
//

//

public byte getRoom2 pass ()

{
byte b = byte.Parse(room2 pass.Text);
return b;

143

——
| —

Applied Protocols in Smart Control Graduation Project 2010

// e e ———
// speak text
public void speak text(string s)
{
syn.Speak(s);
}
//

F.2- TCP_Server:

using System;

using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using DevComponents;

using System.Threading;

using System.Net.Sockets;
using System.IO;

using System.IO.Ports;

using System.Net;

namespace WindowsApplicationl

{

public partial class TCP Server
:DevComponents.DotNetBar.Office2007RibbonForm
{
/* This stores data about each client */
public struct ClientData
{
public Socket structSocket;
public Thread structThread;
}
// Required designer variable.
private Tcplistener tcplsn;
private Hashtable dataHolder = new Hashtable();
private static long connectId = O;
private Thread tcpThd;
private string ipAddress = "192.168.1.100";
delegate void SetTextCallBack (string text);
Forml form 1;
Sheimy RS485 ROM;
private byte[] rom data;
SerialPort p;
byte pass;

144

——
| —

Applied Protocols in Smart Control Graduation Project 2010

public TCP Server (IPAddress ip, int portno, Forml f)
{
InitializeComponent () ;
tcplsn = new Tcplistener (ip, portno);
tcplsn.Start () ;
statusBarl.Text = "Listen at: " +
tcplsn.LocalEndpoint.ToString() ;
tcpThd = new Thread(new ThreadStart (WaitingForClient));
tcpThd.Start () ;
form 1 = £;
// pass = form 1l.getpass();
ROM= new Sheimy RS485();

public void WaitingForClient ()
{

ClientData CData;

while (true)

{ /* Accept will block until someone connects */
CData.structSocket = tcpLsn.AcceptSocket ()
Interlocked.Increment (ref connectId);
CDhata.structThread = new Thread (new

ThreadStart (ReadSocket)) ;

lock (this)
{ // it is used to keep connected Sockets and active
thread
dataHolder.Add (connectId, CData);
upDateDataGrid ("Connected > " + connectId + " "
DateTime.Now.ToLongTimeString());
}
CData.structThread.Start () ;

}

public void ReadSocket ()
{
/* realld will be not changed for each thread, but
connectId is
* changed. it can't be used to delete object from
Hashtable*/
long realld = connectId;
Byte[] receive;
ClientData cd = (ClientData)dataHolder[realId];
Socket s = cd.structSocket;
int ret = 0;

while (true)

{
byte rooml pass,room2 pass;
rooml pass = form 1l.getRooml pass();
room2 pass form 1.getRoom2 pass ()
if (s.Connected)

{

’

receive = new Byte[100];
try

145

——
| —

Applied Protocols in Smart Control Graduation Project 2010

{ /* Receive will block until data coming ret is
0 or Exception
* happen when Socket connection
is broken*/
ret = s.Receive(receive, receive.Length, 0);

if (ret > 0)
{

if ((receive[0] == 160 && receivel[l] ==
rooml pass) || (receive[0] == 170 && receive[l] == room2 pass))
{
ROM.set add(receive[0]);
ROM.set data(receivel[2]);
rom data = ROM.get data();

form 1.send data(rom data);
}
else
{
form 1.speak text("Dear User : someone
try Hacking your Device");
}
foreach (ClientData clntData in
dataHolder.Values)

if (clntData.structSocket.Connected)
clntData.structSocket.Send (receive,
ret, SocketFlags.None);
}

}

else { break; }
}
catch (Exception e)
{

upDateDataGrid(e.ToString());

if (!s.Connected) break;

}
}
CloseTheThread (realld);

}

private void CloseTheThread(long realId)
{
try
{
ClientData clientData = (ClientData)dataHolder|[reallId];
clientData.structThread.Abort () ;
}

catch (Exception e)
{

lock (this)

{

dataHolder.Remove (realld) ;

146

——
| —

Applied Protocols in Smart Control Graduation Project 2010

upDateDataGrid ("Disconnected > " + realld + " "o+
DateTime.Now.ToLongTimeString()) ;
}
}
}

public void upDateDataGrid(string displayString)
{
if (this.textBoxl.InvokeRequired)
{
SetTextCallBack t = new
SetTextCallBack (upDateDataGrid) ;
this.Invoke (t, new object[] { displayString });
}
else
{
textBoxl.AppendText (displayString + "\r\n");
}

}

private void TCP_Server FormClosed(object sender,
FormClosedEventArgs e)
{
tcpLlsn.Stop (),
foreach (ClientData cd in dataHolder.Values)
{
if (cd.structSocket.Connected) cd.structSocket.Close();
if (cd.structThread.IsAlive) cd.structThread.Abort () ;

}
tcpThd.Abort () ;

F.3- class Sheimy_RS485

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace WindowsApplicationl

{

class Sheimy RS485

{
string InputData = String.Empty;
byte[] sbuffer;
bytel[] rbuffer;
char[] chars;
byte add,data,bytes no=129, crc;
int t4;

147

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

//

//Not Method

//

//

public double takeNOT (int b)
{
int t,
string
double
for (t
{

string.Empty;
128; t > 0; t =t / 2)

I ~Q w-
Il

if ((b & t) != 0) g += ngn .,
if ((b & t) == O) g += nyn,
}
chars = g.ToCharArray();
foreach (char ¢ in chars)

{

k += Math.Pow (2, Jj);

}

//

public byte[] get datal()

{
t4 = (add ©~ bytes no ~ data);
crc = (byte)takeNOT (t4) ;

sbuffer = new byte[] { 150, add, bytes no, data, crc,

return sbuffer;

169

// set add ,data and get them

public void set add(byte d)

this.add = d;

public void set data(byte da)

{
this.data = da;

148

——
| —

Applied Protocols in Smart Control Graduation Project 2010

F.4-Software Controller Client

using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

NationalInstruments;
NationalInstruments.UI;
NationalInstruments.UI.WindowsForms;

System;
System.
System.
System.
System.
System.
System.
System.

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;

Windows.Forms;

DevComponents;

System.
System.
System.

Net.Sockets;
I10;
Threading;

namespace Smart Home Clinte

{

public partial class Forml
:DevComponents.DotNetBar.0ffice2007RibbonForm

{

public Thread tcpThd;

public byte[] readBuffer;
public byte[] writeBuffer;
public Stream stm;

public Socket socket;

public TcpClient tcpclnt;
public string loginName = "";
private LoginInfo loginForm;
public Forml ()

{

}

InitializeComponent () ;

//

convert bool to byte

private byte bool to byte(bool[] a)

{

int 1 = 07

byte result = 0;

foreach (bool d in a)

if (d == true)
result += (byte)Math.Pow (2, 1i);
i++;

149

——
| —

Applied Protocols in Smart Control Graduation Project 2010

return result;

public void startServer (string ipAddress, int portNumber,
string loginName)
{
this.loginName = loginName;
tcpclnt = new TcpClient();
tcpclnt.Connect (ipAddress.Trim (), portNumber)
textBoxWindow.AppendText ("Connecting to server...");

writeToServer ("Hello " + loginName + " Now you are
connected to the server"™ + "\r\n");

stm = tcpclnt.GetStream() ;

tcpThd = new Thread(new ThreadStart (ReadSocket));

tcpThd.Start () ;

//
public void ReadSocket ()
{
while (true)
{
try
{
readBuffer = new Byte[100];
stm.Read (readBuffer, 0, 100);
/* If the text box exceed the maximum lenght, then
get

* remove the top part of the text*/
if (textBoxWindow.Text.Length >
textBoxWindow.MaxLength)
{
textBoxWindow.Select (0, 300);
textBoxWindow.SelectedText = "";

textBoxWindow.AppendText (System.Text.Encoding.ASCII.GetString (readBuffe
r) + "\r\n");
}

catch (Exception e)
{ break; }

public void writeToServer (string strn)
{
System.Text.ASCITEncoding encord = new
System.Text .ASCITIEncoding() ;
writeBuffer = encord.GetBytes (strn);

150

——
| —

Applied Protocols in Smart Control Graduation Project 2010

if (stm != null) stm.Write(writeBuffer, O,
writeBuffer.Length);
}

private void buttonX3 Click (object sender, EventArgs e)
{

loginForm = new LoginInfo();
loginForm.infoChecker (this);

}

private void buttonXl Click(object sender, EventArgs e)
{

writeToServer (loginName + " > " + textBoxX1l.Text.Trim() +
n\r\nn) ;
textBoxX1.Text = "";

private void switchArrayl ValuesChanged(object sender,
EventArgs e)
{
ledArrayl.SetValues (switchArrayl.GetValues());
writeBuffer = new byte[3];

writeBuffer[0] = 160;

writeBuffer[l] = byte.Parse(roml pass.Text);

writeBuffer[2] =bool to byte(switchArrayl.GetValues());
1

if (stm != null) stm.Write(writeBuffer, O,
writeBuffer.Length);
}

private void switchArray2 ValuesChanged(object sender,
EventArgs e)

{
ledArray?2.SetValues (switchArray2.GetValues());

writeBuffer = new byte[3];

writeBuffer([0] = 170;

writeBuffer[l] = byte.Parse(rom2 pass.Text);
writeBuffer[2] = bool to byte(switchArray2.GetValues()):;
if (stm != null) stm.Write(writeBuffer, O,

writeBuffer.Length);

F.5-X10 TR Program

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

151

——
| —

Applied Protocols in Smart Control Graduation Project 2010

using System.Text;
using System.Windows.Forms;
using DevComponents;
using System.IO.Ports;
namespace X10TR
{
public partial class Forml
DevComponents.DotNetBar.Office2007RibbonForm
{
SerialPort port;
public Forml ()
{
InitializeComponent () ;
string[] ports = SerialPort.GetPortNames|();
foreach (string p in ports)
{
coms.Items.Add (p);
}
}
//
private void serialPortl DataReceived(object sender,
SerialDataReceivedEventArgs e)

{

string m;

m = port.ReadExisting();
t.Text += "\n\r";

t.Text +="Recive :"4+m+"\n\r";

}

private void openbutton Click (object sender, EventArgs e)
{
port = new SerialPort (coms.Text, 9600);
if (port.IsOpen) port.Close();
port.Open();
// Defin
this

port.DataReceived += new
SerialDataReceivedEventHandler (serialPortl DataReceived) ;
Control.CheckForIllegalCrossThreadCalls = false;

private void send Click(object sender, EventArgs e)

{

string s = comboBoxExl.Text + comboBoxEx2.Text;
t.Text += "\n\r";
t.Text += "Send :" + s + "\n\r";

port.Write(s);
}

private void buttonXl Click(object sender, EventArgs e)

{
t.Text = "";

152

——
| —

Applied Protocols in Smart Control Graduation Project 2010

153

——
| —

Applied Protocols in Smart Control Graduation Project 2010

Appendix G: All Project Microcontroller codes

All of the following codes are written using mikroC PRO for PIC V3.8 from
mikroelektronika company

(G.1-RS485 Receiver

char dat[9]; // buffer for receving/sending messages
chari,j;
sbit rs485 rxtx_pin at RC1_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine
void interrupt() {
RS485Slave_Receive(dat);

}

void main() {
ADCON1.PCFG3=0; // Configure AN pins as digital I/0
ADCON1.PCFG2=1;
ADCON1.PCFG1=1;
ADCON1.PCFGO0=0;

CMCON.CMO0=1;

CMCON.CM1=1;

CMCON.CM2=1;

PORTB = 0;

PORTD =0;

TRISB =0;

TRISD = 0;

UART1_Init(9600); // initialize UART1 module
Delay_ms(100);

RS485Slave_Init(160); // Intialize MCU as slave, address 160
dat[4] = 0; // ensure that message received flag is 0
dat[5] = 0; // ensure that message received flag is 0
dat[6] = 0; // ensure that error flag is 0
RCIE_bit=1; // enable interrupt on UART1 receive
TXIE_bit=0; // disable interrupt on UART1 transmit
PEIE_bit=1; // enable peripheral interrupts

154

——
| —

Applied Protocols in Smart Control Graduation Project 2010

GIE_bit=1; // enable all interrupts
PORTB=0xFF;
Delay_ms(1000);

while (1) {
if (dat[5]) { // if an error detected, signal it by
PORTD = OxAA; // setting portd to OxAA
dat[5] =0;
}
if (dat[4]) { // upon completed valid message receive
dat[4] = 0;
PORTB = dat[0];
} // data[4] is set to OxFF
}
}

G.2-RS485 Transmitter

char dat[9]; // buffer for receving/sending messages
chari,j;
sbit rs485_rxtx_pin at RC1_bit; // set transcieve pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine
void interrupt() {
RS485Slave_Receive(dat);

}

void main() {

PORTB = 0;
PORTD =0;
TRISB = 0;
TRISD = 0;

UART1_Init(9600); // initialize UART1 module
Delay_ms(100);
RS485Slave_Init(160); // Intialize MCU as slave, address 160

dat[4] = 0; // ensure that message received flag is 0

155

——
| —

Applied Protocols in Smart Control Graduation Project 2010

dat[5] = 0; // ensure that message received flag is 0
dat[6] = 0; // ensure that error flag is 0
RCIE_bit=1; // enable interrupt on UART1 receive
TXIE_bit =0; // disable interrupt on UART1 transmit
PEIE_bit=1; // enable peripheral interrupts
GIE_bit=1; // enable all interrupts
while (1) {
PORTB=dat[0]; // increment received dat[0]
Delay_ms(1000);
RS485Slave_Send(dat,1); // and send it back to master
PORTB="PORTB;
}
}

G.3-RS485 Temperature sender

char dat[9]; // buffer for receiving/sending messages
chari,j;

long y,x;

sbit rs485_rxtx_pin at RC1_bit; // set transceiver pin

sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transceiver pin direction

// Interrupt routine
void interrupt() {
RS485Slave_Receive(dat);
}
void Read_AD(){
y=ADC_Read(2);
y=y*5000; // Convert to
y=y/1023; // MV OR Convert from level to voltage
y=y/10;
}
void main() {
ADCON1.PCFG0=0; //ALL PORT A AS Analog AND reference are VDD
ADCON1.PCFG1=1;
ADCON1.PCFG2=0;
ADCON1.PCFG3=0;
CMCON.CMO0=1;
CMCON.CM1=1;
CMCON.CM2=1;

156

——
| —

Applied Protocols in Smart Control Graduation Project 2010

PORTB = 0;
PORTD = 0;
TRISB =0;
TRISD =0;
UART1_Init(9600); // initialize UART1 module
Delay_ms(100);
RS485Slave_Init(160); // Initialize MCU as slave, address 160
dat[4] = 0; // ensure that message received flag is 0
dat[5] = 0; // ensure that message received flag is 0
dat[6] = 0; // ensure that error flag is 0
RCIE_bit=1; // enable interrupt on UART1 receive
TXIE_bit = 0; // disable interrupt on UART1 transmit
PEIE_bit=1; // enable peripheral interrupts
GIE_bit=1; // enable all interrupts
y=0;
PORTB=0xFF;
Delay_ms(1000);
PORTB=0x00;
while (1) {
if (dat[5]) { // if an error detected, signal it by
PORTB = OxFF; // setting portd to OxAA
dat[5] =0;
}
X=Y;
Read_AD();
if(x!=y){
dat[0] =y; // increment received dat[0]
dat[1]=4;
dat[2]=5;
Delay_ms(2000);
RS485Slave_Send(dat,3); // and send it back to master
}
}
}
G.4-RS485 Transceiver
char dat[9]; // buffer for receving/sending messages
chari,j;

157

——
| —

Applied Protocols in Smart Control Graduation Project 2010

long y,x;
sbit rs485_rxtx_pin at RC1_bit; // set transcieve pin
sbit rs485_rxtx_pin_direction at TRISC1_bit; // set transcieve pin direction

// Interrupt routine
void interrupt() {
RS485Slave_Receive(dat);
}
void Read_AD(){
y=ADC_Read(2);
y=y*5000; // Convert to
y=y/1023; // MV OR Convert from level to voltage
y=y/10;
}
void main() {
ADCON1.PCFG0=0; //ALLPORT A AS Analog AND refrance are VDD
ADCON1.PCFG1=1;
ADCON1.PCFG2=0;
ADCON1.PCFG3=0;

CMCON.CMO0=1;

CMCON.CM1=1;

CMCON.CM2=1;

PORTB = 0;

PORTD =0;

TRISB =0;

TRISD = 0;

UART1_Init(9600); // initialize UART1 module
Delay_ms(100);

RS485Slave_Init(160); // Intialize MCU as slave, address 160
dat[4] = 0; // ensure that message received flag is 0
dat[5] = 0; // ensure that message received flag is 0
dat[6] = 0; // ensure that error flag is 0
RCIE_bit=1; // enable interrupt on UART1 receive
TXIE_bit=0; // disable interrupt on UART1 transmit
PEIE_bit=1; // enable peripheral interrupts
GIE_bit=1; // enable all interrupts

y=0;

158

——
| —

Applied Protocols in Smart Control Graduation Project 2010

PORTB=0xFF;
Delay_ms(1000);
PORTB=0x00;
while (1) {
if (dat[5]) { // if an error detected, signal it by
PORTB = OxFF; // setting portd to OxAA
dat[5] =0;
}
if (dat[4]) { // upon completed valid message receive
dat[4] = 0; // data[4] is set to OxFF
PORTB = dat[0];
}
X=Y;
Read_AD();
if(x!=y)}{
dat[0] =y; // increment received dat[0]
dat[1]=4;
dat[2]=5;
Delay_ms(2000);
RS485Slave_Send(dat,3); // and send it back to master

G.5-X10 Transceiver
The following code is written an compiled by CCS C compiler

#if defined(__PCB_)

#include <16C56.h>

#fuses HS,NOWDT,NOPROTECT

#Huse delay(clock=20000000)

#Huse rs232(baud=9600, xmit=PIN_A3, rcv=PIN_A2)

#elif defined(_ PCM__)

#include <16F877A.h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=4000000)

#Huse rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#elif defined(_ PCH_)

159

——
| —

Applied Protocols in Smart Control Graduation Project 2010

#include <18F452.h>

#fuses HS,NOWDT,NOPROTECT,NOLVP

#use delay(clock=20000000)

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
#endif

#include <x10.c>
#include <input.c>

void main() {
char house_code;
BYTE key_code;

printf("Online\n\r");
while (TRUE) {

if(kbhit()) {

house_code = getc();

if((house_code>='A") && (house_code<='P')) {
putc(house_code);
key _code=gethex();
x10_write(house_code,key_code);
x10_write(house_code,key_code);
printf("Eng");

}
if(x10_data_ready()) {

putc('>');
x10_read(&house_code, &key code);
printf("%c%2X", house_code, key_code);
}
}
}

G.6- FBUS
/*Routine for starting the fbus Protocol*/

void startfbus()
{

160

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

UART1_Write(0x55);UART1_Write

(
UART1_Write(0x55);UART1_Write(

0x55);UARTL_Write(0x55);UART1_Write(OX55);
0x55);UARTL_Write(0x55);UART1_Write(OX55);

UART1_Write(0x55);UART1_Write(0x55);UART1_Write(Ox55);UART1_Write(Ox55);
UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(Ox55);
UART1_Write(0x55);UART1_Write(0x55);UART1_Write(Ox55);UART1_Write(Ox55);

UART1_Write(0x55);UART1_Write(0Ox55
UART1_Write(0x55);UART1_Write(0Ox55
UART1_Write(0x55);UART1_Write(0Ox55

UART1_Write(0x55);UART1_Write(0Ox55
UART1_Write(0x55);UART1_Write(0Ox55

UART1_Write(0x55);UART1_Write(0Ox55);
UART1_Write(0Ox55);UART1_ Write(0x55);
UART1_Write(0x55);UART1_Write(0Ox55);

UART1_Write(Ox55);UART1_Write(Ox55);
UART1_Write(0x55);UART1_Write(Ox55);

();
();
();
UART1_Write(0x55);UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(OX55);
();
();
();

UART1_Write(0x55);UART1_Write(0Ox55

UART1_Write(0x55);UART1_Write(Ox55);

UART1_Write(Ox55);UART1_Write(0Ox55);UART1_Write(0x55);UART1_Write(0x55);
UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(0x55);UART1_Write(0x55);
UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55
UART1_Write(0x55);UART1_Write(0x55
UART1_Write(0x55);UART1_Write(0x55

UART1_Write(0x55);UART1_Write(0x55
UART1_Write(0Ox55);UART1_Write(Ox55

UART1_Write(0x55);UART1_Write(0x55);
UART1_Write(0x55);UART1_Write(Ox55);
UART1_Write(0x55);UART1_Write(0x55);

UART1_Write(0x55);UART1_Write(0x55);
UART1_Write(0Ox55);UART1_Write(Ox55);

();
();
();
UART1_Write(0x55);UART1_Write(0Ox55);UART1_Write(0Ox55);UART1_Write(OX55);
();
();
();

UART1_Write(0Ox55);UART1_Write(Ox55

UART1_Write(0Ox55);UART1_Write(Ox55);

UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(0x55);UART1_Write(Ox55);
UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(0x55);
UART1_Write(Ox55);UART1_Write(Ox55);UART1_Write(0x55);UART1_Write(Ox55);

UART1_Write(Ox55);UART1_Write(Ox55
UART1_Write(Ox55);UART1_Write(Ox55
UART1_Write(Ox55);UART1_Write(Ox55

UART1_Write(0x55);UART1_Write(Ox55
UART1_Write(0x55);UART1_Write(0Ox55

UART1_Write(0Ox55);UART1_Write(Ox55);
UART1_Write(0x55);UART1_Write(0Ox55);
UART1_Write(0Ox55);UART1_Write(Ox55);

UART1_Write(0x55);UART1_Write(0x55);
UART1_Write(0x55);UART1_Write(0Ox55);

();
();
();
UART1_Write(0x55);UART1_Write(0Ox55);UART1_Write(0Ox55);UART1_Write(OX55);
();
();
();

UART1_Write(0x55);UART1_Write(0Ox55
} // end method

/*Refresh the 3310 fbus link*/

void refresh()

{

UART1_Write(0x55);UART1_Write(0Ox55);

UART1_ Write(Ox1E);UART1_Write(0Ox00);UART1_Write(OxOC);UART1_Write(0OxD1);
UART1_Write(0x00);UART1_Write(0Ox07);UART1_Write(0x00);UART1_Write(0x01);
UART1_Write(0x00);UART1_Write(0x03);UART1_Write(0x00);UART1_Write(0x01);
UART1_Write(0x40);UART1_Write(0Ox00);UART1_Write(0x52);UART1_Write(OxD5);

} // end method

161

——

'

Applied Protocols in Smart Control Graduation Project 2010

/*Messagel(getting the version of phone software) here*/
void mess()

{

UART1_Write(Ox1E);UART1_Write(0Ox00

(;UART1_Write(0x0C);UART1_Write(0x02);
UART1_Write(0x00);UART1_Write(Ox35

(

(

;UART1_Write(0x00);UART1_Write(0x01);
UART1_Write(0x00);UART1_Write(0x01);UART1_Write(0x02);UART1_Write(0x00);
UART1_Write(0x07);UART1_Write(0x91);UART1_Write(0x36);UART1_Write(0x19);
UART1_Write(0x08);UART1_Write(0x00);UART1_Write(Ox10);UART1_Write(0x10);
UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);
UART1_Write(0x15);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);
UART1_Write(OxOA);UART1_Write(OxOC);UART1_Write(0x91);UART1_Write(0x36);
UART1_Write(0x39);UART1_Write(0x19);UART1_Write(0x13);UART1_Write(0x21);
UART1_Write(0x70);UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0x00);
UART1_Write(0x00);UART1_Write(OxA7);UART1_Write(0x00);UART1_Write(0x00);

(

(

(

UART1_Write(0x00);UART1_Write(0x00);UART1_Write(0Ox00);UART1_Write(0x00);
UART1_Write(0x65);UART1_Write(0x39);UART1_Write(Ox3D);UART1_Write(Ox2F);
UART1_Write(OxA7);UART1_Write(OxE7);UART1_Write(OxCB);UART1_Write(OxF2);
UART1_Write(0x3C);UART1_Write(0x01);UART1_Write(0Ox47);UART1_Write(0x00);
UART1_Write(OxA2);UART1_Write(0x08);

} // end method

/*Message2 here*/

void burglar_alert()

{

UART1_Write(Ox1E);UART1_Write(Ox00);UART1_Write(0xOC);UART1_Write(0x02);
UART1_Write(0x00);UART1_Write(Ox56);UART1_Write(0x00);UART1_Write(0x01);
UART1_Write(0x00);UART1_Write(0x01);UART1_Write(0x02);UART1_Write(0x00);
UART1_Write(0x07);UART1_Write(0x91);UART1_Write(0x36);UART1_Write(0x19);
UART1_Write(0x08);UART1_Write(0Ox00);UART1_Write(0x10);UART1_Write(0x10);
UART1_Write(0x00);UART1_Write(0x00);UART1_Write(Ox00);UART1_Write(0x00);
UART1_ Write(0x15);UART1_Write(Ox00);UART1_Write(0x00);UART1_Write(OxFO);
UART1_Write(Ox2F);UART1_Write(0xOC);UART1_Write(0x91);UART1_Write(0x36);
UART1_Write(0x39);UART1_Write(0x19);UART1_Write(0x13);UART1_Write(0x21);
UART1_Write(0x70);UART1_Write(0Ox00);UART1_Write(0x00);UART1_Write(0x00);
UART1_Write(0x00);UART1_Write(OxA7);UART1_Write(0x00);UART1_Write(Ox00);
UART1_Write(0x00);UART1_Write(0Ox00);UART1_Write(0x00);UART1_Write(0x00);
UART1_ Write(0xC2);UART1_Write(OxBA);UART1_Write(OxFC);UART1_Write(OxCC);
UART1_Write(OxOE);UART1_Write(OxCB);UART1_Write(Ox41);UART1_Write(0x41);
UART1_ Write(0x76);UART1_Write(0Ox59);UART1_Write(Ox4E);UART1_Werite(OxOF);
UART1_ Write(0x81);UART1_Write(0x84);UART1_Write(OXEF);UART1_Write(OxF9);
UART1_Write(0x9C);UART1_Write(0x05);UART1_Write(OxCA);UART1_Write(OxBE);
UART1_Write(OxEB);UART1_Write(0x72);UART1_Write(OxDO);UART1_Write(0x38);

162

——
| —

Applied Protocols in Smart Control Graduation Project 2010

UART1_Write(0x2C);UART1_Write(0x07);UART1_Write(OxA1);UART1_Write(0xC3);
UART1_Write(0x73);UART1_Write(0x90);UART1_Write(OxB8);UART1_Write(0x5C);
UART1_Write(0x76);UART1_Write(0x83);UART1_Write(OXE6);UART1_Write(OxF4);
UART1_Write(0x37);UART1_Write(OxBB);UART1_Write(OXEC);UART1_Write(OxOE);
UART1_Write(0x81);UART1_Write(0Ox00);UART1_Write(0x01);UART1_Write(0Ox45);
UART1_Write(OXOF);UART1_Write(0x30
} // end method

—_ —

~ ~—

7

void main()

{
// Analogs are off
ADCON1=0x0F;
CMCON=0x07;
// portb output
TRISB=0x00;
// TX output, RX input
TRISC.F7=1;
TRISC.F6=0;

// Initialize Uart at 115200 baud rate
UART1 Init(115200);

// Wait for Uart to stablize
delay_ms(100);

do

// Start protocol
startfbus();

// Wait for uart to stablize
delay_ms(100);

// Message 1 sending

// Refresh link
refresh();

// Send message 1

mess();

// Stabilize
delay_ms(100);

//Message 2 sending
// Refresh Link

163

——
| —

Applied Protocols in Smart Control

Graduation Project 2010

refresh();
//Send message 2
burglar_alert();
// Stabilize
delay_ms(100);

} while(0);//Execute Once

// If data is ready, read it:

if (UART1_Data_Ready() == 1) {
// Recieved parameter
charr;

// Assign received data to a variable r

r = UART1_Read();
// display data on portB
portB =r;

} // endif

} // end main

——

164

'

Applied Protocols in Smart Control

Graduation Project 2010

Appendix H: Data Sheets

FIGURE 1-1: PIC16F873A/876A BLOCK DIAGRAM
13 Data Bus PORTA
Progran.'l\CDunter ” u RADIAND
Frash 7 =[] RATIANT
Program - . +—=] RAZIAN2NREF-CVREF
Memory RAM Yy - RASMANINREF+
8 ";";'bc‘.ﬁ“" File 4+—=[%] Ra4TOCKICIOUT
/ Registers | RASIANAISSIC20UT
Program
Bus 14 RAM Addrd™) ¢ f 3
Instruction reg f—,w—\
| | Direct Addr 7 PORTE
+— REOMANT
+— RB1
N REZ
+— RE3PGM
8 - RB4
+— RBS
-+ REBGPGC
Power-up +— RB7IPGD
Timer
Instructi Oscillator
[",'iméfg T | Start-up Timer
Control Power—on
Reset PORTC
| TIMN | | Whalchdog g RCOT10SQITICK]
b= gene — Timer - RCUT10SI/CCP2
OgCh‘CLKI Brown-out | RC2ICCP1
OSC2CLKD Reset N = RCISCHKISCL
In-Circuit i -+ RCASDI'SDA
Debugger & RCSISDO
Low-Voitage | RCETHICK
Programming -+ RCTIRX/OT
MCLR Voo, Ves
Timerd Timer1 Timer2 10-bit A/ID
1L 1L I 1L
I 7 1f I I 1L
Synchronous Voltage
Data EEPROM CCP12 Gerial Port USART Comparator Reference
Device Program Flash Data Memory Diata EEPROM
PIC16FBT3A 4K words 192 Bytes 128 Bytes
PIC16FB7EA BK words 365 Bytes 2565 Bytes

Hote 1: Higher order bits are from the Status register.

——

165

'

Applied Protocols in Smart Control Graduation Project 2010

II. MAX232
+5V-Powered, Multichannel RS-232
Drivers/Receivers
SUNPUT g
TOP VIEW Ji—‘H -
S
ot [i] e [16] Voo e = VCC16 v 2l aov
vz [55] &t O 3o vl bouBLen
ot 2] a4 Ton o % swvToan oy 1ov

[-
5 [
“T_2JC2- VOLTAGE INVERTER =4
2 [o] maxzo) Rt =

MAX232 9V
ez [5] maxzsz |2l Ko 400k
v- 6] 1] Tin k] AT Tout 14, -
+aV
T2ou7 | 7 10 T2m TIL/CMOS RS-232
[m INPUTS 400kQ QUTPUTS
A2 [2] o | R20ur 10] T2 Dﬁ 120 |7
DIP/SO 12] Rigur rin |13
CAPACITANCE (uF) TTL/CMOS 5k RS-232
DEVIGE Gl (2 03 G4 5 OUTPUTS of oo = .l INPUTS
WAX220 0047 033 033 033 033 -] -
MAX232 10 10 10 10 10 .
MAX23ZA_ 01 0101 01 01
GND_ =
L

Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit

166

——
| —

6V XVIN-0ccXVIN

Applied Protocols in Smart Control Graduation Project 2010

III. MAX485

Low-Power, Slew-Rate-Limited
RS-485/RS-422 Transceivers

Pin Description
PIN
MAX481/MAX483/
MAX485/MAX487/ v x| NAME FUNCTION
MAX1487
DIP/SO | pMAX | DIP/SO | pMAX DIP/SO
Receiver Output: If A > B by 200mV, RO will be high;
L 3 2 4 2 RO | IfA < B by 200mV, RO will be low.
2 4 o o 3 =E Receiver Qutput Enable. RO is enabled when RE is low; RO is
high impedance when RE is high.
Driver Qutput Enable. The driver outputs, Y and Z, are enabled
by bringing DE high. They are high impedance when DE is low. If
3 5 — — 4 DE the driver outputs are enabled, the parts function as line drivers.
While they are high impedance, they function as line receivers if
RE is low.
2 g 3 . 5 ol Driver Input. A low on DI forces output Y low and output Z high.
= Similarly, a high on DI forces output ¥ high and output Z low.
5 7 4 5] 6,7 GND Ground
— — 5 7 9 Y MNoninverting Driver Cutput
— — 6 8 10 z Inverting Driver Cutput
6 8 — — — A MNoninverting Receiver Input and Noninverting Driver Cutput
— — 8 2 12 A Noninverting Receiver Input
7 1 — — — B Inverting Receiver Input and Inverting Driver Cutput
— — 7 1 11 B Inverting Receiver Input
8 2 1 3 14 Voo Positive Supply: 4.75V < Vce < 5.25V
— — — — 1,8,13 MN.C. No Connect—not internally connected
TOPVIEW P MDAM
SER SN e
Mo =5 s
e [5 —{el» . ~ MAX 1487
ol [#] 5] oo A0 [1] ﬁL—T 8] Ve
% [2] L B
t At
"':_"i" o [stw»- 000 g
.
s [1] ap b i BN
Voo 2] maxasr 7] cno
- MAX453
ool M 5.
4
RE [MAX 1467 E o)
NOTE: PIN LABELS Y AND Z ON TIMING, TEST, AND WAVEFORM DIAGRAMS REFER TO PINS A AND B WHEN DE 15 HIGH.
nMAX TYPICAL OPERATING CIRCUIT SHOWN WITH DIP/S0 PACKAGE.

Figure 1. MAX481/MAX483/MAX485/MAX487/MAX 1487 Pin Configuration and Typical Operating Circuit
MAXIM ’

167

——
| —

L8V EXVIN/L6PXVIN-LBPXVIN/GSSVXVIN/ESPXVIN/ L8P XVIN

Applied Protocols in Smart Control Graduation Project 2010

IV. ULN2003

ULN2001A-ULN2002A
YI@ ULN2003A-ULN2004A

= SEVEN DARLINGTONS PER PACKAGE

« OUTPUT CURRENT 500mA PER DRIVER
(600mA PEAK)

« OUTPUT VOLTAGE 50V

« INTEGRATED SUPPRESSION DIODES FOR
INDUCTIVE LOADS

SEVEN DARLINGTON ARRAYS
- OUTPUTS CAN BE PARALLELED FOR

HIGHER CURRENT

TTL/CMOS/PMOS/DTL COMPATIBLE INPUTS DIP16

INPUTS PINNED OPPOSITE OQUTPUTS TO ORDERING NUMBERS: ULN2001A/2A/3A/4A
SIMPLIFY LAYOUT

114
1%

5016

ORDERING NUMBERS: ULN2001D/2D/3D/4D
DESCRIPTION

The ULN2001A, ULN2002A, ULN2003 and
ULNZ2004A are high voltage, high current darlington
arrays each containing seven open collector dar- PIN CONNECTION
lington pairs with common emitters. Each channel
rated at 500mA and can withstand peak currents of
B600mA. Suppression diodes are included for induc-
tive load driving and the inputs are pinned opposite

e 16 OUT 1
the outputs to simplify board layout. N1 &0
IThe four versions interface to all common logic fami- N 2 2 15 OUT 2

ies:

2
ULN2001A General Purpose, DTL, TTL, PMOS, IN 3 3 14 OUT 3
CMOS

ULN2002A | 14-25V PMOS N 4 4 13 OUT 4

ULN2003A 5V TTL, CMOS

ULN2004A 6-15V CMOS, PMOS IN5 § 12 OUT §
These versatile devices are useful for driving a wide . f T 6
range of loads including solenoids, relays DC mo- IN6 & m o
tors, LED displays filament lamps, thermal print-
heads and high power buffers. iNT7 7 10 ouUT 7
The ULN2001A/2002A/2003A and 2004A are sup- COMMON FREE
plied in 16 pin plastic DIP packages with a copper GND 8 9 WHEELING DIODES
leadframe to reduce thermal resistance. They are
available also in small outline package (SO-16) as $-197711

ULN2001D/2002D/2003D/2004D.

— February 2002 18

V.

Applied Protocols in Smart Control

Graduation Project 2010

XM10

Typical Controller Connection Diagram

Trarsmi
oultput

CONTRCLLER

Racefe
nput

Grourd

Jrai_ 1
crossing
npt

——

169

svi
Controlls
K airoutts X0
0
B Transmi
L rput
! i 43
[lﬂl
fzv
5K
- Recelve
e I output
1 =] 33
- - ‘Orourd
: 1 2
prv
E] s
. crossing
|i | a q DuUpw
j
- T

/'

Applied Protocols in Smart Control

Graduation Project 2010

Index

ACK, 52, 53

B

baud rate, 31, 32, 44, 57

C
checksum, 51, 52, 54, 55
com, 51, 65

D

devices, 4, 6, 7, 14, 20, 21, 29, 30, 31, 33,
38, 40, 44, 62, 64, 66, 68, 70, 72, 74, 83
DTR, 51

F/M Bus, 50, 87

!

ID, 38, 48, 53, 64, 66, 68, 69, 74
Internet Protocol Suite, 62
IP Address, 73

LAN, 6, 64, 65, 66
library, 43, 67, 74

M
MAX232, 26, 44

microcontroller, 4, 33, 38, 43, 44, 45, 50, 51,

53,87
Microcontroller, 4, 26, 33, 35, 43, 44, 45,
59, 86, 87, 91
N

Nokia phones, 50, 87

——

170

P

password, 64, 65, 66, 70, 74
PCB, 23, 36, 37, 39, 40, 42, 59
Phone, 54, 86, 87, 88

PIC, 33, 43, 44

PLC, 14, 21

Power line communications, 14
Programming, 43, 45

PWM, 24

Receiver, 38

RS-232, 29, 31, 32

RS485 Protocol, 5, 6, 29, 84
S

sensor, 40

serial port, 26, 31, 65, 68, 69

Server, 10, 64, 66, 67, 68, 69, 73, 75, 77, 78
T

TCP/IP, 4

TCP/IP protocol, 6, 62, 75
U

UART, 51, 60
User Name, 73

X10 protocol, 6, 20

XM10 Module, 7, 21

zero, 16, 21, 24, 25

'

