Fayoum University

Engineering Faculty

Electrical Engineering Department

B.Eng. Final Year Project

Automatic Control Process

For "SHAYBAH" Combined Cycle Power Generation

Using Foxboro® DCS

By:

Mohamed Yehia Mohamed Mahmoud Ata-AllaSalama Sally Maher Zaher SomayaAbdelghany Ramadan Nada SayedAbdelgayed

Supervised By:

Dr. Amr Abdullah Saleh

Supervisor(s)

Date of examination

JULY - ۲.17

ACKNOWLEDGMENT

We wish to express sincere appreciation to Dr. Amr Abdullah for his encouragement and patience from the initial to the final level enabled us to develop an understanding of the work for our project. Several people have been instrumental in allowing this project to be completed.

Our parents didn't know what we were doing, but they were always eager to help us out in all possible ways; without them it is hard to imagine accomplishing all this work. (Special thanks to our families).

Finally, we take this opportunity to express how much we were good friends all the time of the project without any problems. The spirit we had is the cause why we completed the project in this manner, which is why we must congratulate ourselves for the cooperation, patience and Insistence to represent a good abstract for what we learned in the college

DECLARATION

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Bachelor of Science in *Electrical Engineering* is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Signed: _____

Registration No.:

Date: 9 July 7 • 17.

ABSTRACT

This document has been prepared by group of Undergraduate students in "faculty of Engineering Fayoum University" to implement Distributed Control System programing and simulation of "SHAYBAH - B^Y [£]" plant area combined cycle power generation located in **Rub' al Khal in Saudi Arabia**.

The DCS used is "Fox boro" I/A series software, resulting in closed feedback control loops implemented by "IACC" and GUI implemented by "Fox Draw", for one of six identical blocks of "Once Through Steam Generator" which create the field of $B^{\gamma} \xi$.

TABLE OF CONTENTS

Contents

LI	ST OF FI	IGURES	٦
LI	ST OF T	ABLES	
۲I	ST OF A	CRONYMS/ABBREVIATIONS	۹ ۹
,		RODUCTION Plant Overview:	יו אר
	١٢	DCS OVERVIEW	١٤
	1.7	Difference BETWEEN DCS and PLC	17
	1.2	Difference between DCS and SCADA	11
J		Applications of DCS and SCADA	11
'	FOR 7	MATTING DISCRIPTION Definitions	19
	۲ ۲	Control narrative	۱۹
	۲.۲.1 Ge	neral	19
	7.7.7	Control strategy	•
	7.7.7	Measurement of redundancy transmitter	•
	۲.۲.٤	Manual/auto shift	•
	۲.۲.٥	HP feed water system	۱
	۲.۲.۰.۱	HP feed water shut-off bypass valve (MOV-1 r ·r)	۱
	۲.۲.۰.۲	HP feedwater shut-off valve (MOV-17V1)	۲
	۳.۲.٥.۳	HP economiser vent shut-off valve(MOV-1۲۹۸)	٣
	۲.۲.۰.٤	HP economizer and evaporator filling shut-off valve (MOV-1".")	٣
	٥.٥.٢	HP separator blowdown shut-off valve (MOV-1YVY)	٤
	۲.۲.۰.٦	HP superheater outlet drain valve (MOV-1 ** * *)	0
	۲.۲.۰.۷	HP main steam drain valve (MOV-1777)	٦
	۸_۰.۲	HP main steam drain valve (MOV-1777)	'V
	۲.۲.٥.٩	HP attemperator spray water shut off valve(MOV-17V7)	Ά
	۲.۲.۰.۱۰	HPsteam shut-off bypass valve (MOV-17V°)	٩
	۲.۲.۰.۱۱	HP FW main FCV shut-off valve (MOV-1.01)	٠.
	۲.۲.۰.۱۲	HP ECO bypass shut-off valve(MOV-1.or)	٠.
	۲.۲.٦	IP feed water system	٦
	۲.۲.٦.۱	IP feedwater shut-off valve (MOV-17VA)	٦
	۲.۲.٦.۲	IP economiser vent shut-off valve (MOV-1977)	۲
	۲.۲.٦.۳ I	P economiser and evaporator filling shut-off valve(MOV-1 ^{r,o})	۲
	۲.۲.٦.٤	IP separator blowdown shut-off valve (MOV-1۳17)	٣
	۲.۲.٦.٥	IPsteam shut-off bypass valve (MOV-1141)	٤
	۲.۲.٦.٦	IP steam shut-off valve (MOV-1۲۸۲)	0

۷_۲_۲_۷	IP economiser inlet drain shut-off valve (MOV-1۳1۳)			
۲_۲_٦_۸	IP outlet drain valve (MOV-1۲۸۰)	٣٦		
۲.۲.٦.٩	۲.۲.٦.۹ IP outlet drain valve (MOV-۱۰۰۳)۳۷			
Y_Y_Y	HP bypass system			
1.7.7.1	HP steam bypass inlet shut-off valve (MOV-1۲۸۳)			
7.7.7.7	HP steam bypass outlet shut-off valve(MOV-179٤)			
7.7.7.7	HP steam bypass spray shut-off valve (XV-·^··)			
۲.۲.۷.٤	HP steam bypass drain valve (MOV-1745)	ź •		
1.7.7	IP bypass system	٤ •		
1.1.1	IP steam bypass inlet shut-off valve (MOV-1۲۸۸)	٤ •		
7.1.1.7	IP steam bypass outlet shut-off valve (MOV-1790)	٤ •		
7.7.7.7	IP steam bypass spray shut-off valve (XV- • ^)	٤١		
۲.۲.۸.٤	IP steam bypass drain valve (MOV-1749)	٤١		
Y.Y.A.° Condensate drain tank pump A (GM- \cdot A/A/GM- \cdot A/GM- \cdot A/GM- \cdot A/GM- \cdot A/A/GM- \cdot A/GM- \cdot A/A/GM- \cdot A/A/A/GM- \cdot A/A/A/GM- \cdot A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/A/				
۲.۲.۸.٦ (Condensate drain tank pump outlet valve (MOV-1797)	٤٢		
۲.۲.۹ Ch ۲.۲.۹.۱	emical dosing system for feed water Ammonia dosing tank with agitator (GM-•٩٦٩)	ET ET		
۲.۲.۹.۲	Ammonia injection pump A (GM-· ٩٧)A)	٤٣		
۲.۲.۹.۳ I	Boiler feed water pump A (GM-•^\rA)	٤٤		
۲.۲.۹.٤ I	Boiler feed water pump A outlet VLV (MOV-177°A)	٤٤		
۲.۲.۹.۰ I	Boiler feed water pump A SEQ START	٤0		
۲.۲.۹.٦ Ι	Boiler feed water pump A SEQ STOP	٤0		
Y.Y.9.VN	finimum flow control of boiler feed water pump A (FV-• ۲) ۲A)	٤0		
۲_۳	Foxboro Distributed Control System (DCS)	٤٦		
۲_۳_۱	Introduction	٤٦		
۲.۳.۲.I/	A Series System	ź V		
۲.۳.۳ MA ۲.۳.٤	IN SOFTWARE PACKAGES Fox view Human Interface	٤٧ ٤٨		
٥.٣.٢	Fox select	٤٨		
۲_۳_٦	I/A Series Configuration Component (IACC)	£9		
۲_۳_۷	Fox Draw	२०		
٨.٣.٢	System Definition	२०		
۲.٤ ۲.٤.۱ Ble	Functional Design Specification ocks used in IACC for Control Process	٦٦ ٦٦		
۲.٤.١.١	AIN – Analog Input Block	٦٦		
۲.٤.١.٣	PIDA Block	٦٦		
۲.٤.١.٤	CIN Block			

۲.٤.١.٥	COUT block	٦٩
۲_٤_۱_٦	LLAG – Lead Lag Block	٦٩
۲.٤.١.٨	CHARC – Characterizer Block	۰. ۲
۲_٤_۱_٩	LIM – Limiter Block	۰. ۲
۲.0	DCS CONTROL LOOP STRATEGIES	٧.
۲ _. ٦	DCS Control loops templates	Y)
「.٦.) A 、 、 、 、 シ	IN-TEMPLATE	····· ^)
777	CIN –TEMPLET	٧٢
۲.٦.٣	COUT –TEMPLET	٧٤
۰۰. ۲ <u>.</u> ۳۳۱	P&ID graphic symbol	
۲.٦.٣.٢	Database Information	٧٤
۲ <u>.</u> ٦.٣.٣	Function Description	٧٤
۲_٦_٣_٤	Blocks Interconnection Diagram	٧٤
۲.٦.٤	VLV TEMPLATE	
۲	Human Machine Interface (HMI)	vv
ע ו.א.ז	Vhat is a Display?	vv
۲.۷.۲ О	BJECT TYPES	٧٧
۲.٧.۳ Τ	he Different Types of Displays	٧٩
۲۷٤	Building Process Displays with FoxDraw	
٥.٧.٢	Accessing Foxdraw	۸۳
۲.۷.٦	Configuring Process Displays with FoxDraw	٨٤
۲.۷.۷	Display of P&ID Tags on Graphics	٨٤
۲.۷.۸	Display Colors and Functionality	٨٤
۲.۷.۹	STATIC TEXT	٨٥
۲.۷.۱۰	PROCESS LINES COLORS	٨٥
۲.۷.۱۱	The Project Displays	^٦
cita	tion and referencing	۹۲
۳.۱	References Format	۹۲

LIST OF FIGURES

Figure 1:Basic configuration of a DCS System	10
Figure ⁷ :DCS VS PLC	۱۷
Figure \mathcal{T} :I/A series system	٤٧
Figure [£] :FOXVIEW window	٤٨
Figure °:FOXSELECT window	٤٩
Figure [¬] :IACC configuration	٤٩
Figure V:Data Processing	• •
Figure A:IACC Databases Dialog Box	01
Figure ⁴ :Logon Dialog Box	01
Figure \.: IACC Windows and Menu Bars	07
Figure 11: IACC Windows and Menu Bars	07
Figure 17:AIN and AOUT Defaults	07
Figure 17:SWCH Default	0 ٤
Figure VÉ:CALCA Default	00
Figure <i>Vo</i> :Adding Plant Area	07
Figure 17:72Y CSD	o /
Figure <i>VY</i> :Assigning Default Compounds	09
Figure 1A:Export Window	٦.
Figure \4:Creating CSD Template	۲۱
Figure \checkmark :Creating new Tag Type	٦٢
Figure ^Y Selecting CSDs	٦٣
Figure ^{۲۲} :Bulk Generation Preview	7£
Figure ^۲ ^m :Download Preview	70
Figure ۲٤:AIN Indicator	۲۷
Figure Yo::CIN_ TEMPALTE in IACC	۳۷

Figure ۲۶:COUT_ TEMPALTE in IACC	٧٤
Figure YY:VLV Template	۷۵
Figure ۲۸:BITMAPS	٧٧
Figure ^Y ⁹ :Trend	۷۸
Figure r . Faceplate	٧٩
Figure ^m :pallet	۸۱
Figure ۳۲:Detailed Display	۸۱
Figure ۳۳:Group Display	۸۲
Figure ^{$r_{\epsilon}: Accessing Foxdraw$}	۸۳
Figure ^{ro} :Foxdraw Screen	٨٤
Figure ۳٦::Color Codes	۸۵_
Figure ^{\varphi} :OTSG A Exhaust System	۸٦
Figure ^{\mathfrac{\mathrac{\matrix}\matrix{\mathrac{\mathrac{\matrix}\n \matrix} \matrix{\matrix} \matrix} \matrix} \matrix} \matrix} \matrix} \matrix} \matrix} \matrix} \matrix} \ \matrix} \ \matrix} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \}	۸۷
Figure ^{۳۹} :OTSG A HP Evaporator System	۸۸
Figure [£] ·:OTSG A HP Super Heater System	۸۹
Figure [£] 1:OTSG A IP System	٩٠
Figure ξ ?:VLV Display	۹۱

LIST OF TABLES

Table 1:Blocks Connection	07
Table ^r :Blocks Name	07
Table ^r :TagList Database	۲۱.
Table [£] :Indication in database	
Table °: Indication in database	۷۳
Table 7: Indication in database	٧٤
Table ^v :VLV Taglist	٧0
Table ^:CALCA Code	٧٦

LIST OF ACRONYMS/ABBREVIATIONS

AC	Alternating current
ACC	Air Cooled Condenser
AI	Analog Input
ANSI	American National Standards Institute
API	American Petroleum Institute
AO	Analog Output
ALMS	Alarm Management System
ASCII	American Standard Code for Information Inter-change A widely used code and protocol used to represent individual characters and communicate files.
ВОР	Balance of Plant
CCF	Combined Cycle Facility
CCR	Central Control Room
CGTCS	Combustible Gas Turbine Control System
CMS	Condition Monitoring System
CPF	Central Processing Facility
CPU	Central Processing Unit
CRT	Cathode Ray Tube
DC	Direct current
DCS	Distributed Control System
DI	Digital Input
DMR	Dual Modular Redundancy
DO	Digital Output

ESD	Emergency Shutdown
EPS	Equipment Protection System
ESP	Electric Submersible Pump
ETP	External Termination Panels
FAT	Factory Acceptance Test
FF	FOUNDATION Fieldbus
FO	Fiber Optic
GB	Giga-Byte
HIST	Host Interoperability Testing
HART	Highway Addressable Remote Transducer
HVAC	Heating, Ventilating and Air Conditioning
IAMS	Instrument Asset Management System
I/O	Input/output
IEEE	Institute of Electrical and Electronics Engineers
LAN	Local Area Network
LAS	Link Active Scheduler
LED	Light Emitting Diode
LSTK	Lump Sum Turnkey
Ма	Milli-Ampere
MB	Mega-Byte
MIS	Management Information System
MMI	Man Machine Interface
MMS	Machine Monitoring System
MTS	Maintenance Training System
NA	Not Applicable
NAOO	Northern Area Oil Operations

NEMA	National Electrical Manufacturers Association
NFPA	National Fire Protection Association
OPC	OLE for Process Control
OSPAS	Oil Supply Planning And Scheduling Department
OTS	Operator Training System
OTSG	Once Through Steam Generator
OWS	Operator Workstation
PAN	Plant Automation Network
P&ID	Piping and instrument diagram
РС	Personal Computer
PCN	Process Control Network
PCS	Process Control System
PFD	Process Flow Diagram
PI	Plant Information System
PIB	Process Interface Building
PID	Proportional Integral Derivative
PLC	Programmable logic controller
PSA	Power System Automation
RAM	Random Access Memory
RTD	Resistance Temperature Detector
RTU	Remote Terminal Unit
SAES	Saudi Aramco Engineering Standards
SAMA	Scientific Apparatus Manufacturers Association
SAMSS	Saudi Aramco Materials System Specifications
SAT	Site Acceptance Test

SCN	Safety Control Network
-----	------------------------

- SER Sequence of Events (SOE) Recording
- STCS Steam Turbine Control System
- STG Steam Turbine Generator
- TCP/IP Transmission Control Protocol/Internet Protocol
- TIACS Turbine Intake (Inlet) Air Cooling System
- TMR Triple modular redundant
- UHF Ultra High Frequency
- UPS Uninterruptible power supply
- VHF Very High Frequency
- WAN Wide Area Network

Chapter One

INTRODUCTION

1.1 PLANT OVERVIEW:

The Shaybah field is located in the eastern Rub' Al-Khali "Empty Quarter" in the southeastern part of Saudi Arabia, approximately $\circ \cdot \cdot$ miles ($\wedge \cdot \cdot$ km) from Dhahran. The current facilities, consisting of two satellite Gas Oil Separation Plants (GOSP- \cdot) and GOSP- \cdot ") with Central Processing Facilities (GOSP- \cdot and GOSP- \cdot) and interconnecting crude and gas transfer lines, are designed to produce $\vee \circ \cdot$ MBCD of Arabian Extra Light (AXL) crude oil.

The purpose of Shaybah AXL Crude Increment $-7\circ$ MBCD Program (BI-) - $\cdot \cdot 7) \pm$) is to maintain crude oil production and MSC targets by increasing the AXL crude oilproduction capacity of the remote Shaybah field from $\vee \circ \cdot$ MBCD to $\uparrow, \cdot \cdot \cdot$ MBCD.

The $\circ \cdot$ MBCD AXL Crude Increment facilities will increase the Shaybah field Producing Facilities design capacities to $\cdot, \cdot \cdot$ MBCD of stabilized AXL crude, with $\circ \cdot \circ$ water cut and at $\circ, \circ \cdot \circ$ GOR. The facilities are to process $\circ \cdot \circ \cdot$ MBCD of dry AXLcrude.

The facilities to be installed include

- Gas/Oil Separation Facilities
- Wet Crude Handling Facilities
- Gas Gathering and Compression Facilities

The BI- $1 \cdot \cdot \cdot \cdot 1 \cdot \xi$ Project is separated into three packages, as shown below:

- Yo• MBCD AXL Crude Increment
- Combined Cycle Power Generation
- Supporting Facilities and Security Infrastructure

The Combined Cycle Power Generation facilities will produce $\Upsilon \cdot$ to $\Upsilon \circ \cdot$ MW nominally or as required to meet various operating criteria in GOSP- \pounds . This will beachieved by converting the six simple cycle CGTGs in GOSP- \pounds to combined cycleconfiguration and utilizing the HP and IP stream produced to drive Steam TurbineGenerators.

The Combined Cycle Power Generation package will provide Shaybah GOSP-[±] with specific below outcomes and deliverables as follow:

- Combined Cycle Power Generation
- Six OTSGs (Once Through Steam Generator) coupled withCGTGs
- Two STGs (Steam Turbine Generator) receiving HP and IPsteam from the OTSGs.

- Two ACCs (Air Cooled Condenser) condensing steam through aircooled finned tubes

- Raw Water Supply; from two water wells in Sabkha #ε.
- Pre-Treatment Facilities
- Ro/Demin. System
- Post-Treatment Facilities
- Condensate System including condensate pump and polishing unit
- Boiler Feed Water System
- Water Chemical Treatment System

• Electrical Works; new `\".^kV Substation, `\" •kV GIS extensionSUBSTATION So" RACK ROOM is provided in `\".^KV Substation to house the control,protection, and monitoring systems associated with the OTSGs and BOP. STGs Control System shall be provided by STG supplier in local shelter in addition to CCR &Substation So", in order to conduct the combined cycle plant controls.Integrated Control and Safety System comprises of Process Automation for ProcessControl Emergency Shutdown System and Fire & Gas Detection System.

DCS OVERVIEW

DCS (Distributed Control System) is a computerized control system used to control the production line in the industry.

While a product (Food, medicine, Oil..etc) passing through many stages in the factory before it reaches its final so the product can be sold out, during those stages it requires a kind of control in order to adjust the quality of it. However, to adjust the quality it is required to control many physical quantities such as pressure, Temperature..etc.

Furthermore, in some dangerous applications such as petrochemical factories and nuclear reactors the control will much critical, however, losing the control may lead to an explosion of the plant.

DCS System consists minimum of the following components.

- 1. Field Control station (FCS): It consists of input/output modules, CPU and communication bus.
- ^Y. Operator station: It is basically human interface machine with monitor, the operator man can view the process in the plant and check if any alarm is presents and he can change any setting, print reports...etc.
- ^r. Engineering station: It is used to configure all input & output and drawing and any things required to be monitored on Operator station monitor.

Figure \: Basic configuration of a DCS System

A DCS typically uses custom designed processors as controllers and uses both proprietary interconnections and communications protocol for communication. Input and output modules form component parts of the DCS. The processor receives information from input modules and sends information to output modules. The input modules receive information from input instruments in the process (or field) and transmit instructions to the output instruments in the field. Computer buses or electrical buses connect the processor and modules through multiplexer or demultiplexers. Buses also connect the distributed controllers with the central controller and finally to the Human (HMI) or control consoles.

The elements of a DCS may connect directly to physical equipment such as switches, pumps and valves and to Human Machine Interface (HMI) via SCADA.

Distributed control systems (DCSs) are dedicated systems used to control manufacturing processes that are continuous or batch-oriented, such as oil refining, petrochemicals, central station power generation, fertilizers, pharmaceuticals, food and beverage manufacturing, cement production, steelmaking, and papermaking.

DCSs are connected to sensors and actuators and use set point control to control the flow of material through the plant. The most common example is a set point control loop consisting of a pressure sensor, controller, and control valve. Pressure or flow measurements are transmitted to the controller, usually through the aid of a signal conditioning input/output (I/O) device. When the measured variable reaches a certain point, the controller instructs a valve or actuation device to open or close until the fluidic flow process reaches the desired set point. Large oil refineries have many thousands of I/O points and employ very large DCSs. Processes are not limited to fluidic flow through pipes, however, and can also include things like paper machines and their associated quality controls, variable speed drives and motor control centers, cement kilns, mining operations, ore processing facilities, and many others.

A typical DCS consists of functionally and/or geographically distributed digital controllers capable of executing from ' to 'o' or more regulatory control loops in one control box. The input/output devices (I/O) can be integral with the controller or located remotely via a field network. Today's controllers have extensive computational capabilities and, in addition to proportional, integral, and derivative (PID) control, can generally perform logic and sequential control. Modern DCSs also support neural networks and fuzzy application.

DCS systems are usually designed with redundant processors to enhance the reliability of the control system. Most systems come with canned displays and configuration software which enables the end user to set up the control system without a lot of low level programming. This allows the user to better focus on the application rather than the equipment, although a lot of system knowledge and skill is still required to support the hardware and software as well as the applications. Many plants have dedicated groups that focus on this task. These groups are in many cases augmented by vendor support personnel and/or maintenance support contracts.

DCS may employ one or more workstations and can be configured at the workstation or by an off-line personal computer. Local communication is handled by a control network with transmission over twisted pair, coaxial, or fiber optic cable. A server and/or applications processor may be included in the system for extra computational, data collection, and reporting capability.

'." DIFFERENCE BETWEEN DCS AND PLC

Turn the clock back ``-`` years: The programmable logic controller (PLC) is king of machine control while the distributed control system (DCS) dominates process control. Today, the two technologies share kingdoms as the functional lines between them continue to blur. We now use each where the other used to rule. However, PLCs still dominate high-speed machine control, and DCSs prevail in complex continuous

processes.

When PLCs were solely replacements for hard-wired relays, they had only digital I/O, with no operator interface or communications. Simple operator interfaces appeared, then evolved into increasingly complex interfaces as PLCs worked with increasingly complex automation problems. We went from a panel of buttons and I/O-driven lamps to PLC full-color customized graphic displays that run on SCADA software over a network.

Today, the decision between PLC and DCS often depends on business issues rather than technical features.

Figure ⁷:DCS VS PLC

An important difference between DCSs and PLCs is how vendors market them. DCS vendors typically sell a complete, working, integrated, and tested system; offering full application implementation. They offer many services: training, installation, field service, and integration with your Information Technology (IT) systems. A DCS vendor provides a server with a relational database, a LAN with PCs for office automation, networking support and integration of third-party applications and systems. The DCS vendor tries to be your "one-stop shop." The PLC is more of a "do-it-yourself" device, which is sometimes simpler to execute.

PLCs are fast: They run an input-compute-output cycle in milliseconds. On the other hand, DCSs offer fractional second $(1/7 \text{ to } 1/1 \cdot)$ control cycles. However, some DCSs provide interrupt/event-triggered logic for high-speed applications.

Most DCSs offer redundant controllers, networks, and I/Os. Most give you "built-in" redundancy and diagnostic features, with no need for user-written logic.

1.4 DIFFERENCE BETWEEN DCS AND SCADA

A primary differentiator between a SCADA system and other types of control systems such as DCS is the purpose to which the control system will be put.

In general DCS is focused on the automatic control of a process, usually within a confined area. The DCS is directly connected to the equipment that it controls and is usually designed on the assumption that instantaneous communication with the equipment is always possible.

A SCADA system is usually supplied to permit the monitoring and control of a geographically dispersed system or process. It relies on communication systems that may transfer data periodically and may also be intermittent. Many SCADA systems for high-integrity applications include capabilities for validating data transmissions, verifying and authenticating controls and identifying suspect data.

DCS is process state driven, while SCADA is even driven. DCS does all its tasks in a sequential manner, and events are not recorded until it is scanned by the station. In contrast, SCADA is event driven. It does not call scans on a regular basis, but waits for

an event or for a change in value in one component to trigger certain actions. SCADA is a bit more advantageous in this aspect, as it lightens the load of the host. Changes are also recorded much earlier, as an event is logged as soon as a value changes state.

1.0 APPLICATIONS OF DCS AND SCADA

DCS is the system of choice for installations that are limited to a small locale, like a single factory or plant, while SCADA is preferred when the entire system is spread across a much larger geographic location, examples of which would be oil wells spread out in a large field.

Part of the reason for this is the fact that DCS needs to be always connected to the I/O of the system, while SCADA is expected to perform even when field communications fail for some time. SCADA does this by keeping a record of all current values, so that even if the base station is unable to extract new information from a remote location, it would still be able to present the last recorded values.

DCS and SCADA are monitoring and control mechanisms that are used in industrial installations to keep track and control of the processes and equipment; to ensure that everything goes smoothly, and none of the equipment work outside the specified limits.

The most significant difference between the two is their general design. DCS, or Data Control System, is process oriented, as it focuses more on the processes in each step of the operation. SCADA, or Supervisory Control and Data Acquisition, focuses more on the acquisition and collation of data for reference of the personnel who are charged with keeping track of the operation

Chapter Two

FORMATTING DESCRIPTION ۲

7.1 DEFINITIONS

Decoder

Device that converts NTSC, PAL, SECAM or NTSC 5.57 video. Aspect Ratio

The ratio of the width of any image to its height Integration **Specifications Document**

A document prepared by VENDOR that provides the technical specifications for all the different system and sub-system hardware interfaces, applications interfaces anddata communications requirements.

Job Specification

The scope of the work to be performed pursuant to a contract. It describes or references the applicable drawings, standards, specifications, as well as the administrative, procedural, and technical requirements that CONTRACTOR shallsatisfy or adhere to in accomplishing the work.

Non-Material Requirements

The complete set of documentation required from VENDOR and/or CONTRACTORduring the design and development of the project. PCS

Refers to the Process Control System (PCS) comprising of Distributed ControlSystems, subsystems, marshalling cabinets and accessories supplied by VENDOR

System Design Document

A document prepared by VENDOR and/or the design CONTRACTOR that containsthe design narratives and the key design issues of the system.

System Development Plan

A document prepared by VENDOR and/or the design CONTRACTOR to outline thedevelopment steps, project schedules and major milestones.

7.7 CONTROL NARRATIVE

7.7.1 GENERAL

Modulating control system(MCS) is to conduct continuously closed-loop control to main systems and equipments of OTSG, turbine, and guarantee stability of main parameter of unit, and satisfy requirement of safety start-up, shut down and normal operation.

Y.Y.Y Control strategy

- Conventional PID adjustment.
- Various loop structural forms such as cascade, three impulse, feed forward compensation, single loop &multi actuator etc.

Y.Y. Measurement of redundancy transmitter

- Measurement signal of duplicate redundancy transmitter will select average value automatically, operator can choose to use average value of the two measurement signal by manual on graphic or only use one signal between them. If there is one signal between the two exceeds normal range when select the average value of the two signals, then the other one will be selected automatically as output value, and work of control system will not be affected. If the two signals all exceed normal range, then the control system which use the signal will be shifted to manual control with force.
- Measurement signal of triply redundancy transmitter will select intermediate value automatically, operator can choose to use intermediate value of the three measurement signal by manual on graphic or only use one signal among them. If there is one signal exceeds normal range when select the intermediate value of the threesignal, then average value of another two signal will be selected automatically as output value; if there are two signal exceed normal range, the rest signal will be selected as output value automatically, and work of control system will not be affected. If the three signals all exceed normal range, then the control system which use the signal will be shifted to manual control with force.

۲.۲.٤ Manual/auto shift

- Over limit or poor quality of measurement signal, shift to manual automatically.
- Auto operation condition is not satisfied, shift to manual automatically from logic interlock.
- Operator conduct manual/auto shift.

• Disturbance of equipment output will not be caused by manual/auto shift no matter operated by operating personnel or logic interlock.

Y.Y.• HP feed water system

Y.Y.e.v HP feed water shut-off bypass valve(MOV-1302)

Reference Drawings

- P&ID B12-A-PID-BA-040181-...
- P&ID Β^τ^ε-A-PID-BA-ονοι^πτ-··τ
- P&ID BY 5-A-PID-BA-040150-...
- P&ID BY 5-A-PID-BA-040157-...
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ A \cdots Y$
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ΟΥΟΙΟ9-...Υ

Permissive Open:

- Both FW CVs(FCV- $\forall \forall \cdot, FCV$ - $\forall \forall 1$) closed
- HP eco bypass $CV(TCV \cdot \circ \circ \gamma)$ closed
- OTSG in CC mode or (No GT flame On AND Allow HP FW SOV re-filling)

Auto Open:

- Feed water pump running ('oo' & FW pressure not low)
- HP Eco&Evap filling SOV closed(MOV- $\gamma \tau \cdot \gamma$)
- OTSG in CC mode or (No GT flame On and Eco&Evap level (*LIT*-·۲٩١)< X^r and Allow HP FW SOV re-filling)
- HP FW main $CVs(FCV-\Upsilon, \Upsilon)$ closedBoth HP $\Upsilon, \%$ FW $CVs(FCV-\Upsilon, \Upsilon)$ AND HP economiser bypass $CV(TCV-\Im, \Im)$ closed
- Feedwater shut-off valve(MOV-) (V) closed

Auto Close:

- Feedwater shut-off valve(*MOV*-1YY1) is open
- No feedwater pump running, after <code>\osec</code>
- OTSG HP in Dry out mode
- No GT flame On and Eco&Evap level $(LIT \gamma \gamma) > X^{r}$

Protective Close:

• (HP in Dry out mode longer than \cdot sec or HP in Dry run mode) and HP

FW shut off bypass valve(MOV- $\gamma \pi \cdot \gamma$) not closed

Y.Y.O.Y HP feedwater shut-off valve(MOV-1271)

Reference Drawings

- P&ID B1 -A-PID-BA-0101-...
- P&ID B^τ ε-A-PID-BA-ονοιπτ-...τ
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοι ٤ο-...Υ
- P&ID BY ٤-A-PID-BA-0401 ٤٦-...
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ A \cdots Y$
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοιο9-...

Permissive Open:

- FW CV(FCV- Υ ,FCV- Υ) closed
- HP eco bypass $CV(TCV \cdot \circ \gamma \gamma)$ closed
- ΔP (pump outlet pressure(*PIT*· $\vee \wedge \vee$) economiser pressure(*PIT*· $\vee \wedge \vee \vee$)) $< \vee \vee psig$
- OTSG in CC mode or (No GT flame On AND Allow HP FW SOV re-filling)

Auto Open:

- Feedwater pump running ('oo' & FW pressure not low)
- HP Eco&Evap filling SOV $closed(MOV-1^{\circ}, ^{\circ})$
- ΔP (pump outlet pressure(*PIT*-· $\forall \land \forall$) economiser pressure(*PIT*-· $\forall \land \forall$)) $< \forall \forall$ psig
- OTSG in CC mode or (No GT flame On and Eco&Evap level (*LIT*-·۲۹۱)< X^r and Allow HP FW SOV re-filling)
- HP FW main CVs(FCV-ヾ, ヾ) closedBoth HP ヾ, K FW CVs(FCV-ヾ, ヾ) AND HP economiser bypass CV(TCV-, oヾ) closed
- Feedwater shut-off bypass valve(MOV-1 ***) has left closed position > 1° seconds ago

Auto Close:

- No feedwater pump running, after <code>\osec</code>
- OTSG HP in Dry out mode
- No GT flame On and Eco&Evap level (LIT-•۲۹)> X^{max}

Protective Close:

(HP in Dry out mode longer than `` sec or HP in Dry run mode) and HP FW shut off valve(MOV-1YY1) not closed

Y.Y.e.F HP economiser vent shut-off valve(MOV-1298)

Reference Drawings

- P&ID BY -A-PID-BA-040181-...
- P&ID B12-A-PID-BA-040181-...
- P&ID BY 5-A-PID-BA-040150-...
- P&ID Β^Υ ξ-Α-PID-BΑ-ογοι ξι...
- P&ID BY ٤-A-PID-BA-ονοιολ...
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοιο9-...

Permissive Open:

• No GT flame on(XS-1077)

Auto Open:

- No GT flame on(XS-1077)
- Evaporator fill level(LI-•۲۹۱)> Λ ^m. γ % and $<\Lambda$ °. ϵ

Auto Close:

- GT flame on
- Evaporator fill level(LI-•۲۹۱)< Λ ^{γ}, γ %longer than \circ minutes
- No GT flame on(*XS*-1 \circ ^m) and Feedwater supply in operation and FW SOV(*MOV*-17)) open AND Evaporator fill level (*LI*- \cdot ¹)> \wedge \circ . ϵ ¹%

Protective Close:

 GT flame on longer than "• sec and Eco ventualve not closed (MOV-1۲۹۸) not closed

Y.Y.o.:HP economizer and evaporator filling shut-off valve(MOV-1307)

Reference Drawings

- P&ID BY -A-PID-BA-040171-...
- P&ID Β^Υ^ε-A-PID-BA-ονοι^πΥ-··^π
- P&ID BY 2-A-PID-BA-040120-...
- P&ID Β^Υ^ε-A-PID-BA-ονοι^ε^γ-ν^π
- P&ID B^Υ ٤-A-PID-BA-ονοιολ...
- P&ID B^Υ ٤-A-PID-BA-ονοιοθ-...

Permissive Open:

- No GT flame on(XS-1077)
- Economiser vent shut-off valve(MOV-1Y4A) open
- Stack temperature $< \tau \cdot \tau F$

Auto Close:

- Economiser vent valve(*MOV*-1Y9A) not open
- GT flame on(XS-1077)

Protective Close:

 GT flame on longer than "• sec AND eco fillingshut-off valve (MOV-¹"• ^V) notClosed

Y.Y.o.o HP separator blowdown shut-off valve(MOV-1272)

Reference Drawings

- P&ID BY 2-A-PID-BA-OVO121-...
- P&ID B1 ٤-A-PID-BA-0101 ٤1-...
- P&ID BY ٤-A-PID-BA-0401 ٤1-...
- P&ID BY 5-A-PID-BA-040157-...
- $P\&ID BY \xi A PID BA \circ Y \circ Y \xi Y \cdots Y$
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοι ٤Υ-...

Permissive Open:

• Both blow down control valves($LCV - \cdot \tau \cdot \tau$, $LCV - \cdot \tau \cdot \tau$) closed

Auto Open:

- GT speed(SY-1° ε)< $\tau \cdot \cdot rpm$
- Separator level $> \xi$. $\gamma \% (LIC \gamma \gamma)$
- Separator pressure > ۲ ۹ psi

OR all the following criteria are true

- GT speed(SY-1° $\tau \epsilon$)> $\tau \cdot \cdot rpm$
- No GT flame on(XS-1° τ)
- Separator pressure > $X^{(LIC-\cdot \tau \cdot \tau)}$

OR all the following criteria are true

- GT flame on(XS-1°°°)
- Minimum Flow mode OR Level control mode OR separator level > Y. "%(LIC-. ". ")
- Separator pressure $>1 \leq .\circ psi(PI ...)$

Auto Close:

- GT speed(SY-1° τ ϵ)< τ · · rpm
- Separator level($LIC \cdot \tau \cdot \tau$)< $\xi \cdot \tau$ or Separator pressure < τ psi($PI \cdot \tau \tau$) OR all the following criteria are true

- Separator level $< \sqrt{.\%} (LIC \sqrt{.\%})$ longer than $\sqrt{.\%}$ minute
- Benson mode or Dry run mode
 - OR all the following criteria are true
- Separator level <7.77% (*LIC*-.7.7%)
- Level mode

Protective Close:

Protective Open:

• Separator level($LIC \cdot (7,7) < 7.77\%$ (when not open and whenblow down tank($LIC \cdot (7,77) < 9.\%$)

Y.Y.e.v HP superheater outlet drain valve(MOV-1303)

Reference Drawings

- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY 5-A-PID-BA-040157-...
- $P\&ID B^{t} \xi A PID BA \circ V \circ 1 \xi T \cdots T$
- P&ID BY 5-A-PID-BA-040157-...

Permissive Open:

- Drip leg temperature $< H(TI \cdot \circ \land \circ)$
- Valve position < Maximum position

Auto Open:

The value is opened during standstill every γ hours for γ minute:

- GT speed $< 7 \cdot \cdot \text{ rpm}(SY 1 \circ \pi \xi)$
- HP steam pressure $> \gamma \operatorname{Ppsi}(PY \cdot \mathfrak{sqA})$

The valve is opened during CC start-up

- GT speed > $\gamma \cdot \cdot$ rpm for more than γ minute (SY- $\gamma \circ \gamma \xi$)
- HP steam pressure $>1 \leq .opsi(PY \cdot \leq 9A)$

During automatic draining (after start-up draining)

- GT flame on and OTSG at CC mode
- Separator pressure > $X^{(PIT-rqr)}$
- Drip leg temperature <oʻf above calculated saturation temperature

Auto Close:

The drain valve is closed during standstill

- GT speed $< \gamma \cdot \cdot \operatorname{rpm}(SY \gamma \circ \tau \epsilon)$
- \minute after opening of the valve

The valve is closed when all of the following criteria are true for \circ

minutes

- GT flame on(XS-1°°°)
- Drip leg temperature >° [£]F above calculated saturation temperature(*TI*-·°^A°,*PY* .[£]9A)
- Steam flow > $\gamma \wedge \wedge \cdot \cdot lb/hr(FIT \cdot \gamma \gamma \gamma, FIT \cdot \gamma \circ)$
- Valve is not closed

The valve is also closed after start-up

- GT speed $< 7 \cdot \cdot \operatorname{rpm}(SY 1 \circ 7 \epsilon)$
- Drip leg temperature $> \forall \forall \circ F(TI \circ \land \circ)$

The drain valve is closed during automatic draining

- No GT flame on(XS-1°°°)
- Separator pressure $< X^{(PIT-rqr)}$
- Drip leg temperature >° [£]F above calculated saturation temperature(*TI*-·°^A°,*PY* ·[£]9^A)

Protective Close:

• Drip leg temperature > $\forall \gamma \circ F$ longer than $\neg \cdot \sec(TI \cdot \circ \land \circ)$

Y.Y.O.V HP main steam drain valve(MOV-1273)

Reference Drawings

- P&ID B1 &-A-PID-BA-0401 & 1-...
- P&ID BY 2-A-PID-BA-040121-...
- P&ID B^γ^ε-A-PID-BA-ογοι^ε¹-···^π
- P&ID BY 5-A-PID-BA-040157-...
- P&ID BY 5-A-PID-BA-040157-...
- P&ID B^Υ ٤-A-PID-BA-ονοι ε^γ

Y.Y.•. **HP main steam drain valve(MOV-1273)**

Reference Drawings

- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY ٤-A-PID-BA-ovol ٤1-...
- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY 5-A-PID-BA-040157-...
- P&ID BY 5-A-PID-BA-040157-...
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοι έν-...

Permissive Open:

- Drip leg temperature $< H(TI \cdot \circ \land \varepsilon)$
- Valve position < Maximum position

Auto Open:

The value is opened during standstill every γ hours for γ minute:

- GT speed $< 7 \cdot \cdot \text{ rpm}(SY-1\circ \tau \xi)$
- HP steam pressure $> 79 \text{psi}(PY \cdot \xi 9 \Lambda)$

The valve is opened during CC start-up

- GT speed > $\gamma \cdot \cdot$ rpm for more than γ minute (SY- $\gamma \circ \gamma \xi$)
- HP steam pressure >1 $\xi.$ $opsi (PY- \cdot \xi$ $\Lambda)$

During automatic draining (after start-up draining)

- GT flame on and OTSG at CC mode
- Separator pressure > $X^{(PIT-rqr)}$
- Drip leg temperature <• ξ F above calculated saturation temperature

Auto Close:

The drain valve is closed during standstill

- GT speed $< \forall \cdot \cdot rpm(SY-1\circ \forall \xi)$
- I minute after opening of the valve
 The valve is closed when all of the following criteria are true for o minutes
- GT flame on(XS-1°°°)
- Drip leg temperature >° [£]F above calculated saturation temperature(*TI*-·°^A[£],*PY* · [£]^A)
- Steam flow > $\gamma \wedge \wedge \cdot \cdot lb/hr(FIT \cdot \gamma \gamma \gamma, FIT \cdot \gamma \circ)$
- Valve is not closed

The valve is also closed after start-up

- GT speed $< \gamma \cdot \cdot \operatorname{rpm}(SY \gamma \circ \tau \xi)$
- Drip leg temperature $> \forall \forall \circ F (TI \cdot \circ \land \xi)$

The drain valve is closed during automatic draining

- No GT flame on(XS-1077)
- Separator pressure $< X^{(PIT-T9Y)}$
- Drip leg temperature >° [£]F above calculated saturation temperature(*TI*-·°^A[£],*PY* ·[£]9^A)

Protective Close:

• Drip leg temperature > $\forall \uparrow \circ F$ longer than $\neg \cdot \sec(TI \cdot \circ \land \xi)$

Y.Y.e.9 HP attemperator spray water shut off valve(MOV-1276)

Reference Drawings

- P&ID B1 -A-PID-BA-0101....
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοινΥ-...٤
- P&ID BY ξ -A-PID-BA- \circ V \circ) $\xi \circ_{-} \cdot \cdot \xi$
- $P\&ID BY \xi A PID BA \circ Y \circ Y \xi \tau_{-} \cdot \cdot \xi$
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ A \cdot \cdot \xi$
- $P\&ID BY \xi A PID BA \circ V \circ 1 \circ 9 \cdots \xi$

Permissive Open:

• Spray water control valve $closed(PCV - \cdot \xi \gamma \xi)$

Auto Open:

- Steam temperature $> 9 \land 7 F (TIC \xi \gamma \xi)$
- Steam flow $> \circ \lor \lor \cdot \cdot lb/hr(FIT \cdot \lor \lor \lor, FIT \cdot \lor \circ)$
- Attemperator control valve($TCV \cdot \xi \gamma \xi$) closed
- Feedwater supply in operation
- GT flame on $(XS-1\circ T)$

Auto Close:

- Steam temperature < $\forall \forall F (TIC \cdot \xi \forall \xi)$
- Steam temperature($TIC \cdot \xi \gamma \xi$) < 9A7F and $CV(TCV \cdot \xi \gamma \xi)$ closed for more than γ minute
- Steam flow $<\circ\vee\neg$ · · · lb/hr for more than \neg minutes (*FIT* · $\neg \neg \neg$, *FIT* · $\neg \circ$)
- Feedwater supply not in operation
- No GT flame on(XS-1077)

Protective Close:

• Attemperator outlet steam superheat $(TSH \cdot \xi \gamma \xi) < \P \cdot F$ (too close to saturation) longer than $\gamma \cdot \sec$

Y.Y.e.v HPsteam shut-off bypass valve(MOV-1275)

Reference Drawings

- P&ID BY :- A-PID-BA-040191-...:
- P&ID BY 5-A-PID-BA-040197-...5
- P&ID BY 2-A-PID-BA-040120-..2
- P&ID Β^Υ ^ε-A-PID-BA-^ο^γ^ο^γ ^ε^γ⁻...^ε
- $P\&ID BY \xi A PID BA ovoloh \cdot \cdot \xi$
- P&ID B^Υ ٤-A-PID-BA-ο^γο^γο^γο^γο^γ... ξ

Permissive Open:

- No GT flame on(XS-1° τ)
- Header steam SOV closed(MOV-1140)

Auto Close:

- Steam shut-off valve(MOV- $YY\xi$) is open
- Pressure section at Dry Out mode and steam pressure <15 opsig(PI-154 A)

Protective Close:

• Dry run mode and steam SOV not closed $(MOV-1YV \xi)$

HP steam shut-off valve(MOV-\Y∀٤)

Reference Drawings

- P&ID BY 5-A-PID-BA-040181-...5
- P&ID BY 5-A-PID-BA-040187-...5
- P&ID BY 5-A-PID-BA-040150-...5
- P&ID Β^Υ ٤-Α-PID-BA-οΥοΥ ٤٦-·· ξ
- P&ID B^Υ ٤-A-PID-BA-ονονολολ... ξ
- P&ID B^Υ ٤-A-PID-BA-ο^γο^γο^γο^γο^γ... ξ

Permissive Open:

- No GT flame on(XS-1077)
- Header steam SOV closed(*MOV*-11%°)
- Differential pressure ΔP over value $< \max(PIC \cdot \xi \mathfrak{A}, PIT \cdot \mathfrak{A})$

Auto Close:

• Pressure section at Dry Out mode and steam pressure $<15 \circ psi(PIC-159\Lambda)$

Y.Y.O.VI HP FW main FCV shut-off valve(MOV-1051)

Reference Drawings

- P&ID B^τ ε-A-PID-BA-ονοιπι...τ
- P&ID BY ٤-A-PID-BA-0Y0197-...
- P&ID B^γ ٤-A-PID-BA-ογογεο...
- P&ID B^γ ^ε-A-PID-BA-ονοι^ε^γ-...
- $P\&ID BY \xi A PID BA \circ V \circ 1 \circ A \cdots Y$
- P&ID BY 5-A-PID-BA-040109-...

Permissive Open:

• HP $\cdot \cdot \%$ FCV closed (*FCV*- $\cdot \uparrow \uparrow \cdot)$

Auto Open:

- Feedwater supply in operation
- Main feedwater shut-off valve open
- $\cdot \cdot \%$ FW CV closed(*FCV*- $\cdot \uparrow \neg \cdot$)
- Controller output > minimum position of $\cdot \cdot \%$ LCV(*FCV*- $\cdot \uparrow \uparrow \cdot)$
- Separator pressure $> \forall \uparrow \circ psi$ value for $\land \cdot \cdot \%$ LCV(*PIT*- $\cdot \forall \uparrow \uparrow \uparrow$)

Auto Close:

- No FW pumps running after a delay time
- (Control output to ```% FCV(FCV-```)< minimum position or separator pressure < X^r value for ``% FCV) (PIT-`^r^q^r) and ``% LCV closed

Protective Close:

- HP Separator pressure </r>
 Yropsi and FW supply inoperation longer than
 sec
- (HP in Dry out mode longer than `` sec orDry run mode) and HP FW shut off not closed

Y.Y.O.VY HP ECO bypass shut-off valve(MOV-1052)

Reference Drawings

- P&ID Β۲٤-Α-PID-BA-ονοιπι...
- P&ID Β^τ^ε-A-PID-BA-ο^γο^γ^π^τ-··^τ
- P&ID BY 5-A-PID-BA-0401 50-...
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοιεί-...
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ A \cdots Y$
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ογοιοθ-··Υ

Permissive Open:

• HP eco bypass CV closed $(TCV - \cdots)$

Auto Open:

- No GT flame on(XS-) orr)
- Feedwater supply in operation
- HP eco&evap filling SOV open

Auto Close:

- HP system in Dry out mode is not active
- HP eco&evap filling is not active(GT flame on OR Feedawater supply not in operation OR HP eco&evap filling SOV not open)

۲.۲.۲ IP feed water system

IP feedwater shut-off valve(MOV-1278)

Reference Drawings

- P&ID BY -A-PID-BA-040181-...
- P&ID B^Υ ٤-A-PID-BA-ονοιΨΥ-..ο
- P&ID B^Υ ٤-A-PID-BA-ογογεο...ο
- P&ID Β^γ ٤-Α-PID-BΑ-ονον ε^γ-···ο
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ A \cdots \circ$
- $P\&ID BY \xi A PID BA \circ Y \circ Y \circ 9 \cdot \cdot \circ$

Permissive Open:

- IP FW $CV(FCV \cdot \Upsilon \Upsilon)$ closed
- IP eco inlet drain(MOV- $\gamma\gamma\gamma\gamma$) closed
- OTSG in CC mode or(No GT flame On(*XS*-1077) AND notafter Dry run)

Auto Open:

- Feedwater pump running
- IP system in CC mode or (No GT flame $On(XS^{\gamma})^{\gamma}$) and Eco&Evap level(*LI*- $\gamma \wedge \gamma \rangle < X^{\gamma}$ and Allow IP FW SOV re-filling)
- IP FW $CV(FCV \cdot \Upsilon \Upsilon)$ closed
- IP Eco &evap filling SOV closed(*MOV*-1 $"\cdot \circ$)

Auto Close:

- No GT flame On and Eco&Evap level($LI \Upsilon \land \Upsilon \rangle > X \Upsilon$
- No FW pumps running after \osec

• IP system in Dry out mode

Protective Close:

(OTSG in Dry out mode longer than `` sec or IP Dry run mode) and IP FW shut off(*MOV*-1YYA) not closed

Y.Y.Y. IP economiser vent shut-off valve(MOV-1322)

Reference Drawings

- P&ID B12-A-PID-BA-040181-...
- P&ID BY ε-A-PID-BA-ονοιΨτ...ο
- P&ID BY 5-A-PID-BA-040150-...
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοιεί-...ο
- $P\&ID BY \xi A PID BA \circ V \circ Y \circ A \cdot \cdot \circ$
- P&ID BY ٤-A-PID-BA-ονοιο9-..ο

Permissive Open:

• No GT flame on(XS-10%%)

Auto Open:

- No GT flame on(XS-1° τ)
- Evaporator fill level(LI-• $\uparrow \land \lor$)> $\lor \lor$. $\uparrow \neg \%$ and $\lt \lor \lor$. $\land \lor \%$.

Auto Close:

- GT flame on
- Evaporator fill level(LI-• $\Upsilon \wedge \Upsilon$) < $\Upsilon \vee$. $\Upsilon \gamma$ % longer than \circ minutes
- No GT flame on(*XS*-1 \circ ^m) and Feedwater supply in operation and FW SOV(*MOV*-1 \uparrow ^N) open AND Evaporator fill level (*LI*- \cdot ^T \wedge ^N)>^{VV}. \wedge 1%

Protective Close:

• GT flame on longer than \mathcal{T} sec and Eco ventualve not closed (*MOV-1\mathcal{T}\mathcal{T}\mathcal{T}*) not closed

Y.Y.Y.F IP economiser and evaporator filling shut-off valve(MOV-1305)

Reference Drawings

- P&ID Β۲ ٤-Α-ΡΙD-ΒΑ-ονοιτι...ο
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοι^ΨΥ-··ο
- $P\&ID BY \xi A PID BA \circ Y \circ Y \xi \circ \ldots \circ$
- P&ID BY 5-A-PID-BA-040157-...

- P&ID Β^τ έ-Α-ΡΙD-ΒΑ-ονοιολ...ο
- P&ID Β^τ έ-Α-ΡΙD-ΒΑ-ογοιοθ-...ο

Permissive Open:

- No GT flame on(XS-1077)
- Economiser vent shut-off(MOV-1 $\gamma\gamma\gamma$) valve open
- Stack temperature $< \gamma \cdot \gamma F$

Auto Close:

- Evaporator filling level $> \forall \forall . \forall \forall . \forall \forall (LIT \forall \land \forall)$
- Economiser vent valve(MOV-1TT) not open
- GT flame on(XS-1077)

Protective Close:

GT flame on(XS-1°°°) longer than ° sec AND eco fillingshut-off valve(MOV-1°°) not closed

IP separator blowdown shut-off valve(MOV-1312)

Reference Drawings

- P&ID BY 2-A-PID-BA-040121-..1
- P&ID BY 2-A-PID-BA-OVO121-...Y
- P&ID BY 2-A-PID-BA-040121-...
- P&ID BY 5-A-PID-BA-040157-...
- $P\&ID B^{\xi} A PID BA \circ V \circ 1 \xi Y \cdots Y$
- P&ID Β^Υ ^ε-A-PID-BA-ο^γο^γ ^ε^γ ^ε^γ

Permissive Open:

• Both blowdown control valves($LCV - \cdot \uparrow \uparrow \uparrow, LCV - \cdot \uparrow \uparrow \land$) closed

Auto Open:

- GT speed $< \gamma \cdot \cdot \operatorname{rpm}(SY \gamma \circ \tau \epsilon)$
- Separator level >1..7%(LIC-..797)
- Separator pressure $> \Upsilon \operatorname{Psig}(PI \cdot \mathfrak{L} \operatorname{PV})$ OR all the following criteria are true
- GT speed > $\forall \cdot \cdot rpm(SY 1 \circ \forall \epsilon)$
- No GT flame on(XS-10%%)
- Separator pressure $>1 \le .\circ psig(PI \cdot \le 9V)$

OR all the following criteria are true

- GT flame on(XS-10%%)
- Minimum Flow mode OR Level control mode OR separator level >٩.٠٩% (LIC-.٢٩٦)
- Separator pressure >1 ε . \circ psig (*PI* \cdot ξ 9 \forall)

Auto Close:

- GT speed $< \cdots$ rpm(SY-10%)
- Separator level <1...1%(*LIC*-...1) or Separator pressure <19psig (*PI*-...1)
 OR all the following criteria are true
- Separator level < 9...9% (*LIC*-...) longer than 1 minute
- Benson mode or Dry run mode OR all the following criteria are true
- Separator level $< \xi. \gamma \xi \% (LIC \gamma \gamma \gamma)$
- Level mode

Protective Close:

 Separator level <٤.٢٤% (*LIC*-.٢٩٦) (when not closed) only during Level mode or Benson mode or Dry run

Protective Open:

'.'.'. IPsteam shut-off bypass valve(MOV-1281)

Reference Drawings

- P&ID B12-A-PID-BA-040181-...
- P&ID BY :- A-PID-BA-040187-...
- P&ID BY :- A-PID-BA-0401 :0...0
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοιει-..ο
- $P\&ID B^{\xi} A PID BA o^{\gamma} \circ h \circ h \cdots \circ$
- P&ID B^γ ε-A-PID-BA-ονοιοθ-...ο

Permissive Open:

- No GT flame on(XS-1077)
- Header steam SOV closed(*MOV*-179.)

Auto Close:

- Steam shut-off valve(MOV-17 \wedge 7) is open
- Pressure section at Dry Out mode and steam pressure $<X^{\circ}$ psig (*PI*-···)
Protective Close:

• Dry run mode and steam SOV not closed (MOV-1 YAY)

י.י.י. IP steam shut-off valve(MOV-1282)

Reference Drawings

- P&ID BY -A-PID-BA-040181-...
- P&ID B^Υ ٤-A-PID-BA-ονοι^ΨΥ-...ο
- $P\&ID B^{\xi} A PID BA o^{\gamma}o^{\xi}o_{-} \cdots o$
- P&ID BY ξ-A-PID-BA-ονοιξί...ο
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοιολ...ο
- P&ID B^Υ ٤-A-PID-BA-ονοιοθ-...ο

Permissive Open:

- No GT flame on(XS-10°°)
- Header steam SOV closed(*MOV*-1۲۹.)
- Differential pressure ΔP over value $< \max(PIC \cdot \circ \cdot \circ, PIT \cdot \vee \wedge 9)$

Auto Close:

• Pressure section at Dry Out mode and steam pressure $<X^{\circ}psi(PIC-\cdot \circ \cdot \circ)$

Y.Y.Y.V IP economiser inlet drain shut-off valve(MOV-1313)

Reference Drawings

- P&ID BY -A-PID-BA-040181-...
- P&ID B^Υ^ε-A-PID-BA-ονοι^ΨΥ-···
- P&ID BY 5-A-PID-BA-0401 50-...
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ονοιει-..ι
- $P\&ID BY \xi A PID BA \circ V \circ 1 \circ A \cdots 7$
- P&ID Β۲٤-Α-PID-BA-ονοιο9-...

Permissive Open:

- (Dry out mode OR no GT flame on($XS-1\circ TT$))
- FW SOV closed (MOV-YYA)
- IP eco inlet temperature $< \forall \circ \forall F(TIA \cdot \xi \lor \circ)$

Auto Open:

- After some minutes since start of Dry out
- IP FW SOV closed(MOV-1YVA)
- IP steam pressure $>1 \leq .\circ psig(PIT \cdot \leq 9 \lor)$
- IP eco inlet temperature $< \forall \circ \forall F(TIA \cdot \xi \forall \circ)$

Auto Close:

- IP system not in Dry out mode for some minutes and GT flame $on(XS-1\circ T)$
- IP eco inlet temperature degree of superheat >⁹F (*TSH*-• ξ ⁷ \circ)
- IP steam pressure <> £.°psig (*PIT*-•£٩V)
- IP eco inlet temperature $> \forall \circ \forall F(TIA \cdot \xi \forall \circ)$

Protective Close:

 GT flame on AND(no Dry out mode OR IP eco inlet temperature>H) Longer than \ minute

Y.Y.Y.A IP outlet drain valve(MOV-1280)

Reference Drawings

- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY ٤-A-PID-BA-ovol ٤1-...
- P&ID BY ٤-A-PID-BA-ovol ٤1-...
- P&ID B^γ ٤-A-PID-BA-ογογεγ-...
- $P\&ID BY \xi A PID BA \circ V \circ Y \xi Y \cdots Y$
- P&ID BY 5-A-PID-BA-040157-...

Permissive Open:

• Blowdown tank level < 90% (LIC - 777)

Auto Open:

The valve is opened during CC start-up, when all of the following criteria

are true

- GT speed > $\gamma \cdot \cdot$ rpm for more than γ minute (SY- $\gamma \circ \gamma \varepsilon$)
- IP steam pressure $>1 \le psig(PIC \cdots)$

During automatic draining (after start-up draining), when all of the following criteria are true

- CC mode active
- IP steam pressure >1 spsig (*PIC*-...)
- Dripleg level (*LIC*- \cdot ⁷⁷⁷)> \wedge °% or dripleg level >9.%

The valve is opened during standstill, when all of the following criteria are true

- No GT flame on(XS-1°°°)
- IP steam pressure $>1 \leq psig (PIC \cdots)$
- Dripleg level (LIC- $\cdot 777$)> $\wedge 0\%$ or dripleg level > 9.%
- OTSG not in Dry run

Auto Close:

The value is closed when all of the following criteria are true for \circ minutes

- GT flame on(XS-10TT)
- Steam temperature $> \circ \xi F$ above calculated saturation temperature (*TSH*- $\cdot \xi \uparrow \uparrow$)
- Steam flow > $\xi \wedge \forall \circ lb/hr(FIA \cdot \forall \forall 9)$
- Valve is not closed(*MOV*-\YA•)
- Dripleg level (LIC-•777)< Λ °% and dripleg level <9.%, both longer than 7.% sec

The valve is also closed after start-up when one of the following criteria

is true

• CC mode not active (due to Dry out)

The drain valve is closed during automatic draining when any of the following criteria is true

- IP steam pressure $< 1 \le pisg (PIC . . .)$
- Dripleg level (LIC-•٢٦٢)< ^{Ao}% and dripleg level < ^q•%, both longer than ^m• sec
 The drain value is closed during stand still when all of the following criteria are true
- No GT flame on(XS-1077)
- IP steam pressure(PIC-...)<1.psig OR (Dripleg level (LIC-...)
 A°% and dripleg level <1.% both longer than ^r. sec)

Protective Close:

- Blow down tank level(LIC- \cdot ⁷) >9°% longer than \neg sec
- Dry run or Dry out mode

Y.Y.Y. IP outlet drain valve(MOV-1503)

Reference Drawings

- P&ID B12-A-PID-BA-040121-..1
- P&ID BY 5-A-PID-BA-040151-...
- P&ID B^Υ ٤-A-PID-BA-ονοιει-...
- $P\&ID B^{\xi}-A-PID-BA-ovoltr...$
- $P\&ID B^{\xi} A PID BA o^{\gamma} o^{\xi} \xi^{-} \cdots \xi^{-}$
- P&ID Β^τ έ-Α-ΡΙD-ΒΑ-ονοι έτ-...

Permissive Open:

• Blowdown tank level $< \circ \% (LIC - \cdot 777)$

Auto Open:

The valve is opened during CC start-up, when all of the following criteria are true

- GT speed > $\gamma \cdot \cdot$ rpm for more than γ minute (SY- $\gamma \circ \gamma \xi$)
- IP steam pressure $>1 \leq psig(PIC \cdots)$

During automatic draining (after start-up draining), when all of the following criteria are true

- CC mode active
- IP steam pressure >1 spsig (*PIC*-...)
- Dripleg level $(LIC \cdot \gamma \gamma \gamma) > \wedge \circ \%$ or dripleg level $> 9 \cdot \%$

The valve is opened during standstill, when all of the following criteria are true

- No GT flame on(XS-1077)
- IP steam pressure >1 spsig (*PIC*-...)
- Dripleg level (LIC- \cdot 777)> $\wedge \circ \%$ or dripleg level > $9 \cdot \%$
- OTSG not in Dry run

Auto Close:

The value is closed when all of the following criteria are true for \circ minutes

- GT flame on(XS-10°°)
- Steam temperature $> \circ \xi F$ above calculated saturation temperature (*TSH*-· $\xi \gamma \gamma$)
- Steam flow > $\xi \wedge \forall \circ lb/hr(FIA \cdot \forall \forall 9)$
- Valve is not $closed(MOV-1\circ\cdot\tau)$
- Dripleg level (LIC- ٢٦٢)
 A°% and dripleg level <٩ •%, both longer than "• sec
 The valve is also closed after start-up when one of the following criteria

is true

• CC mode not active (due to Dry out)

The drain valve is closed during automatic draining when any of the following criteria is true

- IP steam pressure $< 1 \le pisg (PIC ...)$
- Dripleg level (LIC-•٢٦٢)< ^o% and dripleg level < ٩.%, both longer than ^r• sec The drain valve is closed during stand still when all of the following criteria are true
- No GT flame on(XS-1°rr)
- IP steam pressure(*PIC*- $\cdot \circ \cdot \circ$)< $\cdot \cdot \text{psig OR}$ (Dripleg level (LIC- $\cdot \uparrow \uparrow \uparrow$) < $\wedge \circ \%$ and

dripleg level $< 9 \cdot \%$ both longer than $\% \cdot$ sec)

Protective Close:

- Blow down tank level(LIC- \cdot ⁷) >9°% longer than \neg sec
- Dry run or Dry out mode

r.r.v HP bypass system

Y.Y.V. HP steam bypass inlet shut-off valve(MOV-1283)

Reference Drawings

- P&ID BY 5-A-PID-BA-040180-...
- P&ID B12-A-PID-BA-040180-...
- P&ID B12-A-PID-BA-040180-...
- P&ID B^τ^ε-A-PID-BA-ονοι^π¹-···
- P&ID BY 5-A-PID-BA-040187-...
- P&ID BY :- A-PID-BA-040177-...

Manual control

Y.Y.V.F HP steam bypass outlet shut-off valve(MOV-1294)

Reference Drawings

- P&ID B12-A-PID-BA-040180-...
- P&ID Β۲ ٤-Α-ΡΙD-ΒΑ-ονοιπο-...τ
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοιπο-...
- P&ID Β^Υ ٤-Α-PID-BA-ονοι^γ^γ-···
- P&ID ΒΥ ٤-Α-ΡΙD-ΒΑ-ΟΥΟΥΥΊ-··Υ
- P&ID Β^τ^ε-A-PID-BA-ονοι^π¹-··^π

Manual control

v.v.v. HP steam bypass spray shut-off valve(XV-0800)

Reference Drawings

- P&ID B1 A-PID-BA-040100-...
- P&ID B1 2-A-PID-BA-040100-...
- P&ID B^γ ε-A-PID-BA-ονοιπο-...π
- P&ID B^γ ε-A-PID-BA-ονοι^γ^γ-···
- P&ID B^τ^ε-A-PID-BA-ονοι^π¹-··^τ
- P&ID Β۲٤-Α-ΡΙD-ΒΑ-ονοιπι...

Auto Open:

• HP steam bypass($PV - \cdots \circ \circ$) output > $1 \cdot \%$

Auto Close:

• HP steam bypass(PV-••••) output < *%

Protective Close:

• HP steam bypass($PV - \cdots \circ \circ$) fast close

Y.Y.V.: HP steam bypass drain valve(MOV-1284)

Reference Drawings

- P&ID B12-A-PID-BA-040180-...
- P&ID B^Υ ^ε-A-PID-BA-ονοι^πο-...^γ
- P&ID Β۲ ٤-Α-ΡΙD-ΒΑ-ονοιπο-...
- P&ID B^γ ε-A-PID-BA-ονοι^πλ-···
- P&ID B^Υ^ε-A-PID-BA-ονοι^γ^γ-···^γ
- P&ID Β^τ ٤-Α-ΡΙD-ΒΑ-ονοιπι...

Auto Open:

• HP steam bypass drain water temp< $\forall \cdot \cdot F(TTT-\cdot \xi \neg \circ, TTT-\cdot \xi \neg \neg)$

Auto Close:

• HP steam bypass drain water temp> $\forall r \cdot F(TTT - \epsilon r \circ, TTT - \epsilon r \circ)$

r.r. IP bypass system

Y.Y.A.V IP steam bypass inlet shut-off valve(MOV-1288)

Reference Drawings

- P&ID BY 5-A-PID-BA-040184-...
- P&ID BY ε-A-PID-BA-ονοι Ψν-...
- P&ID BY -A-PID-BA-040184-...
- P&ID B^Υ ٤-A-PID-BA-ονοιΨλ...)
- P&ID B^γ ε-A-PID-BA-ονοι^πλ-··^γ
- P&ID Β^τ^ε-A-PID-BA-ονοι^πλ-...^π

Manual control

Y.Y.A.Y IP steam bypass outlet shut-off valve(MOV-1295)

Reference Drawings

• P&ID BY ٤-A-PID-BA-0Y01 TY-...

- P&ID B^γ ε-A-PID-BA-ονοι Ψν-...Υ
- P&ID B^Υ ^ε-A-PID-BA-ονοι^ΨΛ-···
- P&ID B^Υ ٤-A-PID-BA-ονοι^πλ-...Υ
- P&ID Β^Υ ٤-Α-ΡΙD-ΒΑ-ονοι^πΑ-··^π

Manual control

'.'. IP steam bypass spray shut-off valve(XV-0810)

Reference Drawings

- P&ID BY 5-A-PID-BA-040184-...
- P&ID B1 ٤-A-PID-BA-040184-...
- P&ID B1 -A-PID-BA-0101...
- P&ID BY -A-PID-BA-040184-...
- P&ID BY 5-A-PID-BA-040184-...
- P&ID Β٢٤-Α-ΡΙD-ΒΑ-ΟΥΟΙΥΛ-...

Auto Open:

• IP steam bypass($PV - \cdot \circ \uparrow \lor$) output > $\uparrow \cdot \%$

Auto Close:

• IP steam bypass($PV - \cdot \circ \uparrow \lor$) output < $\uparrow \%$

Protective Close:

• IP steam bypass($PV - \cdots \vee$) fast close

Y.Y.A.: IP steam bypass drain valve(MOV-1289)

Reference Drawings

- P&ID BY -A-PID-BA-040174-...
- P&ID B^Υ^ε-A-PID-BA-ονοι^Ψν-··^Υ
- P&ID BY 2-A-PID-BA-040184-...
- P&ID B^Υ ^ε-A-PID-BA-οΥοΥ^γΑ-···
- P&ID B^Υ ^ε-A-PID-BA-ονοι^πλ-··Υ
- P&ID Β^τ^ε-A-PID-BA-ονοι^πλ-...^π

Auto Open:

• IP steam bypass drain water level> XX% (*LIT*-··o_A,*LIT*-··o_V)

Auto Close:

• IP steam bypass drain water level $\langle XX\%(LIT - \cdot \circ \land, LIT - \cdot \circ \lor) \rangle$

Y.Y.A.• Condensate drain tank pump A(GM-0878A/GM-0879A/GM-0880A/GM-0883A/GM-0884A/GM-0885A)

Reference Drawings

- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY :- A-PID-BA-0401:1-...
- P&ID B^γ ε-A-PID-BA-ονοιει-...
- P&ID BY 5-A-PID-BA-040157-...
- P&ID BY 5-A-PID-BA-ovo157-...
- P&ID Β^τ έ-Α-ΡΙD-ΒΑ-ονοι έτ-...

Permissive Start:

- Motor control power available
- Pump stop status
- Motor remote mode
- Motor NOT protection trip

Auto Start:

- Condensate drain tank level $> \forall \forall . \circ \%$ (*LIA*- $\cdot \forall \forall \forall$) and pump A is lead selection
- Condensate drain tank level $>9 \cdot .0\%$ (*LIA*-· 777)
- Pump A in standby mode, and pump B run status loss

Auto Stop:

• Condensate drain tank level $< \varepsilon \cdot \% (LIA - \cdot 777)$

Protective Stop:

• Condensate drain tank level < % (*LIA*-%)

Y.Y.A.Y Condensate drain tank pump outlet valve(MOV-1292)

Reference Drawings

- P&ID BY 5-A-PID-BA-040151-...
- P&ID BY 2-A-PID-BA-040121-...
- P&ID Β^Υ ^ε-A-PID-BA-ονοι ^ει...^π
- P&ID BY 5-A-PID-BA-0Y015Y-...
- P&ID BY 5-A-PID-BA-040157-...
- P&ID Β^Υ ξ-Α-ΡΙD-ΒΑ-ονοιξζ...

Auto Start:

• Any of pump running

Auto Stop:

• All of pump stopped

Y.Y. CHEMICAL DOSING SYSTEM FOR FEED WATER

The water from demine water tank filled in oxygen scavenger dosing tank ,mixed with oxygen scavenger , Injecting pump send chemical water to FW system The water from 'st RO product filled to ammonia dosing tank , mixed with ammonia send it to FW system.

Y.Y.4.1 Ammonia dosing tank with agitator (GM-1969)

Reference Drawings

- P&ID B12-A-BA-040172-...
- P&ID Β^Υ ٤-Α-ΒΑ-ονογγε...

Permissive Start:

- Motor control power available
- Motor remote mode
- Pump stop status
- Motor NOT protection trip

Auto start: (one or more of the following criteria are true)

- Ammonia dosing tank with agitatorlevel($LIT \cdot \uparrow \land \uparrow)$ H> $9 \cdot \%$
- CFP discharge after chemical injection ph $(AIA \Lambda^{1} \xi A) H^{9}$

Auto stop: (one or more of the following criteria are true)

- Ammonia dosing tank with agitator $level(LIT \gamma \wedge \gamma)L < 1.\%$
- CFP discharge after chemical injection ph $(AIA A \lor \xi A) L < \forall$

Y.Y.A.Y Ammonia injection pump A (GM--AV)A)

Reference Drawings

- P&ID B12-A-BA-040172-...
- P&ID Β^τ ^ε-A-BA-ονοτ^τ ^ε-··τ

Permissive Start:

- Motor control power available
- Motor remote mode
- Pump stop status
- Motor NOT protection trip
- Any CFP running

Auto start: (one or more of the following criteria are true)

- Pump A in standby mode, pump B run status loss.
- Pump A as lead pump and CFP discharge after chemical injection ph L<7 $(AIT \Lambda \Im \xi A)$
- CFP discharge after chemical injection ph LL<° $(AIT \Lambda \forall \xi A)$

Auto stop: (one or more of the following criteria are true)

- Pump A as lag pump and CFP discharge after chemical injection ph H> \land (*AIT*- $\cdot \land \neg \xi A$)
- CFP discharge after chemical injection ph HH $> \P(AIT \cdot \land \exists \xi A)$

Y.Y.4.F Boiler feed water pump A(GM-0813A)

Reference Drawings

- P&ID BY 5-A-BA-040197...
- P&ID B12-A-BA-040198-...
- P&ID Β۲٤-Α-ΒΑ-ονοιττ...τ
- P&ID Β^Υ ξ-A-BA-ονοι^π ξ-···
- P&ID B^Υ ٤-A-BA-ονον^γε-··Υ
- P&ID Β۲٤-Α-ΒΑ-ονοιπε...π

Permissive start: (all of the following criteria are true)

- Motor control power available
- Motor remote mode
- Pump stop status
- Motor NOT protection trip
- Boiler feed water pump A outlet valve close

Auto start: (one or more of the following criteria are true)

- Pump A in standby mode, pump B run status loss.
- SEQ start boiler feed water pumpA

Auto stop: (one or more of the following criteria are true)

• SEQ stop boiler feed water pump A

Protective stop: (one or more of the following criteria are true)

- When boiler feed water pumpA start, outlet valve not open in ^{τ} sec.
- When outlet valve open after r sec, boiler feed water pump A not start

۲.۲.۹.٤ Boiler feed water pump A outlet VLV(MOV-1265A)

Reference Drawings

- P&ID B1 2-A-BA-040197-...
- P&ID Β^Υ^ε-A-BA-ονοιτη...Υ
- P&ID Β۲٤-Α-ΒΑ-ονοιττ...τ
- P&ID ΒΥ ξ-Α-ΒΑ-ονοι Ψξ-...
- P&ID B^γ ^ε-A-BA-ονοι^γ^ε-···^γ
- P&ID Β^τ έ-A-BA-ονοιπέ-...

Permissive open: (all of the following criteria are true)

• Valve in remote mode

Auto open: (one or more of the following criteria are true)

• Open with BFW A start Sequence

Auto close: (one or more of the following criteria are true)

- Close with BFW A start Sequence
- Close with BFW A stop Sequence

Y.Y.4.0 Boiler feed water pump A SEQ START

- SEQ close BFW A outlet VLV
- SEQ start BFW A
- SEQ open BFW A outlet VLV

Y.Y.4.7 Boiler feed water pump A SEQ STOP

- SEQ close BFW A outlet VLV
- SEQ stop BFW A

Y.Y.4. Minimum flow control of boiler feed water pumpA (FV--212A)

Reference Drawings

- P&ID B12-A-BA-040177-...
- P&ID Β^Υ ٤-Α-ΒΑ-ονοιττ...
- P&ID B^Υ ٤-A-BA-ονοι^γ^γ-··^γ
- P&ID BY 2-A-BA-040182-...
- P&ID Β^Υ ٤-Α-ΒΑ-ονοι^Ψ ξ-···Υ
- P&ID B^Υ ξ-A-BA-ονοι^Ψ ξ-···^Ψ

Control purpose

• Control min. feed water flow of each pump according to outlet flow of each boiler feed water pump, so as to confirm safety operation of pump.

Function description

• Outlet flow of boiler feed water pump a will be sent to function generator, and

output of function generator will be acted as command of min. flow valve of pump. When signal of inlet flow increase, output of function generator will decrease; when signal of outlet flow reduce, output of function generator will increase. Output signal of function generator after correction is used for adjusting min. flow regulating valve of pump. There are two function generator in min. flow control loop, and the min. flow valve opening degree command will be formed after MIN selection and MAX selection, shown as below figure.

^{*}.^{*} FOXBORO DISTRIBUTED CONTROL SYSTEM (DCS)

۲.۳.^۱ Introduction

The I/A Series distributed control system from Foxboro, measurably improves plantwide operations, performance and asset utilization in today's modern manufacturing enterprise.

A key component of the Infusion Enterprise Control system, the I/A Series system offers the greatest breadth of capabilities for providing optimal performance for operators, engineers and maintenance personnel.

The Intelligent Automation (I/A) Series system is an Open Industrial System (OIS) that integrates and automates manufacturing operations. It is an expandable distributed system that allows a plant to incrementally tailor the system to its processing requirements.

The modules that make up the I/A Series system communicate with each other even though they can be located in a variety of locations. These locations depend upon the conditions and layout of the particular process Plant.

DCSs allow centralized configuration from the operator or engineering console in the control room. You can change programming offline, and download without restarting the system for the change to be effective.

DCSs allow inter-controller communications. You can do data exchange in most DCS systems ad hoc (no need for predefined data point lists). You access data by tag name, regardless of hardware or location.

۲.۳.۲. I/A Series System

The I/A Series system includes a set of application packages that are used to perform automatic and manual system management functions.

Figure ":I/A series system

۲.۳.۳ MAINSOFTWARE PACKAGES

- Fox view
- Fox select
- ✤ IACC I/A Series Configuration Component
- Fox Draw
- System Definition

۲.۳. ^٤ Fox view Human Interface

The term Human Interface refers to the way a workstation is set up to interact with the user.

There are two Human Interface versions, Fox View and the Display Manager. Here, you will be introduced to the Fox View Human Interface.

Many I/A Series systems use Fox View as its interface. Fox View allows a user to utilize numerous applications to:

- Respond to alarms
- Collect and interpret data
- Modify process variables
- Perform on-line trending
- Generate reports

Figure [£]:FOXVIEW window

۲.۳.۰ Fox select

- > It is an overview of the compounds and blocks in the control database.
- > Turn ON and OFF compounds and their associated blocks.
- > Expand a list of the network's stations and compounds.
- View a list of blocks within all connected stations, and sort the list by different criteria.
- Bring detail displays (Block Detail Displays, Compound Detail Displays, or Station Block Detail Displays) into Fox View.

FoxSelec	t-[AW7001:AW7001]								_ 8 ×
Options Cor	npound View Help								
	7	8 B							
Station Vie	W Block View								
E TAW	7001	Block	Туре	Alarm					
68	AW7001_STA	225	CALCA						
8	AW7001_ECB	南244	CALCA						
B	OTSG	244A	CALCA						
		A 248	CALCA						
		(A) 248A	SWCH						
		(A) 248B	SWCH						
		南249	CALCA						
		(A) 249A	CALCA						
		AOUT237	AOUT						
		AC224	CALCA						
		C226A	CALCA						
		(A)⊂226B	CALCA						
		AC226C	CALCA						
		(a) ⊂237	CALCA						
		(A)C238	CALCA						
		C239	CALCA						
		AC241	CALCA						
		(a) ⊂242	CALCA						
		(a) ⊂243	CALCA						
		(a) ⊂246	CALCA						
		(前)	CALCA						
		СН238A	CHARC						
		€Н238В	CHARC						
		СН239А	CHARC						
		🛗 СН239В	CHARC						
		m HSA0212A	CIN						
		10 HSA0212B	CIN						
		100 H5A_0469A	CIN						
		Minsm0212A	CIN						-
AW7001:0T50	5:C239						Last Refresh : July I	2, 2016, 09:	13:12
🏄 Start	🕑 😹 😬 🎽 🗶 E 🖾 F 🔒	🖞 F 🚺 Fo 🛄 Sl	. 🗀 S 🗀 disp 😬 IA	. 🔁 Bi 🔛 T 🖳 U.	. 🧱 U 🦉 B 🖳 M	. 📧 Mi 🧶 Fo 📰 Io.	🦉 lo	EN 🥵	20:22
1	Desktop 📋 My Documents	My Computer	Ny Network Places	👩 Recycle Bin	Internet Explorer	Adobe Reader 7.0		» «	sábado

Figure °:FOXSELECT window

Y.T.I/A Series Configuration Component (IACC)

The I/A Series Configuration Component (IACC) pays for itself many times over from the productivity and quality gains made possible by using its rich set of intuitive and extensible engineering tools for project engineering and life-cycle maintenance. IACC provides a powerful and integrated engineering environment for designing and maintaining control strategies, composite display objects and configuring the I/A Series system.

Figure [¬]:IACC configuration

IACC includes the Intelligent Design Studio library with over γ . of the most frequently encountered control strategies.

Having a Common Configuration Database eliminates the need to reenter data in several different configuration tools. This obviously saves time and reduces the chance

of mistakes. Using a Microsoft windows framework improves ease of use for both novice and advanced users.

Hardware independent engineering means that the engineer can configure a system without any I/A Series hardware.

IACC steps

Figure V:Data Processing

1. Starting IACC

To start an IACC session:

¹. Do one of the following:

• Click Start and select the IACC icon if it is included in the list of most recently used files.

♦ Choose Start > All Programs > IACC > IACC Studio

An IACC client can be configured for access to multiple databases on one or more servers. When multiple databases have been enabled, the IACC Databases dialog box lists the available databases.

	Database Name	Database Path	Description	10 2020 C
1	PROJ	D:\opt\fox\IACC\Database\PROJ		Cance
2	Uebung1	D: \opt\fox\IACC\Database\Uebung1		
3	Uebung2	D: \opt\fox\IACC\Database\Uebung2		
4	Sameh	D:\opt\fox\IACC\Database\Sameh		
5	GrossProj	D: \opt\fox\IACC\Database\GrossProj		
6	NEVV	D: \opt\fox\ACC\Database\NEW		
7	TEAM88	D: \opt\fox\IACC\Database\TEAM88		
8	AMAL	D: \opt\fox\ACC\Database\AMAL		

Figure A:IACC Databases Dialog Box

۲. Select a database and click OK.

IACC displays the Logon dialog box that provides security access to the IACC editors and functions.

	IACC Version 2.0	
Logon User name:	Administrator	XBORO [®]
Password:	Zenterstock	Cancel

Figure 9:Logon Dialog Box

r. Enter the user name and password and click OK. The password is case-sensitive; the user name is not. The main IACC window is displayed.

Figure **\):IACC** Windows and Menu Bars

Project Navigator

The Project Navigator (Figure $(-\epsilon)$), on the left side of the IACC window, is your view into the project database, using a tree structure similar to the folders display in Windows Explorer. The Project Navigator has three tab selections, each providing a different viewpoint:

System: Provides access to objects and definitions used in configuring your process control network. These resources include CSD Templates, TagLists, and libraries of standard I/A Series block definitions. The tab also provides access to report templates and security functions.

Network: Defines the network hardware and software used in the system. With this tab, you can view the hardware hierarchy, and you can create and modify both hardware and software objects. Pop-up menus enable you to specify options (parameter, hardware, and software) for hardware and software. The Network tab also provides access to compounds and their blocks once the compounds are assigned to a control station.

Plant: Groups configuration components by physical location, projects, plant equipment, processes, or whatever organizational method you choose. In the Plant tab, you define a hierarchy of Plant Area objects. Each Plant Area object allows you to create CSDs, compounds, and display files. You can also perform a variety of other control configuration tasks. The Project Navigator lists objects within each node alphabetically. You can set the Project Navigator to display the objects in the order they were created. It can also be configured to show the object type and a description in parentheses after the object name.

Y. Creating Defaults

Here, we will create three defaults for: AIN, PIDA and AOUT blocks.

AIN and AOUT Defaults:

¹. Open the System tab in the Project Navigator window.

^Y. Open Library then select I/A Block Types then Input/Output Blocks in the resulting pop-up menus.

r. Right-click on AIN and select New Definition in the resulting pop-up menu. a new default (child) AIN¹ will be created from the parent block AIN, so every change in the parent block will affect directly in the child one, but changes made in the child block will not change anything in the parent block, and this is the main advantage of using defaults.

 ξ . Now repeat step γ for AOUT block.

Figure **\Y:AIN** and AOUT Defaults

SWCH Default

¹. Open the System tab in the Project Navigator window.

 $^{\gamma}$. Open Library then select I/A Block Types then Control Blocks in the resulting popup menus.

r. Right-click on SWCH and select New Definition in the resulting pop-up menu. a new default (child) SWCH will be created from the parent block SWCH, so every change in the parent block will affect directly in the child one, but changes made in the child block will not change anything in the parent block, and this is the main advantage of using defaults.

CALCA Default

¹. Open the System tab in the Project Navigator window.

 ${}^{\intercal}$. Open Library then select I/A Block Types then Logic Blocks in the resulting pop-up menus.

^r. Right-click on CALCA and select New Definition in the resulting pop-up menu. a new default (child) CALCA) will be created from the parent block CALCA, so every change in the parent block will affect directly in the child one, but changes made in the child block will not change anything in the parent block, and this is the main advantage of using defaults.

Figure \2:CALCA Default

". BUILDING A SIMPLE CSD

Here, you will build a typical loop, consisting of AIN, CALCA,SWCH and AOUT blocks. The Control Strategy Diagram (CSD) Editor is used to add blocks and establish links between them.

Adding Plant Areas

The Project Navigator's Plant tab can be organized to be similar to your own plant. This is done by simply adding plant areas to the Plant tab.

¹. Open the Plant tab in the Project Navigator window.

Y. Right-click Plant and select New Plant Area in the pop-up menu. Plant Area Appears.

 $^{\circ}$. Change the new plant area's name to BY ξ .

👜 IACC - [246 CSD]
File Edit View Format Draw Shape Tools Win
B <u>A</u> Plant
₩
System Network Diset
Uystein Idemoork Plant

Figure **\°:Adding** Plant Area

Adding Blocks to a CSD

The Palette Window is used to add blocks to a CSD.

- ¹. Close the IACC Welcome screen by selecting Close All in the Window menu.
- ⁷. Ensure that the Plant tab is open in the Project Navigator window.

^{γ}. Ensure that Plant and B^{$\gamma \xi$} have been expanded. This is done by clicking the adjacent + boxes.

 ξ . Add a new CSD by right-clicking B ξ and then highlighting New and CSD and selecting Simple CSD in the resulting pop-up menus.

The name Simple CSD $\,$ appears below B $\,$ ^{ξ}.

°. Change the name Simple CSD i to $i \notin i$.

⁷. Open the CSD Editor for $\forall \xi \forall$ by right-clicking $\forall \xi \forall$ and then highlighting Editors and selecting CSD Editor in the resulting pop-up menus.

Note that the CSD name, $\forall \xi \forall$, appears in the IACC Title Bar, at the top of the CSD Editor window, and in a tab at the bottom of the CSD Editor window.

^V. Close the CSD Editor by opening the Window menu and selecting Close All.

^A. Reopen the CSD Editor for $7 \xi V$ by simply double-clicking $7 \xi V$.

⁴. Use the System Tab to drag AIN, CALCA,SWCH and AOUT blocks (¹ each) from the library into the CSD Editor window:

a) Open the Input/output Blocks portion of I/A Block Types.

b) Click-and-drag the default AIN¹ into the left side of the CSD Editor window.

c) Click-and-drag the default AOUT into the right side of the CSD Editor window.

d) Open the Control Blocks portion of I/A Block Types.

e) Click-and-drag the default SWCH' and CALCA' into the CSD Editor window,

 \cdot . Align the blocks along their top edge:

a) Select each block while the Shift key is depressed.

b) Click the Align Top button in the Tool Bar.

1). Connect the points listed in the table below (in the CSD Editor window, use the click-and-drag method to draw a line between the parameters).

Connect this	To this
AIN ¹¹ .PNT	CALCAIRI
CALCA ¹ .RO [•] ^Y	SWCH ¹ .INP ^Y
SWCH ¹ .OUT	AOUT ¹ .MEAS

Table **`:Blocks** Connection

17. Rename the input/output blocks using the names listed in the project excel sheet:

a) Expand the $7\xi V$ CSD in the Project Navigator.

b) Right-click AIN¹ and select Rename in the resulting pop-up menu.

c) Change the name AIN \mathcal{V} to PIT $\mathcal{O}\mathcal{V}A$. The new name also appears in the CSD Editor window.

d) Repeat these steps for AOUT block.

Rename this	To this
AIN	PIT·o·A
AOUT	SP.0.9A

Table ⁷:Blocks Name

The editor window should appear similar to the figure below.

Figure **\7:YEV** CSD

Typically, blocks must be configured as given in the excel sheet. In this part, you will edit required parameters in each block as mentioned in the excel sheet.

Using the Properties Dialog Box:

). Right-click the AIN block (PIT $\cdot \circ \cdot \cdot A$) in either the CSD Editor window or Project Navigator and select Properties in the resulting pop-up menu. The AIN: PIT $\cdot \circ \cdot A$ Properties dialog box appears.

 r . Begin to edit necessary parameters as given in the excel sheet. Note that any changes appear in a different color in the Properties dialog^r. Repeat step ^r for the AOUT,SWCH and CALCA blocks.

[£]. Click OK in the Properties dialog box.

⁴. Assigning a Control Loop to a Compound

Control loops, like the one you just created using the CSD Editor, should be assigned to a new or previously existing compound. In this exercise, it is assumed that a new compound is needed.

CSD Assignment to a Compound:

). Ensure that the Plant tab in the Project Navigator and the B^{$\gamma \xi$} plant area is still selected.

^Y. Create a new compound by right-clicking AREA NATIH in the Project Navigator and then highlighting New and selecting Compound in the resulting pop-up menus. A default compound name, COMPND¹, appears below Product A.

". Change the name COMPND¹ to OTSG.

 ξ . Assign $\forall \xi \forall$ CSD to the OTSG compound:

a) Right-click $\forall \xi \forall$ CSD and select Assign Default Compound in the resulting menu. The Assign Default Compound dialog box appears. All the previously created compounds are listed.

b) Select OTSG I/A Compound. A checkmark appears in the adjacent box.

c) Click OK. The compound name OTSG now appears above the block name in each box in the CSD Editor window. Also, note that in the Project Navigator, the blocks have been assigned to this compound.

Figure VY:Assigning Default Compounds

•. ExportingSave/Save-all Data

IACC is a database application. In order for a compound to run in real-time, it must be downloaded to a control station. Downloading can be accomplished with different ways. In this section we will lear how to make a saveall data for a compound and download it to ICC.

). Ensure that the Plant tab in the Project Navigator is open and the BY ξ plant area is selected.

^{γ}. While selecting the plant area B^{γ \$\varepsilon\$}, press FILE from the top menu then choose Export.

[°]. You will have two formats to choose from:

Available Formats	
Plassa abaasa a farmati	
Export to IACC Format	
Next> Cancel	

Figure **\^:Export Window**

- [£]. Choose Export to IACC Format, then Click the Next button.
- °. Choose the Destination to Save in .
- 7. Click the Next button.
- ^v. Follow instructions until you finish export.

5. CSD Templates

A CSD Template (CST) is a CSD that displays a process or a part of a process that will be used repeatedly to configure your control strategy. A CST contains a general block and connection strategy, which can be copied to produce multiple CSD Instances. Information from a taglist can be applied to a CSD Template during bulk generation to produce a unique CSD Instance. This new CSD instance can have its Compound and Control Station assigned as part of the Bulk Generation. Alternately, a CSD Template can be copied to form a CSD Instance, which is then modified in the CSD Editor to produce a unique CSD Instance.

CREATING A CSD TEMPLATE

a. open IACC.

- b. expand system by clicking +, then components.
- c. right click on CSD Template and rename it.

d. creat blocks and put the block in the template created by drag and drop the block in the template created.

f. rename the block by clicking + of the created template.

Figure **\9:Creating CSD Template**

V. Taglists

After forming required the excel sheet with parameters required the next step is: **Importing Taglist**

Through an excel sheet including the blocks and all parameters as the following excel sheet

1	М	0	Р	Q	R	S	V
1	Name	Loop_Name	Plant Area	CP	Compound	CST_Component	Description
2	FCV0230A	B24-F-0230A	B24	AW7001	OTSG	AOUT	FLOW CONTROL VALVE-FF
3	FCV0231A	B24-F-0230A	B24	AW7001	OTSG	AOUT	FLOW CONTROL VALVE-FF
4	TCV0552A	B24-T-0552A	B24	AW7001	OTSG	AOUT	TEMPERATURE CONTROL VALVE-FF
5	TCV0424A	B24-T-0424A	B24	AW7001	OTSG	AOUT	TEMPERATURE CONTROL VALVE-FF
6	TIC0424A	B24-T-0424A	B24	AW7001	OTSG	AOUT	DCS TEMPERATURE IND CONTROLLE
7	TICSA0424A	B24-T-0424A	B24	AW7001	OTSG	AOUT	DCS FUNCTION
8	FIC0237A	B24-F-0237A	B24	AW7001	OTSG	AOUT	DCS FLOW IND CONTROLLER
9	FIC0212A	B24-F-0212A	B24	AW7001	OTSG	AOUT	DCS FLOW IND CONTROLLER
10	FV0212A	B24-F-0212A	B24	AW7001	OTSG	AOUT	FLOW CONTROL VALVE-FF
11	FIC0212B	B24-F-0212B	B24	AW7001	OTSG	AOUT	DCS FLOW IND CONTROLLER
12	FV0212B	B24-F-0212B	B24	AW7001	OTSG	AOUT	FLOW CONTROL VALVE-FF
13	FIA0233A	B24-F-0233A	B24	AW7001	OTSG	AOUT	DCS FLOW IND ALARM

Table ":TagList Database

Custom Tag Types

You can create user-defined tag types using a pop-up menu from a tag type object in the Project Navigator. You can then open the newly created type using the Definition Editor to modify the type as follows:

- Add and delete parameters
- Change parameter attributes
- Select parameters to be displayed as column headings in the TagList Editor
- Specify which parameters appear when configuring tag data propagation.

Figure Y · : Creating new Tag Type

^. BULK GENERATION

Taglists and CSD templates are used to create CSDs. This Bulk Generation feature is invoked from the Taglist Editor and generates ECBs in the CSD using taglist data. In addition to identifying I/O points in a CSD, the taglist can be used to set parameters in other blocks in CSDs created or updated during bulk generation. You can specify tag propagation steps for any user-defined tag type, but not for the Foxboro I/A Tag. For example, you can map a description field in the taglist to the DESCRP parameter of the I/O blocks in the CSD. The following are some Bulk Generation rules:

• You can generate multiple CSD instances from the same CSD Template.

• The name of the new CSD instance is derived from the CSD Name field in the Tag List. If the name of an existing CSD instance is used, bulk generation overwrites the existing CSD instance with the new one. Thus, bulk generation can be used to update signal information in CSD instances you have already built.

• The CSD Template is identified in the CST name field in the Tag List.

• Every I/O block in the CSD Template must be mapped to a tag by having its name in the tag's CST Component field, the name of the CSD template in the CST Name field, and the name of the resulting CSD instance in the CSD name field.

Finally, after clicking the Finish button, compounds and CSDs are created and assigned to a plant area, based on entries in the taglist.

Figure **T1:Selecting CSDs**

Bulk Generate Preview AW77 UT Bulk Generate Preview UT AW77 UT No new Plant areas will be created. UT The following existing CSDs will be deleted and a new instance created: UT 214T UT 225T UT 226T UT 233T UT 236T UT 236T UT 237T UT 236T UT 244T AW77 AW7	UT	TEMPERATURE CO 100?00 0?00	%	AW7
Image: Construction of the second of the	UT	Conerste Breview	1	AVV7
UT U	UT	denerate Preview		AW7
UT UT UT UT UT UT UT UT UT UT	UT			AVV7
UT UT UT UT UT UT UT UT UT UT	υт			AVV7
UT UT UT UT UT UT UT UT UT UT	UT	No new Plant areas will be created.	<u> </u>	AVV7
UT The following existing CSDs will be deleted and a new instance created: 14 AVV7 214T 224T UT 224T UT 225T UT 225T UT 226T UT 228T UT 228T UT 233T UT 235T UT 235T UT 236T UT 236T UT 244T UT 244T UT SH 205T UT The following Compounds exist and will remain as is: UT UT CT	UT			AVV7
UT 214T 224T UT 225T UT 225T UT 226T UT 228T UT 233T UT 233T UT 233T UT 235T UT 236T UT 236T UT 236T UT 236T UT 236T UT 236T UT 244T UT 244T UT 249T 249T	UT	The following existing CSDs will be deleted and a new instance of	reated:	AVV7
UT 224T UT 225T UT 225T UT 226T UT 228T UT 228T UT 233T UT 233T UT 235T UT 235T UT 235T UT 235T UT 235T UT 244T UT	UT	214T		AVV7
UT 2251 UT 226T UT 227T UT 227T UT 228T UT 233T UT 235T UT 235T UT 235T UT 235T UT 237T UT 237T UT 237T UT 244T UT 244T UT 244T UT 244T UT 5H 205T UT 5H 205T UT 244T UT 5H 205T UT 244T AW77 AW7	υт	224T		AVV7
UT 228T UT 228T UT 228T UT 228T UT 233T UT 235T UT 235T UT 235T UT 235T UT 234T UT 244T UT 244T UT 244T UT SH 205T UT SH 205T UT 0TSG UT 0TSC UT 0 UT 0	UT	2251		AVV7
UT 228T UT 228T UT 228T UT 233T UT 235T UT 235T UT 235T UT 236T UT 244T UT 244T UT 249T UT SH 205T UT SH 205T UT SH 205T UT SH 205T UT ANV7	UT	2201 227T		AVV7
UT 233T UT 233T UT 235T UT 236T UT 236T UT 237T UT 237T UT 244T UT 244T UT 249T UT SH 205T UT UT SH 205T UT UT CTSG UT Cancel Help AW77 A	UT	228T		AVV7
UT 2351 UT 235T UT 237T UT 237T UT 244T UT 244T UT SH 205T UT The following Compounds exist and will remain as is: UT The following Compounds exist and will remain as is: UT The following Compounds exist and will remain as is: UT AWV7	UT	233T		AVV7
UT 2337T UT 2244T UT 244T UT 249T UT SH 205T UT The following Compounds exist and will remain as is: UT OTSG UT ANV7 UT ANV7 UT ANV7 UT ANV7 UT CTAL PV/ FLOW UT SET POINT IND UT SET POINT IND ANV7 ANV	UT	2351		AVV7
UT 244T A/V/7 UT 249T A/V/7 UT SH 205T A/V/7 UT The following Compounds exist and will remain as is: A/V/7 UT OTSG A/V/7 UT A/V/7 A/V/7 UT OTSG A/V/7 UT Cancel Help A/V/7 A/V/7 A/V/7 UT <	01	2301 237T		AVV7
UT CAL PV/ FLOW AV/7 UT TOTAL PV/ FLOW AV/7 UT SET POINT IND AV/7 UT SET POINT IND AV/7 UT SET POINT IND AV/7		244T		AVV7
UT SET POINT IND		249T		AVV7
The following Compounds exist and will remain as is:		SH 205T		AVV7
UT UT UT UT UT UT UT UT UT UT	01	The following Compounds exist and will remain as is:		AVV7
UT VT	01	OTSG	-1	AVV7
UT AVV7 UT AVV7 UT Cancel Help AVV7 AVV7 AVV7 UT Cancel Help AVV7 AVV7 UT TOTAL FWFLOW AVV7 UT SET POINT IND AVV7 UT SET POINT IND AVV7)		AVV7
Image: Control of the sector of the				01077
Image: Control of the sector of the	<u></u>			
UT TOTAL FW/FLOW AW/7 UT SET POINT IND AW/7	UT		1 1 1 1 1	A)A/7
UT TOTAL FW/FLOW AW/7 UT SET POINT IND AW/7 UT SET POINT IND AW/7	UT	< Back Finish Lancel	Help	A)A/7
UT SET POINT IND AW/7	UT			A)A/7
IT SET POINT IND	UT	SET POINT IND	-	A)A/7
	UT	SET POINT IND		A)A/7

Figure *YY*:Bulk Generation Preview

9. Download

- a- A plant area is created after bulk generation is done.b- The compound to be downloaded must be assigned to a control station (AW^v··¹).

Figure ^۲":Download Preview

c- Select Network tab, right click on CP (AW^{\vee} ...) and choose validate then download. A specific compound can be downloaded without downloading the whole CP.

Y.W.**Y** Fox Draw

Fox Draw is a graphical display editor for creating and maintaining process displays. What is a display?

- a file (.fdf) that is constructed and configured to be viewed via Fox View
- represent a plant, a process area, or a detailed portion of a process
- is a "live" display
- configured to allow operator interaction with the process

۲.۳.۸ System Definition

System Definition identifies the I/A Series system components, the system software equired by each component, the system component letter bugs, and other

systemcharacteristics for correctly loading system software and identifying the systemsoftware objects

System Definition produces a Commit diskette which is required for software installation and, therefore, must be completed before software installation

7.4 FUNCTIONAL DESIGN SPECIFICATION

Y.E.1 Blocks used in IACC for Control Process

Y.£.1.1 AIN – Analog Input Block

Basic operation

The Analog Input Block (AIN) receives an input value from a single point of an analog, pulse count, or Intelligent Field Device type of Fieldbus Module (FBM) or Fieldbus Card (FBC), or from another block, and converts it into suitable form for use in an I/A Series control strategy. The input to the block is the digitized data from the FBM's Equipment Control Block (ECB), and the output is a value expressed in the appropriate engineering units.

Most Important Parameters in AIN Block NAME,TYPE,DESCRP,PERIOD,LOOPID, MA

MEAS: Measurement is a value used as the source of the input to block operations when IOMOPT indicates that no FBM or FBC is connected (IOMOPT = \cdot or \uparrow). If an FBM or FBC is connected, (IOMOPT = \uparrow) then MEAS is treated as an output, and the value and status of PNT are copied to the value and status of MEAS.

۲.٤.۱.۲ AOUT – Analog Output Block

Basic operation

The Analog Output Block (AOUT) provides the control strategy with output capability for a single

analog value directed to any Fieldbus Module (FBM) or Fieldbus Card (FBC) capable of driving

analog outputs. The block supports Auto/Manual control, signal conditioning, biasing, and output balancing. Cascade initialization and supervisory control features are also available. **Most Important Parameters in AOUT Block**

NAME,TYPE,DESCRP,PERIOD,LOOPID, MA

۲.٤.١.۳ PIDA Block

Basic operation

The PIDA controller implements continuous PID feedback and additive and multiplicative feedforward control of an analog loop. Its principal inputs, setpoint and measurement, are used to compute its output, the manipulated variable, based on user-set or adaptively tuned values of the tuning parameters – proportional band, integral time, derivative time, delay time, and setpoint relative gain. The feedforward capability can be used to decouple interacting loops, such as a slow level control cascading to a fast flow control, in addition to compensating for measured load upsets.

Most Important Parameters in PIDA Block NAME,TYPE,DESCRP,PERIOD,LOOPID, MA

BCALCI: Back Calculation In is a real input that provides the initial value of the output before the block enters the controlling state, so that the return to controlling is bumpless. The source for this input is the back calculationoutput (BCALCO) of the downstream block. With V^{ξ} , ^{γ} and later software, BCALCI contains the status bits which were formerly contained in the INITI parameter. Therefore, INITI and INITO are not required forcascade initialization.

INCOPT: Increase/Increase Option is a Boolean input. When set true, INCOPT reverses the normal sense of the control action so that the controller output increases with increasing measurement.

LR: Local/Remote is a Boolean input that selects the setpoint source (\cdot = Local; \cdot = Remote). If LR is set to Remote, the source of the setpoint value is the real input parameter RSP. When LR is set to Local, the source is the user set input SPT.

MA: Manual /Auto is a Boolean input that controls the block's operating state:

۰ = Manual

۱ = Auto.

MALOPT: Measurement Alarm Option is a configured short integer input thatenables absolute High and Low measurement alarming, or disables absolutealarming altogether.

- = No alarming
- ^γ = High and Low measurement alarming
- γ = High measurement alarming only
- r = Low measurement alarming only.

You can change MALOPT only by reconfiguring the block.

MODOPT: Mode Option is a configurable short integer. When the block is in Auto, MODOPT dictates the controller mode. The integer value ranges from ¹ to ^A:

 $\gamma = P - proportional only$

 $\gamma = I - integral only$

 r = PD – proportional plus derivative

٤ = PI – proportional plus integral

SPT: Setpoint always represents the active controller setpoint. Setpoint is thereference variable that is compared with the MEAS input to produce theERROR signal. LR and SE determine the source of SPT. When LR is set to Remote, RSP is the source of SPT, which is secured. When LR is Local and SE is Disable, the user set value is the source of SPT. When using the controller in only the Local mode, set LOCSP to `(True). SPT can source the setpoint value to other blocks. When SE is enabled, Supervisory setpoint overrides all other setpointsources.

UNACK: Unacknowledge is a Boolean output that the block sets to True when itdetects

an alarm. It is typically reset by operator action.

۲.٤.۱.٤ CIN Block

Basic operation

The CIN block interfaces to an Equipment Control Block (ECB) which stores digital input or output values from an FBM or FBC. Each execution cycle, the block presents the value of the specified digital point at its output, called Contact Input (CIN). When no FBM or FBC is configured, the block input is taken from another block connected to the Input (IN) parameter. The CIN block provides optional point inversion, Bad I/O and State alarming, State Change message processing, and Auto/Manual capability.

Most Important Parameters in CIN Block NAME, TYPE, DESCRP, PERIOD, LOOPID, MA

CIN: Contact Input is the block output. It represents the state of the inputpoint specified by IOM_ID and PNT_NO when IOMOPT indicatesthat an FBM or FBC is configured, or the value of the input IN otherwise. In any case, CIN is subject to optional inversion based on the state of option IVO.

IN: Input is an alternate source for the CIN block input, used when there isno connected FBM or FBC. When the block has a connected FBM orFBC, IN reflects the actual physical input, even when the output CIN isunder Manual control or when CIN is holding the last good value due to the quality of the physical input.

IOMOPT: FBM Option is a boolean specifying whether an FBM or FBC connection to the block exists. Values:

• = The CIN block obtains input values from the IN parameter.

 1 = The block obtains input values from the FBM or FBC inputpoint specified by IOM_ID and PNT_NO.

NM \cdot : Name \cdot is a user-defined string of up to γ characters sent with a Statealarm message to indicate that the message is a "return to normal" type. This means that CIN has transitioned from γ to \cdot if INVALM is false, or \cdot to γ if INVALM is true.

NM): Name \uparrow is a user-defined string of up to $\uparrow\uparrow$ characters sent with a Statealarm message to indicate that the message is an "into alarm" type. Thismeans that CIN has transitioned from \cdot to \uparrow if INVALM is false, or \uparrow to \cdot if INVALM is true.

SCTXT \cdot : State Change Text \cdot is a text string sent with the State Change message to indicate that the state has changed from \cdot to \cdot , after any optional inversion.

SCTXT¹: State Change Text ¹ is a text string sent with the State Change message to indicate that the state has changed from \cdot to ¹, after any optional inversion.

۲.٤.۱.º COUT block

Basic operation

The COUT block interfaces to an Equipment Control Block (ECB) which contains digital outputvalues to an FBM or FBC. Each execution cycle, the block writes the value of the inputparameter Input (IN) to its output, called Contact Output (COUT). When an FBM or FBC isconfigured, the value of COUT also drives the connected output point.

Most Important Parameters in COUT Block NAME, TYPE, DESCRP, PERIOD, LOOPID, MA

COUT: Contact Output is the output of the block. When there is a connected

FBM or FBC, its value is also transmitted to the connected output point.

IN: Input is the input to the block. Its value, after optional inversion and pulse

generation, is presented as the output COUT, and transmitted to any connected

FBM or FBC point.

Y.4.1.Y LLAG – Lead Lag Block

Basic operation

The Lead Lag (LLAG) Block dynamically compensates for changes in the measurement signal by initially overreacting (Lead) to the input, or gradually changing the output (Lag), or both. Theoutput has steady state levels that vary with the input when the block is in the Lead/Lag mode. In the Impulse mode, the block has a single steady state level that is dependent only on the BIASinput.

Most Important Parameters in LLAG Block NAME, TYPE, DESCRP, PERIOD, LOOPID, MA

۲.٤.۱.۷ CALCA – Advanced CalculatorBlock

Basic operation

The Advanced Calculator (CALCA) block provides both logical functions and arithmetic computational

capability within one integrated environment.

This block provides dual-operand efficiency in several mathematical and logical instructions,

resulting in as much as a three-to-one reduction in the length of your program relative to the same

calculations performed in a CALC block program.

The CALCA block does not support the clamping of real outputs, whereas the CALC block does.

With this exception, programs written for the CALC, MATH, or LOGIC blocks will execute in

the CALCA block without change.

The configuration process allows you to program the block by entering a series of up to •• programming

steps. Each program step is represented by a parameter string of up to *ii* characters. **Most Important Parameters in CALCA Block**

NAME, TYPE, DESCRP, PERIOD, LOOPID, MA

BI • **)** to **BI** • **3** :Boolean Inputs) through **)** ⁷ are inputs to the block calculations which can be configured, linked to upstream blocks, or set when unlinked.

STEP · \ to STEP · · :

Steps ' through •• are string inputs of up to '7 characters. They are the •• executable commands that make up the CALCA block program.

'.:.'.^ CHARC – Characterizer Block

Basic operation

The Characterizer block (CHARC) simulates signal characterization by building a "piecewise" linear

characteristic curve of up to \checkmark segments. The MEAS is the block input. You determine the output characteristic and construct the curve using up to \checkmark separate break points. In operation, the block produces an output based on the MEAS and the user-specified characteristic curve.

Most Important Parameters in CHARC Block NAME, TYPE, DESCRP, PERIOD, LOOPID, MEAS

BCALCI Back Calculation In is a real input that provides the initial value of the output before the block enters the controlling state, so that the return to controlling is bumpless. It is also the source of the output value when its integration bit, which puts the block into output tracking, is non-zero. The source for this input is the back calculation output (BCALCO) of the downstream block.

BCALCO Back Calculation Output is a real output that is passed upstream for bumpless initialization purposes. It is the inverse interpolation of the output and is the value for the upstream block to write to avoid bumping the process.

۲.٤.۱.۹ LIM – Limiter Block

Basic operation

The Limiter block, LIM, provides high and low absolute limiting and, if the option is configured, a rate of change limiting for a single real input. The block also provides boolean indicators to show which limiting functions are in effect, and a FOLLOW input which allows the block to override rate of change limiting.

Most Important Parameters in LIM Block NAME, TYPE, DESCRP, PERIOD, LOOPID, MA

7.0 DCS CONTROL LOOP STRATEGIES

This function design specification document provides details about control loop template and complex loops that will be used for building the control strategy LAND_OIL PROJECT.
This FDS will handle two main types of control strategies:

- Control loops templates: This type is used for describing the loops that are repeated many times with the same structure as analogue input indication, simple PID control loop, SDV indication etc
- Y) Special loops: This type is used for describing the loops that are used only one or two times and not repeated with the same structure at another part of the project.

Each type will be described in a specific section. Each section is organized as follows:

- P&ID Graphic Symbol
- Database Information
- Logic Diagram
- Operator Graphical Interface
- Blocks Interconnection Diagram

7.7 DCS CONTROL LOOPS TEMPLATES

۲.٦.۱ AIN-TEMPLATE

۲.۱.۱ P&ID graphic symbol

۲.٦.١. Database Information

Tag Number	Instrument Type	Locatio n	I/O Type	From	Syste m
B7 ٤-TI- 、019A	TEMP IND TRANSMITTER-FF	OTSG	AIN	Field	DCS

 Table ::Indication in database

۲.٦.۱.۳ Function Description

The philosophy -in this project- is to use single module FBM for the analogue inputs that will be used for monitoring only. However, redundant modules will be used for the analogue inputs that will be included in a control loop such as simple PID control loop. This template is used for receiving the analogue data that will be used for monitoring only and so it consists of only Real Input (RIN) block.

With I/A Series system software $V^{\Lambda, \ell}$, the AIN block operating on the FCP^{YV} or ZCP^{YV} provides a variety of alarm detection and reporting features, including alarming for Bad I/O, out-of range values, and two sets of high and low limits.

7.7.1.4 Operator Graphical Interface

Figure YE:AIN Indicator

It indicates for the operator:

- ۱. Transmitter name
- ۲. Scaled reading
- ۲. Alarm type (Visibility according to configured alarms and generated alarm)
- ٤. Engineering unit

The visibility of the alarm is dependent on which alarm limit is configured and the alarm generated whenever the alarm limit is reached.

LL: for low limit alarm. L: for low limit alarm

H: for high limit alarm.

HH: for high high limit alarm

- For the L and H alarms blinking yellow indicates presence of the alarm. For the LL and HH alarms blinking red indicates presence of the alarm.
- The dash line over the different alarm texts appears whenever the operator inhibits the alarm from the symbol overlay.
- When the operator acknowledges the alarm from the symbol overlay all visible blinking alarms will convert to be steady.
- When the operator clicks on the symbol, the overlay will be opened in a predefined position.

۲.۲.۲ CIN – TEMPLET

Y.T.T. P&ID graphic symbol

۲.۶.۶ Database Information

Tag Number	Instrument Type	Locatio n	І/О Туре	From /To	System
BY 2-MOV-17. °AO	FW START-IP SHUT-OFF VLV OPENED	OTSG	DI	FIEL D	DCS

Table °:Indication i	in database
----------------------	-------------

۲.٦.۲.۳ Function Description

This template is used to provide representation of the hardwired digital status indications received from packages.

The digital data received from field will be indicated using a separate CIN block.

Operator Graphical Interface

Block Interconnection Diagram

CIN11	30
From_Fid1 In Ma	Cin
Descrp: INPUT Dev_id:	OUTP
Pnt_no:	

Figure Yo::CIN_ TEMPALTE in IACC

T.T. COUT – TEMPLET

۲.٦.٣.۱ P&ID graphic symbol

۲.٦.٣.٢ Database Information

Tag Number	Instrument Type	Locatio n	I/O Type	From /To	System
BY 5-MOV- VW. OAOP	OPEN CMD	OTSG	DI- SERI AL	FIEL D	DCS

 Table [¬]:Indication in database

۲.٦.۳.۳ Function Description

This template is used to provide the serial digital output to ESD system. The digital data of the COUT block will be packed through a PAKOUT block and send to ESD in packed format.

Operator Graphical Interface

• DO_E •) will have no symbol or overlay.

Y.J.F.[£] Blocks Interconnection Diagram

Figure **^Y**:COUT_TEMPALTE in IACC

۲.٦.٤ VLV TEMPLATE

Function Description

This template is used to enable the control for the valve from the Dcs system

Database Information

Name	Loop_Name	CP	Compound	CSD Name	CST Name	CST_Component	B103	BI04
MOV1271ACL	B24-M-1271A	24CP03	OTSG	107	VLV	COUT_3		
MOV1271ALR	B24-M-1271A	24CP03	OTSG	107	VLV	CIN-1		
MOV1271AOP	B24-M-1271A	24CP03	OTSG	107	VLV	COUT_1		
MOV1271ASP	B24-M-1271A	24CP03	OTSG	107	VLV	COUT_2		
HSO1271A	B24-M-1271A	24CP03	OTSG	107	VLV	CIN_2		
HSS1271A	B24-M-1271A	24CP03	OTSG	107	VLV	CIN_3		
HSC1271A	B24-M-1271A	24CP03	OTSG	107	VLV	CIN_4		
	B24-M-1271A	24CP03	OTSG	107	VLV	CALCA	OTSG:105.BO01	OTSG:106.BO02
MOV1302ACL	B24-M-1302A	24CP03	OTSG	103	VLV	COUT_3		
MOV1302ALR	B24-M-1302A	24CP03	OTSG	103	VLV	CIN_1		
MOV1302AOP	B24-M-1302A	24CP03	OTSG	103	VLV	COUT_1		
MOV1302ASP	B24-M-1302A	24CP03	OTSG	103	VLV	COUT_2		
HSO1302A	B24-M-1302A	24CP03	OTSG	103	VLV	CIN_2		
HSS1302A	B24-M-1302A	24CP03	OTSG	103	VLV	CIN_3		
HSC1302A	B24-M-1302A	24CP03	OTSG	103	VLV	CIN_4		
	B24-M-1302A	24CP03	OTSG	103	VLV	CALCA	OTSG:101.BO01	OTSG:102.BO02
						1	0	

Table V:VLV Taglist

Blocks Interconnection Diagram

Figure YY:VLV Template

CALCA Code

STEP ·)	IN BI • ٣
STEP · Y	OSP ^w
STEP • ٣	OR BI · Y
STEP · ٤	AND BI · É
STEP · O	AND BI ·)
STEP • ٦	OSP ^r
STEP · V	OUT BO ·)
STEP · A	AND BI · ' BI · °
STEP • ٩	OSP ^r
STEP 1 ·	OUT BO · Y
STEP	IN BI • Y
STEP17	OSP ^r
STEP 1 "	OR BI · 7
STEP) 2	OR BI · A
STEP10	AND BI ·)
STEP17	OSP ^r
STEP 1V	OUT BO · ٣
STEP 1A	END

Table A:CALCA Code

Y.^V HUMAN MACHINE INTERFACE (HMI)

Y.Y. What is a Display?

A display is a file that is constructed and configured to be viewed from a FoxView[™] window or a Display Manager window.

A display can represent a plant, a process area, or a detailed portion of a process. A display canbe configured to allow operator interaction with the process by moving objects or typing inputs.

A display is composed of objects, each of which can be configured with attributes. Objectattributes determine the object's static and dynamic appearance and the actions an operator canperform on an object.

The term "object" includes primitive objects (such as lines, rectangles, circles, and text), libraryobjects, and bitmaps. Library objects include Invensys Foxboro supplied and user-built symbols, overlays, faceplates and trends. The term "symbols" refers to the vast collection of objects that you can copy to a display from Invensys Foxboro supplied and user-build palettes.

Y.Y.Y OBJECT TYPES

Y.Y.Y. Bitmaps

Bitmaps are typically used as background images such as maps or plant overviews, and forcompany logos. A bitmap is not embedded in a display but is linked to a display. You canconfigure the bitmap's dynamic attributes to make it grow or shrink, change location, or bevisible or invisible based on the value of a process variable.

Figure **TA:BITMAPS**

$^{\gamma}.^{\gamma}.^{\gamma}.^{\gamma}$ Trends

A trend can monitor the behavior of one or more process variables over time. You can configure up to eight trend graphs on a single base display (or base display plus library object).

A trend can display up to four numeric or Boolean process variables over time.

FoxDraw provides many trend types from which to choose.

Depending on trend configuration and operator permission (access levels) in FoxView, operators can reconfigure and save trends.

Trend time appears on the X-axis. The number of time stamps depends on the size of the graph.

Data values appear on the Y-axis. You can configure the trend and specify the parameters such as low and high values for each process variable's range. Individual ranges can be automatically scaled. The following figure displays a trend.

Figure ۲۹:Trend

۲.V. T.T Faceplates

A faceplate is a display object that shows critical parameters for a particular block.

Faceplates include supplied faceplates and user-built faceplates. Faceplates are library objects and have an .m¹ extension. You can build a base display that contains up to eight faceplates. The following figure displays a faceplate.

Figure "·: Faceplate

۲.^۷.۲.^٤ Primitive objects

Primitive objects include lines, rectangles, polylines, polygons, curves, closed curves, circles, pies, sectors, r-point sectors, text, background text, comment objects, and scroll region objects.

Create primitive objects by using **Draw** toolbar tools or **Draw** menu commands.

۲.^۷.۲.۰ Library objects

Library objects (.m¹ files) refer to the objects that FoxDraw and FoxView recognize. FoxDraw recognizes library objects stored in either of two display library directories:

- D:\opt\fox\displib
- D:\opt\customer\displib

The library objects are subdivided into groupings with appropriately named directories. The subdirectories (bitmaps, buttons, faceplates, grids, palettes, symbols, templates,

trends, and X/Y plots) serve as receptacles for the library objects. FoxDraw includes over one thousand library objects. You can also build your own library objects.

۲.^۷.^۳ The Different Types of Displays

۲.۷.۳.۱ Base display

Occupies the entire FoxView window (\cdots units wide by $\vee \circ$ units high)in world coordinate units.

In FoxView, when another base display opens, the previous base display closes. You can open one or more overlays on top of a base display.

When you open an overlay, the base display does not close. A base display, however, can be hidden by a full-screen overlay. A base display file has an .fdf extension

۲.^ү.^۳.^۲ Overlay display

Overlays are configured for performing certain operation like starting / stopping of pump, opening / closing of valve etc. This is used to avoid single click operation of important equipments from the main display. Overlays are $1/\xi$, 1/Y, 1/A sizes of screen. Overlays contain controller faceplates, Start / Stop, Auto / manual, Open / Close command and mode selection facilities.

Overlays are classified as follows:

- Custom Overlay for Pumps, Fin-Fan coolers, valves etc.
- Standard Overlay with standard controller faceplate

Custom overlays are developed to serve purpose like pump operation, valve operation etc. Standard overlays use standard faceplates and link them with particular tag. Similar to a base display, an overlay display has an .fdf extension.

Figure^{r1}:overlay

۲.^۷.^۳.^۳ Pallet

A window containing graphic objects that you can copy into your display.

Figure "\:pallet

۲.^۷.^۳.^٤ Detailed display

Detail Displays contain various options to provide flexibility to the operator for plant control, they also provide flexibility to the engineer for tuning and troubleshooting; the Detail Displays can be called from the DETAIL button on overlays or from "FoxSelect".

Figure "Y:Detailed Display

۲.^۷.^۳.^o Group display

Group displays contain information on various process variables grouped together in a single display

Figure ^{*rr*}:Group Display

Y.Y.^T. **Process Flow Graphic**

Process Graphic displays provide a P&ID representation of a portion of a unit. These displays are the primary point of operator action. All controllers, indicators, discrete equipment and contact alarms associated with the given area are shown. Normally, uncompensated flows are shown, and no advanced control points are shown. Page picks allow access to the associated overview, other Process Graphic displays, and Group displays. Any controller or piece of equipment that allows an operator action is pickable. Picking such an element opens a controller window (overlay) with complete details for that controller or equipment as well as buttons to allow all available operator actions

Y.V.: Building Process Displays with FoxDraw

FoxDraw is a graphical display editor that allows the user to create and maintain displays for viewing process control variables. The displays can represent a plant, a process area, or a detailed portion of a process. The objects in a display can be dynamically connected to select variables or operator picks.

Basic objects can be drawn using the mouse in combination with FoxDraw's toolbars, menu items, and shortcut keys. Graphic attributes may be assigned to the objects and then configured to reflect process variable changes or operator actions. This configuration procedure will be discussed in alarm module.

FoxDraw also includes numerous palettes of objects, called symbols, such as pumps, tanks, pipes, motors, valves, and ISA symbols. User templates and palettes may also be created for storing complex objects and company standard symbols.

Y.V.• Accessing Foxdraw

FoxDraw is accessed by the following procedure:

- Access an environment which has the CONFIG button assigned to the menu bar
- Select the CONFIG menu bar button
- Select FOXDRAW from the resulting pull-down menu

Figure ^{*r*}^{*ε*}:Accessing Foxdraw

Foxdraw Screen

Fox U	ntitle	d7.m1	- FoxE	lraw															-	
	Edit	⊻iew	Draw V I Do			Layout	Uptions	400%			+++ 1	<u> </u>	10	l en l	= 1	a. al	5.51	No.1	sa 1	
			96 GE		-			100 /4		***	112	\sim	9		×ĸ	¥	<u> </u>			_
R					:: 音	•														
٩.			+ · ·	· · +	: : : .	+ · ·	· · + ·	+ -		· +			+ :		· +		+		: : 1	>
1			S S	FAND	ARD	TOOL	BAR	 			: :	1.1	1.1			1.1			: :	
				1.1.1		1 1 1		1.1		1.1			1.1		1.1				: : I	ET
	lf :																		: : T	10]]+
\overline{N}			\mathbf{g}														: Ļ		: : I	
			À : :			+		+ -		· +			+ -		· +		: : ?		: : .	
$\overline{\sim}$: : ``	N														ះព		: :	<u> </u>
R			T · ·														우	_	→	125
			ġ : :	+		+ · ·		+ .		· +			+ .		- +		· · +			메추
$\overline{\diamond}$																	းမ		: : I	Lp [
6		: : : I	B														<u></u> 2		: : I	1000
-	- ·	· · · í	R · ·	· · +		+ · ·	+ .	+ ·		· +			+ ·		· +		- B		· · · -	- Final State
A																	A			匠
A																	: : r :		: : I	喧
C			+	+		+ : :		+ :		: +			+ :		: +		+		: : 1	
			: : :					 	: :	: :						: :			: :	_
	· ·																			
			÷ · ·			+		+ -		ςt	IRS	SOR	PO	DSF	гiđt	V			: : 1	
												1	. .							
	L							 		· :	• •			1 · · ·					· · [-
	Bear	du .						 	_	_	_	[[3]	7 724	1 19	5701		AP			
15	30	48 19	01		nnly	- Ar 1 11	61					10		.,	5. 5)	10				
					2279	14														

Figure ^{ro}:Foxdraw Screen

7.9.1 Configuring Process Displays with FoxDraw

Configuring an object means to connect the object to a process variable. This can be done to allow the operator to both observe and control the process through a graphic display.

There are two ways of configuring a display object. This is done using Dynamic Update and Operator Action.

Dynamic Update means that a process variable or a file is connected to one of the object's attributes, such as visibility or fill level. With this type of configuration, changes in an attribute are triggered dynamically by changes in the process variable. This type of configuration is used to monitor the system. No operator intervention is necessary.

Operator Action connects the entire object to an action, such as opening a display or changing a setpoint. An operator triggers the action by selecting the object. An individual object can have both Dynamic Update and Operator Action connections, although it can have only one operator action.

Each object type (rectangle, circle, text, etc.) has its own set of dynamic attributes, visibility, fill level, text

color, etc.).

Y.V.V Display of P&ID Tags on Graphics

The tags in the display represent the tag in the control database and will not include the area number and will the replicate of that in the I/O database and that in the P&ID's.

Y.V.^A Display Colors and Functionality

The top centre of every graphic will contain the graphic title in white Capital Letters. All process and overview graphics displays will have a GREY (FoxDraw color $7 \pm$) background. In Foxboro I/A standard the Cyan color indicates a communication failure.

IC TEXT

Static text will be used to identify equipments such as tanks, vessels, etc... and process line contents. Static text will be added inside vessels for identification. The vessel type (ex: REACTOR) and vessel name $(R^{1} \cdot \cdot)$ should be inside the vessel where possible. The color for the static text will be black.

Y.V.) • PROCESS LINES COLORS

Material	FOXDRAW Color Code
Air Nitrogen	White
Water	Blue YA
Gas	Orange ° ^v

Table ^: Process Lines Colors

Y.Y. YThe Project Displays

Figure ^{rv}:OTSG A Exhaust System

Figure ^r^:OTSG A Economiser System

Figure ^{rq}:OTSG A HP Evaporator System

Figure :: OTSG A HP Super Heater System

Figure **£):OTSG A IP System**

Figure **£?**:VLV Display

Chapter Three

" CITATION AND REFERENCING

".1 REFERENCES FORMAT

Books:

- [$\]$ FoxDoc $\Lambda. \mathfrak{t}.$
- [^Y] Control Narrative Document"B^Y9-J-DOC-BE-oVo·Yo_Y·!o·V^T!".
- [^{\mathcal{m}}] AMAPETCO-Control Loop FDS_rev^{\lambda}.^{\lambda}.
- [ξ] Instrument list"B ξ -J-DOC-BE- $\xi \wedge \varphi \circ B$ ".