

Final Exam (3rd Year Civil Eng.) Structural Analysis & Mechanics III

Date: Tuesday 17 January 2017 Total Grade: 70 Points (70P) Time: 09:30am - 12:30pm Instructor: Professor: Mohamed EL-Assaly Dr. Ahmed M. EL-Kholy, Lecturer

Notes: 1. Two Aids: Appendices C & D (Ghali Book, Pages 778-783) & Appendix 11.2 (EL-Behairy Book, Pages 42-45). The aids must be completely clean from any added data.

- 2. Answer must be neat, specific, and in order. Highlight the main steps and results.
- 3. Ruler and reasonable scales must be used for drawings and diagrams.
- 4. Start each question in a new page. Answer each question Q in one ~ two pages if possible.

*************	1	
10P	Q.1.	Derive the elastic center equations used to calculate the redundant forces X_1 , X_2 and X_3 at
		the elastic center of frame with axis of symmetry and third degree of statical
		indeterminacy.
20P	Q.2.	Use the Moment Distribution Method and the advantage of symmetry to draw the B.M.D
		for the frame shown in Fig. 1 under the illustrated loads. Four cycles are enough to
		achieve accurate results. The girders have double inertia of that of columns.
15P	Q.3.	Figure 2 shows the new design of girder ab (a member of frame shown in Fig. 1). The
		new girder ab has non-prismatic section as shown in b Fig. 2. Use the Column Analogy
		Method to find the fixed-end-moments $(M_a \& M_b)$ due to applied uniform distributed load
		W=4 t/m and concentrated load of 12 t at mid-span. Also, find the stiffness at b and
	18	carry-over-factor from b to a. Compare your results with that of prismatic member.
11P	Q.4.	The steel frame shown in Fig. 3 has variable moment of inertia I and is subjected to
		clock-wise rotation of 0.1 rad. at support e. Use the Column Analogy Method to construct
		B.M.D. for the frame due to the induced rotation. Hint: Remember to substitute EI value
		in the final moment equation $(M_f = M_o + M_i = M_o + + x + y)$ to get correct B.M.D.
7P	Q.5.	Without calculations, show clearly and briefly (in one page) the main steps (no-sway
	¥*	solution and sway corrections), forces F_{ij} , sway factors K_j and the equations required to
	10	find the B.M.D. of the frame shown in Fig. 3 using the Moment Distribution Method.
15P	Q.6.	Use the slope deflection equations to find the rotations at the four points a, b, c and d, and
		to draw the B.M.D. for the beam shown in Fig. 4 due to the illustrated loads. Use the
		resulted rotation values to give schematic drawing for the deformed shape of the beam.