

- Answer all Questions
- Maximum degree is 70.
- Total time allowed is 3 hours.
- The exam is 5 questions in 2 pages.

Good Luck!

Dr. Mohammed A. Hassan

Problem (1) [15 points]:

For the amplifier circuit shown in Fig. 1, [K_N=4mA/V². V_{TN}=1V, V_A=∞, C_{gs}=0.5pF, C_{gd}=0.1pF].

Part (a) low frequency analysis:

- (i) Determine the DC biasing point and check SAT condition.
- (ii) Plot the ac equivalent circuit for the amplifier, then determine the midband voltage gain.
- (iii) Choose the capacitors C₁ and C₂ such that the corresponding break frequencies are f₁=1Hz and f₂=10Hz.
- (iv) Draw the magnitude Bode plot on the logarithmic graph paper.

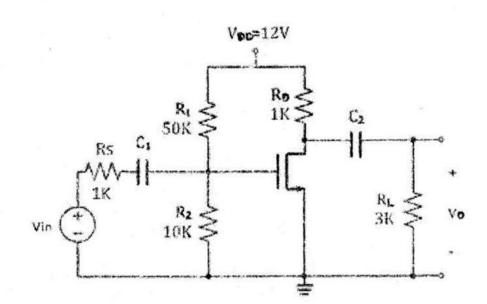
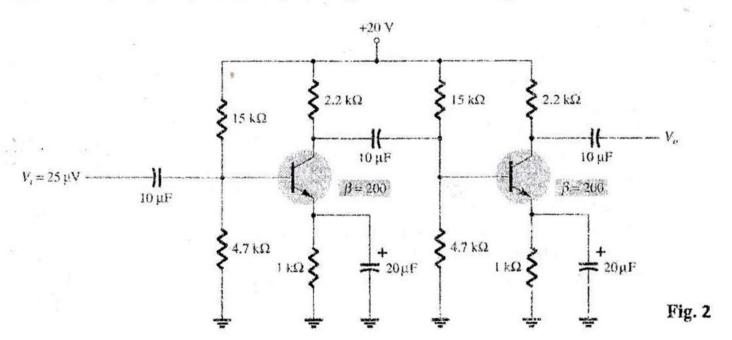


Fig. 1


Part (b) high frequency analysis:

- (v) Determine the two high corner frequencies of the amplifier.
- (vi) Draw the magnitude Bode plot of the high frequency behavior of the amplifier over the same logarithmic paper used in part (iv).

Problem (2) [15 points]:

For the following cascade amplifier shown in Fig. 2, [V_A=200V, β =200, V_T=25mV, V_{BE,on}=0.7V].

- (a) Calculate the DC biasing point and the ac small-signal parameters (r_π, g_m, r_o) and plot the ac equivalent circuit for the overall amplifier.
- (b) Calculate the no-load voltage gain and output voltage of the amplifier.
- (c) Calculate input impedance of the first stage and output impedance of the second stage.
- (d) Calculate the overall gain and output voltage if $10 \text{ k}\Omega$ load is applied to the second stage.

Page 1 of 2