Problem (3) [10 points]

For the feedback amplifier given in Fig. 3. $A_g=100mA/V$, $R_i=10K\Omega$, $R_o=10K\Omega$, $\beta_z=0.1k\Omega$.

- (a) Identify the type of the feedback
- (b) Derive the expression for the closed loop gain Agf=I_o/V_s, and determine its value.
- (c) Derive the expression for the closed loop input resistance R_{if}, and determine its value.
- (d) Derive the expression for the closed loop output resistance Rof, and determine its value.
- (e) Comment on the effect of the feedback on the input and output resistances (increased or decreased)

Problem (4) [15 points]

For the following circuit in Fig. 4, the transistor parameters are: I_{CQ1} =486 μ A and I_{CQ2} =1.35mA, g_{ml} = 19.64mA/V, g_{m2} =34.92mA/V, $r_{\pi 1}$ =5092 Ω , $r_{\pi 2}$ =2857 Ω , r_{o2} = r_{o2} = ∞ .

- (a) Identify the topology of the feedback (mixing/sampling).
- (b) Identify the feedback circuit, then find values for R_{11} , R_{22} , and the feedback parameter β_{FB} .
- (c) Drew the amplifier without the FB including the effect of R_{11} and R_{22} . Then, find the amplifier Transresistance gain $R_m = \frac{v_o}{i_s}$.

[Hint: use source transformation to get is from vs]

- (d) Find the closed-loop gain R_{ml} , then use current voltage relations to find the voltage gain $A_{vf} = \frac{v_o}{v_c}$.
- (e) Find the input resistance R_{in} and the output resistance R_o (as indicated in the opposite figure).

Problem (5) [15 points]:

For the emitter follower output stage shown below, $V_{ce} = -V_{EE} = 2.5V$, $V_{CE,sat} = 0.2V$, $V_{BE,on} = 0.7V$, $R_L = 10k\Omega$.

- (a) Classify this power amplifier.
- (b) Find the value of R₁ that results in maximum efficiency.
- (c) Draw the transfer function (vour versus vin).
- (d) Determine the resulting output voltage swing and the maximum and minimum Q₁ emitter currents, i_{B1}.
- (e) Calculate the Average power delivered by the batteries, and the power delivered to the load.
- (f) Calculate maximum power conversion efficiency.

Fig. 5
Page 2 of 2