Problem (3) [10 points] For the feedback amplifier given in Fig. 3. $A_g=100mA/V$, $R_i=10K\Omega$, $R_o=10K\Omega$, $\beta_z=0.1k\Omega$. - (a) Identify the type of the feedback - (b) Derive the expression for the closed loop gain Agf=I_o/V_s, and determine its value. - (c) Derive the expression for the closed loop input resistance R_{if}, and determine its value. - (d) Derive the expression for the closed loop output resistance Rof, and determine its value. - (e) Comment on the effect of the feedback on the input and output resistances (increased or decreased) ## Problem (4) [15 points] For the following circuit in Fig. 4, the transistor parameters are: I_{CQ1} =486 μ A and I_{CQ2} =1.35mA, g_{ml} = 19.64mA/V, g_{m2} =34.92mA/V, $r_{\pi 1}$ =5092 Ω , $r_{\pi 2}$ =2857 Ω , r_{o2} = r_{o2} = ∞ . - (a) Identify the topology of the feedback (mixing/sampling). - (b) Identify the feedback circuit, then find values for R_{11} , R_{22} , and the feedback parameter β_{FB} . - (c) Drew the amplifier without the FB including the effect of R_{11} and R_{22} . Then, find the amplifier Transresistance gain $R_m = \frac{v_o}{i_s}$. [Hint: use source transformation to get is from vs] - (d) Find the closed-loop gain R_{ml} , then use current voltage relations to find the voltage gain $A_{vf} = \frac{v_o}{v_c}$. - (e) Find the input resistance R_{in} and the output resistance R_o (as indicated in the opposite figure). ## Problem (5) [15 points]: For the emitter follower output stage shown below, $V_{ce} = -V_{EE} = 2.5V$, $V_{CE,sat} = 0.2V$, $V_{BE,on} = 0.7V$, $R_L = 10k\Omega$. - (a) Classify this power amplifier. - (b) Find the value of R₁ that results in maximum efficiency. - (c) Draw the transfer function (vour versus vin). - (d) Determine the resulting output voltage swing and the maximum and minimum Q₁ emitter currents, i_{B1}. - (e) Calculate the Average power delivered by the batteries, and the power delivered to the load. - (f) Calculate maximum power conversion efficiency. Fig. 5 Page 2 of 2