

Fayoum University Faculty of Engineering

Electromagnetic Waves EEC305

Electrical Engineering Department 85 points is the maximum.

3 hour Fall 2015

3rd year Communication students

Question 1 [25 Marks]

Consider the following Electromagnetic wave propagating into unbounded lossless dielectric media.

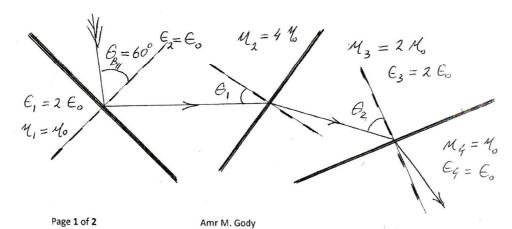
$$E(y,t) = a_z \cos(6.9 \times 10^9 t - 46.0767 y + 0.7854) (\frac{v}{m})$$

- a- What is the direction of propagation?
- b- What is the plane of polarization?
- c- What is the type of polarization of the EM wave?
- d- Calculate β , λ , u_p and η
- e- Evaluate H(y,t)

Question 2 [20 Marks]

Consider that EM wave is normally incident on plane conducting media. Consider that $\frac{\sigma}{\omega\epsilon}\gg 1$, What is the value of the conductivity of the conducting media in order to get EM power penetrate into the conductor media is decreased by $20\log_{10}e^{-1}$ (db) at $0.15(\mu m)$ from the surface. Consider that $\mu_r=1000$

$$E(y,t) = a_z \cos(6.9 \times 10^9 t - 46.0767 y + 0.7854) (\frac{v}{m})$$


Question 3 [20 Marks]

a- Prove that for <u>perpendicular polarization</u> of oblique EMW incidence from media 1 to media 2 at plane dielectric boundary, the Brewster angle is obtained by

$$\sin\theta_{B_{\perp}} = \frac{1}{\sqrt{1 + \frac{\mu_1}{\mu_2}}}$$

b- For EMW incident on plane dielectric at $\theta_{B_{\parallel}}=60^o$ as shown in figure. It is required that the EMW to pass through the cascaded medias without any reflection. Calculate the slope of each boundary $(\theta_1 and \ \theta_2)$.

EMW= Electro magnetic wave

Fayoum University Faculty of Engineering

Electromagnetic Waves EEC305

Electrical Engineering Department 85 points is the maximum.

3 hour Fall 2015

3rd year Communication students

Question 4 [20 Marks]

Consider the following figure, it is required to design the intermediate material in such that to match with the following conditions

- 1- The operating frequency is 1.6 (GHZ)
- 2- All materials are nonmagnetic materials.

Calculate

- a- η_2 and d
- b- The ratio with respect to the incident of the power delivered to material 3 in db.

 $C_1 = C_0$ γ_1 $C_2 = \gamma$ γ_3 $C_3 = 4 C_0$

مع خالص امنياتي بالتوفيق