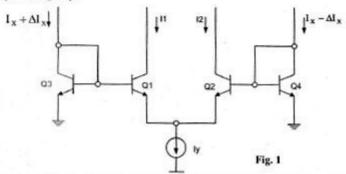
-Time allowed: 3 hours


-Maximum degree: 90

-Attempt all the 7 questions

Problem (1) [10 pts]:

A basic two quadrant multiplier is shown in Fig.1. All transistors are assumed matched.

- (a) Find the relation between $I_{out} = (I_1 I_2)$ and the inputs ΔI_x and I_y .
- (b) Design the circuit needed to obtain a differential output current from an input voltage V_χ, and the circuit needed to obtain an output current 1_γ from an input voltage V_χ.

Problem (2) [15 pts]:

- (a) For the level shifter circuit shown in Fig. 2(a), assuming M_a and M_b are matched and operating in the saturation region, show that: V_b = V_i V_{C1} + V_{C2}.
- (b) The level shifter in prob. 2(a) is used in the circuit shown in Fig. 2(b) to implement MOS multiplier. Show that:

 $I_{ext} = I_{a} - I_{b} = K(V_{C1} - V_{C2})(V_{1} - V_{2})$, where K is the

transconductance parameter of the transistors M1, M2, M3, and M4.

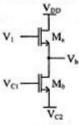
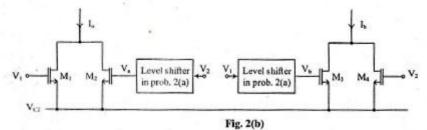
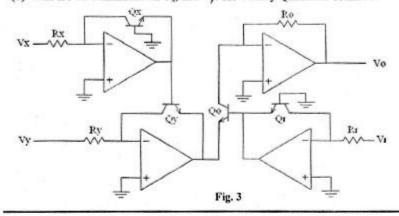



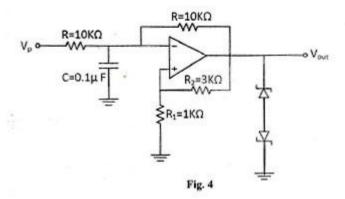
Fig. 2(a)

Page 1 of 3



Electronics 3 (ECE301) Final Term Exam 09/01/2016

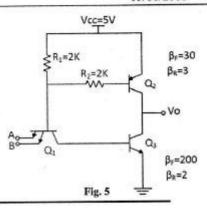
Problem (3) [10 pts]:


A log-antilog analog multiplier is shown in Fig. 3. The output voltage V_o is a function of the product of two inputs V_x and V_y .

- (a) Find the relation between the output V_o and the input voltages V_x , V_y , and V_r .
- (b) What are the limitations on Vs, and Vy? How many Quadrants obtained?

<u>Problem (4) [15 pts]</u>: An Asymmetrical SQW generator is shown below, where V_P is a constant D.C. voltage of 2V. The zener diodes are assumed ideal with V_Z =6V and V_{Don} =0V.

- (a) Sketch the output voltage waveform and the capacitor voltage waveform.
- (b) Find the frequency of the free running circuit.


Page 2 of 3

Electronics 3 (ECE301) Final Term Exam 09/01/2016

Problem (5) [15 pts]: For the TTL logic gate shown in Fig. 5, $\beta_F = 200$ and $\beta_R = 2$ for the NPN transistors Q_1 and Q_3 , while $\beta_F = 30$ and $\beta_R = 3$ for the PNP transistor Q_2 :

- (a) Calculate Von and Vol.
- (b) What is the average static power consumption? (assuming 50% duty cycle)
- (c) What are the input currents in the two logic states?
- (d) What is the fan out capability of the gate?
- (e) What is the logic function of the gate?

<u>Problem (6) [15 pts]:</u> Consider the enhancement-load inverter shown in Fig. 6. V_{T0} =1V, $(W/L)_1$ =4, $(W/L)_2$ =1/4, $\mu_D C_{ox}$ =20 μ A/ V^2 and V_{DD} =5V.

- (a) Sketch the VTC of the inverter showing the mode of operation for M₁ in each region.
- (b) Find VoH, VoL, VIH, VIL and hence find NMH and NML.
- (c) Find the static power dissipation
- (d) Find the current available for discharging a load capacitor when V_I=V_{OH} and V_O=4V and IV.
- (e) Realize the following function: F=(A+B)(C+D)

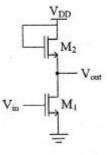


Fig. 6

Problem (7) [10 pts]:

Design a 3-bit folded resistor-string D/A converter. Use 2 to 1-of-4 decoder with the most significant two bits (b₁b₂) to decode word lines, and use 1 to 1-of-2 decoder with the least significant bit (b₃) to decode bit lines. Clearly show your transistor connections.

Best Wishes!

Dr. Mohammed A. Hassan