Answer 6 questions only.

- For the bridge shown below with v(t) = 36 sin(wt) V and (firing angle) α = 30°. Assuming continuous load current,
 - a) Draw the output voltage, diode voltage and supply current.
 - b) Calculate the average and RMS values of the output voltage.
 - c) Determine the thyristor PIV (peak inverse voltage or maximum reverse voltage).

- 2. The waveform of the output voltage of a rectifier is shown below.
 - a) Estimate the rectifier type and load components.
 - b) Draw the semiconductor voltage then calculate the PIV of it.
 - c) Draw the current waveform.

3- I) In a fully-controlled bridge with RI. load, the measurements across the load terminals shows that the instantaneous minimum voltage is 15 V and the maximum reverse voltage (PIV) across each thyristor is 30 V.

- a) Calculate the firing angle.
- b) Draw the output voltage and the thyristor voltage.
- II) Three-phase uncontrolled half-wave rectifier (three diodes) is connected to a pure resistive load.
 If the line to neutral voltage is 240 V, calculate the average of the output voltage and the diode PIV.
- 4- Design a firing circuit to derive a single-phase half-wave controlled rectifier. Then determine the control voltage (or parameter) values corresponding to the following firing angles: 30°, 45° and 90°.
 (Note: all design values are required.)

5- Write short notes about the following chopper circuits (function, operation and output waveform):

- 6- For the following output waveform (with bold line) of a cycle-converter, estimate its magnitude and frequency assuming 50 Hz supply then draw the following output waveforms:
 - a) A waveform with half frequency of the output waveform.
 - b) A waveform with doubled frequency of the output waveform.
 - c) The output waveform with 120° delay.

- 7- For the single-phase inverter shown in the following figure, draw the gate driving pulses (showing times in milli second) for the four transistors in order to obtain the following output waveforms:
 - a) A $50\ Hz$ frequency with the maximum magnitude.
 - b) A 50 Hz frequency with 70.71% of the maximum magnitude.
 - c) The waveform of a) delayed by 120°.

8- Explain in details your role in the progress of your course project (soft and hard).

(End of questions)

Page 2 of 4

Page 3 of 4

The curves could be attached to the answer sheet.

0 0 0 0 0

With our best wishes Khaled H. Ibrahiem Ahmed O. M. Ibrahiem 26-1-2016

Page 4 of 4