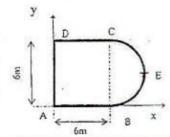
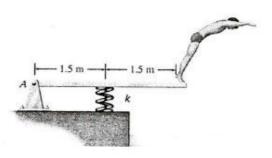

Question 1:

A disk having a radius of 50 Cm rotates with an initial angular velocity of 2 rad/s and has a constant angular deceleration of 1 rad/s^2 . Determine the magnitudes of the velocity and acceleration of a point on the rim of the disk when t=2 s.

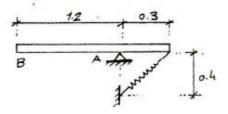

Question 2:

In the shown mechanism rod AB (L=1m) rotates with angular velocity ω_{AB} =120 r.p.m (C.W) and with angular acceleration 2 rad/s^2 (C.C.W). For the shown instant determine \underline{V}_B , \underline{V}_C and \underline{a}_B

Question 3:


The shown metal frame ABECDA composed of 3 uniform rods AB, AD, CD and semicircular rod BEC all with the same cross section (p=4 kg/m). Find the center of mass, I_A and k_A for the frame.

page 1/2


Question 4:

Determine the angular acceleration of the 25 kg diving board and the horizontal and vertical components of reaction at the pin A the instant the man jumps off. Assume that the board is uniform and rigid, and that at the instant he jumps off the spring is compressed a maximum amount of 200 mm, and the board is horizontal. Take k = 7 kN/m.

Question 5:

The shown uniform rod AB(m=10kg) is connected to spring(k=1000N/m, L_0 =0.15m). The rod is released from rest from the shown position, and passes the vertical position. Determine ω_2 .

page 2/2

With my best wishes Dr. Souma Mohammed