

Final Exam (3rd Year Civil Eng.) Structural Analysis & Mechanics III

Date: Tuesday 12 January 2016 Total Grade: 70 Points (70P)

Time: 09:30am - 12:30pm Instructor: Professor: Mohamed EL-Assaly Dr. Ahmed M. EL-Kholy, Lecturer

Notes: 1. Two Aids: Appendices C & D (Ghali Book, Pages 778-783) & Appendix 11.2 (EL-Behairy Book, Pages 42-45). The aids must be completely clean from any added data.

Answer must be neat, specific, and in order. Highlight the main steps and results.
Ruler and reasonable scales must be used for drawings and diagrams.

4. Start each question in a new page. Answer each question Q in one ~ two pages if possible.

Q.1.	For the shown frame in Fig. 1, prove that the distribution factor K at \mathbf{a} , for member \mathbf{ab} , is equal to $S_{ab}/(S_{ab}+S_{ac}+S_{ad})$ where S_{ij} is the rotational stiffness of member ij at i .
Q.2.	Use the Moment Distribution Method to find and draw the final B.M.D for the beam shown in Fig. 2 under the illustrated loads. Four cycles are enough to achieve accurate results.
Q.3.	The girder ab has a non-prismatic section as shown in Fig. 3. Use the Column Analogy Method to find the fixed-end-moments $(M_a \& M_b)$ due to applied uniform distributed load $W=3$ t/m. Compare your result with that of prismatic member; $WL^2/12$. Also, find the stiffness at b and carry-over-factor from b to a .
8P Q.4.	Considering the symmetry of the frame shown in Fig. 4, draw the B.M.D. using the Moment Distribution Method. Use the output of Q3 to estimate the fixed-end-moments, stiffness and carry-over-factor for the non-prismatic girder of the frame given in Fig.4. Note that the moment of inertia value of the frame girder is double that of Q3 girder.
	<u>Hint</u> : In addition to the advantage of symmetry, the moments transferred to columns may be estimated by joint balance. Two cycles will be enough to get final moments.
11P Q.5.	The steel frame shown in Fig. 5 has variable moment of inertia <i>I</i> and is subjected to clock-wise rotation of 0.1 rad. at support e. Use the Column Analogy Method to construct B.M.D. for the frame due to the induced rotation.
	<u>Hint</u> : Remember to substitute EI value in the final moment equation $(M_j = M_o + $
Q.6.	The frame shown in Fig. 6 has variable moment of inertia I. Use the Slope Deflection Method to find and draw the B.M.D. of the frame shown in Fig. 6 due to concentrated horizontal 3t load at b.
	Q.2. Q.3. Q.4.

