ABSTRACT ## البحث الخام | TE: Al | | | and physicoc | | | |---------------------|--|--------|--------------|----------------|----| | Title | exopolysaccharide produced by the moderately halophilic bacterium | | | | | | | Chromohalobacter salexigens, strain 3EQS1. | | | | | | | Ibrahim M. Ibrahim ^{1,2} , Yuliya P. Fedonenko ³ , Elena N. Sigida ³ , Maxim S. | | | | | | Participants | ants Kokoulin ⁴ , Vyacheslav S. Grinev ^{2,3} , Ivan G. Mokrushin ⁵ , Gennad | | | | | | | Burygin ³ , Andrey M. Zakharevich ² , Alexander A. Shirokov ^{2,3} , Svetlana | | | | | | | Konnova ^{2,3} | | | | | | | | | | | | | | Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, | | | | | | | Fayoum 63514, Egypt. | | | | | | | ² Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, | | | | | | | Russia. | | | | | | | ³ Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian | | | | | | | Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia. | | | | | | | ⁴ G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian | | | | | | | Academy of Sciences, 159 Prospekt 100 let Vladivostoku, Vladivostok 690022, Russia. | | | | | | | ⁵ Perm State University, 15 Ulitsa Bukireva, Perm 614068, Russia. | | | | | | Journal | Extremophiles, 27(1), 4. | | | | | | Impact factor | 2.6 | Scopus | Q2 | Web of science | Q3 | ## **ABSTRACT** A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L^{-1}) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture كليه الزراعه قسم الميكروبيولوجيا الزراعية medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9×10^6 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β -D-(2 \rightarrow 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 μ g mL⁻¹. The EPS had high emulsifying activity (E_{24} , %) against kerosene (31.2 \pm 0.4%), sunflower oil (76.9 \pm 1.3%), and crude oil (98.9 \pm 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of *C. salexigens* 3EQS1 may be useful in various biotechnological processes.