ABSTRACT

البحث الخام

TE: Al			and physicoc		
Title	exopolysaccharide produced by the moderately halophilic bacterium				
	Chromohalobacter salexigens, strain 3EQS1.				
	Ibrahim M. Ibrahim ^{1,2} , Yuliya P. Fedonenko ³ , Elena N. Sigida ³ , Maxim S.				
Participants	ants Kokoulin ⁴ , Vyacheslav S. Grinev ^{2,3} , Ivan G. Mokrushin ⁵ , Gennad				
	Burygin ³ , Andrey M. Zakharevich ² , Alexander A. Shirokov ^{2,3} , Svetlana				
	Konnova ^{2,3}				
	Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University,				
	Fayoum 63514, Egypt.				
	² Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012,				
	Russia.				
	³ Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian				
	Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.				
	⁴ G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian				
	Academy of Sciences, 159 Prospekt 100 let Vladivostoku, Vladivostok 690022, Russia.				
	⁵ Perm State University, 15 Ulitsa Bukireva, Perm 614068, Russia.				
Journal	Extremophiles, 27(1), 4.				
Impact factor	2.6	Scopus	Q2	Web of science	Q3

ABSTRACT

A strain, 3EQS1, was isolated from a salt sample taken from Lake Qarun (Fayoum Province, Egypt). On the basis of physiological, biochemical, and phylogenetic analyses, the strain was classified as Chromohalobacter salexigens. By 72 h of growth at 25 °C, strain 3EQS1 produced large amounts (15.1 g L^{-1}) of exopolysaccharide (EPS) in a liquid mineral medium (initial pH 8.0) containing 10% sucrose and 10% NaCl. The EPS was precipitated from the cell-free culture

كليه الزراعه

قسم الميكروبيولوجيا الزراعية

medium with chilled ethanol and was purified by gel-permeation and anion-exchange chromatography. The molecular mass of the EPS was 0.9×10^6 Da. Chemical analyses, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy showed that the EPS was a linear β -D-(2 \rightarrow 6)-linked fructan (levan). In aqueous solution, the EPS tended to form supramolecular aggregates with a critical aggregation concentration of 240 μ g mL⁻¹. The EPS had high emulsifying activity (E_{24} , %) against kerosene (31.2 \pm 0.4%), sunflower oil (76.9 \pm 1.3%), and crude oil (98.9 \pm 0.8%), and it also had surfactant properties. A 0.1% (w/v) aqueous EPS solution reduced the surface tension of water by 11.9%. The levan of *C. salexigens* 3EQS1 may be useful in various biotechnological processes.