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Abstract 

 

Agricultural production is becoming increasingly important as the world demand 

increases. On the other hand, there are several factors threatening that production 

such as the climate change. Therefore, monitoring and management of different 

parameters affecting the production are important. The current study is dedicated 

to two key parameters, namely agricultural land cover and soil-moisture mapping 

using X- and L-Band Synthetic Aperture Radar (SAR) data. 

 

Land-cover mapping plays an essential role in various applications like irrigation 

management, yield estimation and subsidy control. A model of multi-direction/ 

multi-distance texture analysis on SAR data and its use for agricultural land cover 

classification was developed. The model is built and implemented in ESRI ArcGIS 

software and integrated with “R Environment”. Sets of texture measures can be 

calculated on a plot basis and stored in an attribute table for further classification. 

The classification module provides various classification approaches such as 

support vector machine and artificial neural network, in addition to different 

feature-selection methods. The model has been tested for a typical Mid-European 

agricultural and horticultural land use pattern south to the town of Pirna 

(Saxony/Germany), where the high-resolution SAR data, TerraSAR-X and 

ALOS/PALSAR (HH/HV) imagery, were used for land-cover mapping. The results 

indicate that an integrated classification using textural information of SAR data has 

a high potential for land-cover mapping. Moreover, the multi-dimensional SAR 

data approach improved the overall accuracy.  

 

Soil moisture (SM) is important for various applications such as crop-water 

management and hydrological modelling. The above-mentioned TerraSAR-X data 

were utilised for soil-moisture mapping verified by synchronous field 

measurements. Different speckle-reduction techniques were applied and the most 

representative filtered image was determined. Then the soil moisture was 

calculated for the mapped area using the obtained linear regression equations for 

each corresponding land-cover type. The results proved the efficiency of SAR data 

in soil-moisture mapping for bare soils and at the early growing stage of field-

crops. 
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1 Introduction 

 

 

Agricultural production is becoming increasingly important as the world demand 

increases. On the other hand, there are several factors threatening that production 

such as climate change and land degradation. Therefore, monitoring and 

management of those parameters - or their indicators - related to the production 

are important. The current study is dedicated to two key parameters, namely 

agricultural land cover and soil-moisture mapping using X- and L-Band Synthetic 

Aperture Radar (SAR) data. 

Land-cover mapping plays an essential role in various applications like irrigation 

management, yield estimation and subsidy control. Timely and accurate 

information on existing land cover is required by decision makers and scientists at 

all levels. Land cover mapping through traditional field survey is time-consuming 

and costly. Remote sensing observations are becoming a vital solution for such 

mapping, especially over large areas. Synthetic aperture radar (SAR) data are 

almost independent from weather conditions. Nearly every data take of a SAR 

sensor can theoretically find entrance into monitoring. A time filter can be adapted 

to the best-possible differentiation of agricultural plants within their phenological 

cycles. Moreover, multi-temporal monitoring can reveal seasonally changing 

conditions of annual crops (Waske & Braun 2009; Baghdadi et al. 2009; Mróz & 

Mleczko 2008; Borghys et al. 2006). Several SAR sensors providing different 

configurations have been applied to land cover mapping and proved to be efficient. 

High-resolution data like the 3-meter resolution TerraSAR-X data even allow a 

monitoring of highly diversified and fine-grained plot patterns. Land-cover mapping 

can be studied at various spatial and temporal scales; the current study presents a 

methodology at a large-scale.  

SAR textural information has been shown to be useful for applications such as 

forest classification (Ulaby, Moore & Fung 1986), crop classification (Treitz et al. 

1993) and ice mapping (Barber & Ledrew 1991). The current work demonstrates 
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how an integrated model can strongly facilitate a texture analysis of SAR data 

using different directions and distances and result in stable classifications of 

agricultural land cover.  

A model of multi-direction/ multi-distance texture analysis on SAR data and its use 

for agricultural land-cover classification was developed. The model is implemented 

and available in ESRI ArcGIS software and integrated with “R Environment”. Sets 

of texture measures, calculated on a plot basis and stored in an attribute table, can 

be compiled and evaluated by separability values as a pre-condition for successful 

classification. The classification module provides various classification approaches 

such as support vector machine and artificial neural network, in addition to 

different feature-selection methods. A flexible feature-set manipulation interface 

enables a quick investigation of any feature-source combinations. The model has 

been tested for a typical Mid-European agricultural and horticultural land use 

pattern south of the town of Pirna (Saxony/Germany), where the high-resolution 

SAR data, TerraSAR-X and ALOS/PALSAR (HH/HV) imagery, were used for land-

cover mapping. The results indicate that an integrated classification using textural 

information of SAR data has a high potential for land-cover mapping. Moreover, 

the multi-dimensional SAR data approach improved the overall accuracy.  

Soil moisture (SM) is important for various applications such as crop-water 

management and hydrological modelling. The above-mentioned SAR data were 

utilised for soil-moisture mapping and verified by synchronous field 

measurements. Different speckle-reduction techniques were applied and the most 

representative filtered image was determined. Then the soil moisture was 

calculated for the mapped area using the obtained regression equations for each 

corresponding land-cover type. The results proved the efficiency of SAR data in 

soil-moisture mapping for bare soils and at the early growing stage of field-crops. 
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Objectives 

 

The main objectives of the current study are: 

 To develop a plot-based texture analysis and classification model supporting 

the combination of different directions and distances for texture analysis, in 

addition to various classification methods.  

 To investigate the effect of different directions and distances on separation 

between land-cover types using TerraSAR-X and ALOS PALSAR data, the 

performance of different classifiers, and the capability of the model for feature 

selection and multi-feature combinations for further classification.  

 To investigate the effect of quantisation level and the speckle filtering 

parameters on the separation between different land-cover types.   

 To investigate the application of TerraSAR-X to soil-moisture mapping and the 

effect of speckle-filtering parameters on the predicted soil moisture values. 
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2 Theoretical Basics 

 

 

In addition to the applications of SAR data to vegetation and soil moisture 

mapping, this section gives an overview of radar remote sensing history, basics, 

formation and the major available space-borne SAR data. 

  

2.1  Radar Remote Sensing 

2.1.1  A Brief History of Radar 

The word radar is an acronym for Radio Detection and Ranging (Lillesand, Kiefer 

& Chipman 2008). Historically, The distinction of “first electromagnetic echo-

location device” is generally awarded to a ship anti-collision system developed by 

Christian Hülsmeyer in 1904 (Cheney et al. 2009). In 1935, Watson-Watt 

succeeded to locate an aircraft using the BBC radio transmitter near Daventry in 

the English Midlands. The Americans had the same idea and could detect an 

aircraft using radar a month before Watson-Watt’s success. Early radars such as 

those used in the ‘Battle of Britain’ in August/September 1940 operated at long 

wavelengths (13 m). The British developed the H2S radar, which operated at a 

10 cm wavelength and which was fitted to bombers. This targeting radar was the 

first terrain-scanning radar in the world. Radar research and development 

proceeded rapidly during World War II for detection of enemy vessels and 

surfaced submarines, and for gunnery control, also radars were carried by aircraft 

(Mather 2004). In the late 1970s and early 1980s, space-borne imaging radars, 

scatterometers and altimeters were developed. Advanced radar implementations, 

such as polarimetric and interferometric systems, were developed in the 1980s, 

and were flown in space in the mid to late 1990s (Elachi & Van Zyl 2006). 

 

2.1.2  An Account of Radar Imaging 

At the end of the 1940s, the available radar imaging methods were Detection and 

Ranging, High-Range-Resolution Imaging and Real-Aperture Imaging. The Real-

Aperture Imaging system uses an antenna that forms a narrow beam to scan over 
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the region to be imaged. At each beam location and pulse delay, the system plots 

the received intensity. The antenna is a physical (real) aperture and the spot on 

the ground is referred to as the antenna footprint (Cheney et al. 2009). The 

azimuth resolution (Xa) of real-aperture radar is given by Equation 2.1:  

 

ܺ ൌ 	
ఒ

 ୡ୭ୱఏ
                                                           (2.1) 

 

Where λ is the operating wavelength, h is the altitude of the satellite, L is the 

antenna size, and θ is the angle at which the radar wave is incident on the surface. 

For space-borne radar, Xa is typically many hundreds of meters to many 

kilometres, even if L is large. To illustrate, if λ = 3 cm, h = 800 km, L = 10 m, and 

θ = 20°, then Xa = 2.5 km (Richards 2009). 

Accordingly, to improve the resolution, the antenna has to be lengthened. Since 

this cannot be physically done, a simulated solution was developed to achieve this 

goal. The American Carl Wiley first had the idea in 1951 of using platform 

movement and signal coherence to reconstruct a large antenna by calculation. As 

the radar moves between two pulse transmissions (Figure 2.1), it is indeed 

possible to combine in phases all of the echoes and synthesize a very large 

antenna array (Maître 2008). This method is called „Synthetic Aperture Radar” 

(SAR) and more effective to form images (Cheney et al. 2009). In this case, the 

azimuth resolution is given by Equation 2.2: 

 

ݎ ൌ 	
ೌ
ଶ
								m                                                     (2.2) 

 

Where la is the length of the antenna carried on the spacecraft, measured in the 

along-track direction. It is obvious that the azimuth resolution is independent of 

slant range, and thus platform altitude, and independent of operating wavelength. 

Also, ground range resolution is height-independent. Accordingly, a SAR can 

operate at any altitude with no variations in resolution. Therefore, space-borne 

operation is feasible (Richards 2009). 
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SAR systems use an antenna mounted on a satellite or airplane, which is referred 

to as the platform (Cheney et al. 2009). Systems that use the same antenna for 

both transmitting and receiving electromagnetic (EM) energy are called 

monostatic, in which the transmitting and receiving locations are the same.  When 

these two locations are different, the radar is called bistatic. Moreover, the 

multistatic radars involve transmission from one or more locations and reception at 

one or more locations (Sullivan 2004).    

  

 

Figure 2.1. The concept of using the platform motion to synthesise an effectively 
long antenna; for simplicity, the footprint of the real antenna on the 
ground is shown as rectangular (from Richards 2009).  

 
 
2.1.3 SAR Image Formation 

Nowadays, SAR imaging is a well-developed coherent microwave remote sensing 

technique for providing large-scaled two-dimensional (2-D) high-resolution images 

of the Earth’s surface reflectivity. SAR is an active system (provide their own 

illumination) operating in the microwave region of the EM spectrum (Table 2.1), 

usually between P-band and Ka-band (Lee & Pottier 2009). Thus, it is working 

independently of the solar illumination. These codes (i.e. P-band) came into use 

during World War II for security purposes. The commonly accepted delimitation of 

radar wavelengths are shown in Table 2.2 (Mather 2004). 
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Furthermore, it is capable of penetrating the atmosphere under almost all 

conditions. Depending on the wave lengths involved, microwave energy can 'see 

through' haze, light rain, snow, clouds, and smoke (Reddy 2008). 

SAR operates in a side-looking geometry which is required in image formation, so 

that the ground distance of a point from the nadir of the radar can be sorted as a 

function of its range from the radar (Massonnet & Souyris 2008). Indeed, if the 

ground is illuminated vertically, there would be always two points located at the 

same distance, one on each side of the track. As a result, the image would fold 

onto itself, with points located right and left of the track mixing together (Maître 

2008).  

 

Table 2.1. Pertinent microwave section of the electromagnetic spectrum. 

 

 

 

         Table 2.2. Radar wavebands and nomenclature (Mather, 2004). 

Band designation Frequency (MHz) Wavelength (cm) 

P 300 - 1000 30 - 100 

L 1000 - 2000 15 - 30 

S 2000 – 4000 7.5 - 15 

C 4000 - 8000 3.75 – 7.5 

X 8000 - 12000 2.5 – 3.75 

Ku 12000 - 18000 1.667 – 2.5 

K 18000 - 27000 1.111 – 1.667 

Ka 27000 - 40000 0.75 – 1.111 
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Two types of image properties are important for information extraction. The more 

important one is where properties of the scene (e.g., its dielectric constant, its 

geometry, its motion, etc.) produce effects in the image. Thus, measurements or 

examination of the image can then provide information about the scene. The 

second one is generated purely by the system and the signal processing (Oliver & 

Quegan 2004). 

 

2.1.3.1 SAR Geometric Configuration 

In the case of monostatic radar system, SARs are mounted on a moving platform 

operating in a side-looking geometry (Figure 2.2). The SAR imaging system is 

situated at a height H and moves with a velocity VSAR. The antenna aims 

perpendicular to the flight direction, referred to as ‘‘azimuth’’ (y). The antenna 

beam is then directed slant-wise toward the ground with an incidence angle θ0. 

The radial axis or radar-line-of-sight (RLOS) is referred to as ‘‘slant-range’’ (r). The 

area covered by the antenna beam in the ‘‘ground range’’ (x) and azimuth (y) 

directions is the ‘‘antenna footprint’’. The platform motion along the flight direction 

provides the basis for the scanning (Lee & Pottier 2009). 

  

 

 

Figure 2.2. SAR imaging geometry in strip-map mode (from Lee & Pottier 2009). 
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The area scanned by the antenna beam is the “radar swath.” The antenna 

footprint is defined by the antenna apertures (θX, θY) given by Equation 2.3: 

ߠ ൎ 	
ఒ


ߠ									݀݊ܽ										 ൎ 	

ఒ

ೊ
						                                (2.3) 

Where LX and LY correspond to the physical dimensions of the antenna, λ is the 

wavelength corresponding to the carrier frequency of the transmitted signal (Lee & 

Pottier 2009). 

 

2.1.3.2 Geometric Distortions of the Radar Image 

Since the radar is side-looking, terrain elevation will result in geometric distortions 

in the SAR image. In fact, even the variation in the projection of the reference 

surface (ellipsoid) in range direction causes geometric distortions, due to the 

varying incidence angle (Hanssen 2002). Moreover, the SAR measures the 

distance to features in the slant range rather than the true horizontal distance 

along the ground, which results in a varying image scale (Wang 2008). The main 

geometric distortions of radar image are layover, foreshortening and shadow 

(Figure 2.3). 

Layover occurs when the radar beam reaches the top of a tall feature (point b in 

Figure 2.3) before it reaches the base (point a in Figure 2.3). Consequently, the 

return signal from the top of the feature will be received before the signal from the 

bottom will. As a result, the top of the feature is displaced toward the radar from its 

true position on the ground, and “lays over” the base of the feature (b’ to a’) (Wang 

2008). This effect can reveal the direction from which the radar is illuminating the 

target (Massonnet & Souyris 2008). 

Foreshortening occurs when the radar beam reaches the base of a tall feature 

tilted toward the radar (e.g., a mountain) before it reaches the top. As a result, the 

slope (d to e) will appear compressed and the length of the slope will be 

represented incorrectly (d’ to e’). On the other hand, the shadowing effect occurs 

when the radar beam cannot reach part of a tall feature (h to i). In the image plane, 

h to i will appear as dark. In addition, any target between i and j will also be shown 

as dark (Wang 2008). 
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Figure 2.3. Geometric distortions of radar image (from Wang 2008). 
 

 

2.1.3.3 Spatial SAR Resolution 

A processed radar image usually is characterised by an azimuth resolution, a 

ground-range resolution, and the associated number of independent samples (or 

number of looks) (Ulaby, Moore & Fung 1986). Spatial resolution is one of the 

most important quality criteria of a SAR imaging system. It describes the ability of 

the imaging radar to separate two adjacent scatterers. To achieve high resolution 

in range, very short pulse durations are necessary (Lee & Pottier 2009). The 

spatial resolution achieved by a SLAR is proportional to the length of the antenna 

(Mather 2004). If the targets are ∆r apart in slant range (as illustrated in Figure 

2.4), then the difference in time between their echoes on reception will be ∆t = 

2∆rc−1. Whereas the lower limit on ∆t is ߬, which is the width ሺ߬ሻ of the pulses, the 

corresponding limit of spatial resolution ∆r in the slant range direction is 

ݎ ൌ 	
ఛ

ଶ
					m                                                 (2.5) 

which is called slant range resolution.  

On the other hand, the spatial resolution in the (ground) range direction is  

ݎ ൌ 	
ఛ

ଶ௦ఏ
					m                                                    (2.6) 

This is termed ground range resolution (Richards 2009).  
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Figure 2.4. Geometry for computing range resolutions (from Richards 2009). 
 

 

2.1.3.4 Scattering From Earth Surface Features 

It is essential to note that radar systems do not directly measure the reflectance of 

the surface. Instead, they record the intensity of the radiation that is backscattered 

by the surface - that is, the fraction of the incident energy that is directly reflected 

backwards toward the sensor (Lillesand, Kiefer & Chipman 2008). Moreover, the 

microwave energy can often penetrate the earth surface materials, so that 

scattering can occur from within the medium itself as well as from the surface. 

Understanding the mechanisms by which the energy can scatter to the sensor is 

necessary to investigate the underlying biophysical characteristics of the medium 

(Clark & Rilee 2010). Figure 2.5 shows the three most common scattering 

mechanisms that occur in radar remote sensing of the land surface. The first one 

is surface scattering in which the energy can be seen to scatter or reflect from a 

well-defined interface (Richards 2009). If the surface is not smooth on the scale of 

the wavelength, a portion of the energy will be scattered in all directions (diffuse 

scatter) (Clark & Rilee 2010). The second one is volume scattering, as the 

electromagnetic wave interacts with a cloud of scattering particles (Massonnet & 

Souyris 2008). The third is called strong or hard-target scattering which occurs in a 

variety of forms. Figure 2.5 illustrates two forms: corner reflector behaviour and 

facet scattering, both of which give particularly strong responses in radar imagery. 
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Moreover, If a surface is very dry the incident energy can penetrate, refract and 

scatter from sub-surface features as depicted (Richards 2009). 

 

 

 

Figure 2.5. Common scattering mechanisms (from Richards 2009). 
 

 

2.1.3.5 Polarimetric Radars 

Many radar systems both transmit and receive signals in single polarization. So, 

they receive only a projection of the electrical-field backscattered by the targets. 

On the other hand, polarimetric radars measure the orientation of the electrical-

field vector and thus capture more information about target characteristics 

(Lacomme 2001). However, most radar systems restrict the polarized microwaves 

in such a way that the transmitted and received waves are to a single plane 

perpendicular to the direction of wave propagation (Figure 2.6). Therefore, the 

polarized wave is transmitted and received in either the horizontal (H) or the 

vertical (V) plane. Accordingly, four combinations of transmission and reception for 

the polarized waves are possible, namely HV, HH, VV, and VH, where HV denotes 

a wave transmitted in V direction and received in H direction. Radar imagery 

acquired in terms of HH or VV is called co- or like-polarized imagery, while 

imagery resulting from HV or VH polarization is called cross-polarized imagery. 

Cross-polarization perceives multiple-scattering from the target and thus generally 

results in weaker backscatter than that measured by a co-polarization 

configuration (Tso & Mather 2009). 
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Figure 2.6. Polarized microwaves (from Tso & Mather 2009). 

 

 

2.1.3.6 Scattering Behaviour 

Role of Incidence Angle 

The predicted backscatter cross-section as a function of incidence angle for 

different surface roughness values and different dielectric constants is shown in 

Figure 2.7. As shown in the left plot, increasing the surface roughness, generally, 

causes an increase in the radar cross-sections for all polarisation combinations. 

As the surface gets rougher, the difference between the HH and VV cross-sections 

becomes smaller. The plot on the right shows that an increasing dielectric constant 

(or soil moisture) also increases the radar cross-sections for all polarisations. In 

this case, however, increasing the dielectric constant also increases the difference 

between the HH and VV cross-sections (Elachi & Van Zyl 2006). 

 

Role of Wavelength 

The degree of penetration of the surface material that is achieved by the 

microwave pulses is dependent on the wavelength. At L-band wavelengths 

(around 23 cm), microwave radiation can penetrate the foliage of trees and, 

depending on the height of the tree, may reach the ground. Backscatter occurs 
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from the leaves, branches, trunks, and the ground surface. In areas of dry alluvial 

or sandy soils, L-band radar can penetrate the ground for several meters. The 

same is true for dry glacier ice. Shorter-wavelength C-band radiation can 

penetrate the canopies of trees, and the upper layers of soil and ice. Even shorter 

wavelength X-band SAR mainly ‘sees’ the top of the vegetation canopy and the 

soil and ice surface (Mather 2004). For X-band any surface will be rough, if its 

variations exceed, about 0.5 cm. Therefore, in reality most natural surfaces will 

appear rough at X-band. While for L-band a surface will be rough if its vertical 

variations exceed about 3 cm. Otherwise, It will behave as a specular surface. On 

the other hand, the sensitivity to the changes in soil moisture is higher at longer 

radar wavelengths than at shorter wave lengths (Richards 2009). 

 

 

      

Figure 2.7. The predicted radar cross sections for a slightly rough surface 
assuming an exponential correlation function. The left figure shows 
the effect of changing surface roughness and constant dielectric 
constant; the right shows the effect of changing dielectric constant for 
constant roughness (Elachi & Van Zyl 2006). 

 

 

Role of Polarisation 

Permittivity (electrical properties) and other physical properties (inhomogeneities, 

discontinuities, etc.) of any medium affect the polarization state of an EM wave; 

therefore, a physical model of a medium is important. For instance, due to the 

electric properties of the sea surface, horizontally polarized waves are better 

reflected than vertically polarized ones (Kozlov, Ligthart & Logvin 2004).  
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2.1.4  Radar Image Speckle 

Speckle appears as a grainy “salt and pepper” texture in an image (Wang 2008). 

This is caused by random constructive and destructive interference from the 

multiple scattering returns that will occur within each pixel (Gomarasca 2009). As 

shown in Figure 2.8, the waves backscattered from within a single ground 

resolution cell on the earth’s surface travel slightly different distance from the 

antenna to the surface and back. This difference in distance means that the 

returning waves from within a single pixel may be in phase with one another, the 

intensity of the resulting combined signal will be amplified by constructive 

interference. At the opposite extreme, destructive interference occurs when waves 

returning from within a single pixel are at completely opposite phase. Thus, they 

tend to cancel each other, consequently, reducing the intensity of the combined 

signal (Lillesand, Kiefer & Chipman 2008). Speckle can be reduced through the 

application of image processing techniques, such as averaging neighbouring pixel 

values, or by special filtering and averaging techniques but cannot be completely 

eliminated (Buchroithner 1993; Lillesand, Kiefer & Chipman 2008). 

 

 

 

Figure 2.8. Speckle formation in radar images (from Lillesand et. al. 2008). 
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2.1.5 Current Available Satellite SAR Data 

In the past, currently and in the near future there have been several space-borne 

SAR instruments available from different space agencies all over the world. The 

major sensor parameters are summarised in Table 2.3.  

 

Table 2.3. Characteristics of Major Space-borne Radar Systems (after Lillesand et. 

al. 2008). 

Characteristics 

ERS-2  

(ESA) 

Radarsat-1 

(Canada) 

Envisat 

(ESA) 

ALOS  

(Japan) 

Launch date 21April 1995 28November 1995 1March 2002 24January 2006 

Altitude, km 785 798 785 692 

Wavelength band C band C band C band L band 

Polarisation modes Single Single Single, dual Single, dual, quad 

Polarisation(s) VV HH HH, VV, HV, VH HH, VV, HV, VH 

Look angle 23° 10-60° 14-45° 10-51° 

Swath width, km 100 45-500 58-405 20-350 

Resolution, m 30 8-100 30-1000 10-100 

     

Characteristics 

Radarsat-2  

(Canada) 

TerraSAR-X

(Germany) 

COSMO-SkvMed-1 

(Italy) 

Launch date 2007 2007 2007 

Altitude, km 798 514 620 

Wavelength band C band X band X band 

Polarisation modes Single, dual, quad Single, dual, quad Single, dual, quad 

Polarisation(s) HH, VV, HV, VH HH, VV, HV, VH HH, VV, HV, VH 

Look angle 10-60° 15-60° 20-60° 

Swath width, km 20-500  10-100 10-200 

Resolution, m 3-100 1-16 1-100 

 

 

2.1.6 TerraSAR-X  

The TerraSAR-X Mission has been realized in a public–private partnership (PPP) 

between the German Ministry of Education and Research (BMBF), the German 

Aerospace Centre (DLR), and the EADS Astrium GmbH. The satellite design is 

based on technology and knowledge achieved from the successful SAR missions 

X-SAR, SIR-C and SRTM. The SAR sensor at X-band operates in different 

operation modes (resolutions) as illustrated in Figure 2.9: 

 ‘‘Spotlight’’ mode with 10-10 km scenes at a resolution of 1–2 m 
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 ‘‘Stripmap’’ mode with 30 km wide strips at a resolution of 3–6 m 

 ‘‘ScanSAR’’ mode with 100 km wide strips at a resolution of 16 m 

 Additionally, TerraSAR-X supports the reception of interferometric radar 

data for the generation of digital elevation models 

 

In operation modes, TerraSAR-X provides single or dual polarised data. On an 

experimental basis, additionally quad-polarisation and along-track interferometry 

are possible. TerraSAR-X is the next PolSAR satellite after ALOS. The mission’s 

objectives are the provision of high-quality, multimode X-band SAR-data for 

scientific research and applications as well as the establishment of a commercial 

EO market and to develop a sustainable EO-service business, based on 

TerraSAR-X-derived information products (Lee & Pottier 2009; Liang 2008). 

In June 2010, TSX-1 was supplemented in orbit by its twin, the TanDEM-X 

instrument (TDX-1). In a close formation flight, they will separately acquire data for 

the TerraSAR-X mission and jointly execute the TanDEM-X mission data 

collection.  

 

  

StripMap mode Spotlight mode ScanSAR mode 

 

Figure 2.9. Imaging geometry in different acquisition modes (www1). 
 

 

2.1.7 ALOS/PALSAR  

The Japanese Earth-observing satellite program consists of two series: those 

satellites mainly used for atmospheric and marine observation and those mainly 

used for land observation. ALOS has been developed to contribute to the fields of 
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mapping, precise regional land coverage observation, disaster monitoring, and 

resource surveying. The development of PALSAR was a joint project between 

JAXA and JAROS. It has been successfully launched on 24 January 2006, and 

JAXA has started providing ‘‘ALOS data’’ to the public on 24 October 2006. The 

ALOS has three remote-sensing instruments: the panchromatic remote-sensing 

instrument for stereo mapping (PRISM) for digital elevation mapping, the 

advanced visible and near infrared radiometer type 2 (AVNIR-2) for precise land 

coverage observation, and the phased-array L-band SAR (PALSAR) for day-and-

night and all-weather land observation. PALSAR is an active microwave sensor 

using L-band frequency to achieve cloud-free and day-and-night land observation 

and is considered to be the first fully PolSAR satellite. In its experimental 

polarimetric mode, it images a swath 20–65 km wide in full (quad) polarisation, 

with a resolution of 24–89 m. In the fine resolution mode, PALSAR can acquire 

partially polarimetric data at a resolution down to 14 m. The acquisition modes of 

PALSAR are shown in Figure 2.10 (Lee & Pottier 2009).  

 

 

 

 

Figure 2.10. PALSAR acquisition modes (www2). 
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2.2  Agricultural Applications with Radar 

Remote sensing observations have been used for identification and monitoring of 

agricultural targets since the late 19th century. Over the last three decades, the 

use of radar sensors for various agricultural applications has been intensively 

studied. The all-weather, day or night data acquisition capability of radar systems 

provides a more reliable data source than the optical sensors which are limited by 

solar illumination, cloud cover and haze (Henderson et al. 1998). 

 

2.2.1  Microwave Interaction with Agricultural Targets 

Basically, system parameters affecting radar backscatter, namely frequency, 

polarisation and incident angle, and target parameters influence the scattering 

process.  

 

2.2.1.1 System Parameters 

Frequency (or wavelength), incident angle, and polarisation are the primary 

system parameters used to define a radar sensor. 

 

Effect of Frequency 

Vegetation is a multi-component structure consisting of free water and the actual 

vegetation itself, which is a mixture of bounded water and air (Kozlov, Ligthart & 

Logvin 2004). Therefore, the frequency dependence of the dielectric constant is 

very important in the interaction process. In addition, the magnitude of radar 

backscatter from agricultural targets is dependent upon the relationship between 

wavelength and plant (part) size and/or penetration depth (Henderson et al. 1998). 

The radar signal penetration depth increases as the wavelength increases and is a 

function of the characteristics of the detected surface (Gomarasca 2009). Thus, 

the backscattered energy is the vector sum of EM fields scattered from the 

elements of the vegetation canopy (Figure 2.11) and those scattered from the soil 

beneath (Henderson et al. 1998).   

Accordingly, L-band operation is used if some penetration into the ground or 

foliage is required, while X-band operation is used for studies related to short 
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vegetation, crops, leaves, and twigs (Fourikis 2000). In addition, roughness plays 

a role, as every crop will be rough above a certain frequency. The dependence of 

radar backscatter will decrease with increasing incidence angle (Buiten & Clevers 

1993). 

 

1 Direct Canopy (including multiple scattering) 
2 Soil/Canopy Interaction 
3 Direct Soil (including multiple scattering) 

 

Figure 2.11. Sources of radar backscatter from cultivated crops (from Henderson 
et al. 1998). 

 
 
Effect of Polarisation  

The radar backscatter of vegetation depends on polarisation (Buiten & Clevers 

1993). Beyond a critical volume of vegetation canopy, the multi-scattering 

mechanisms arise and resulted in a depolarization effect. Therefore, cross-

polarization (i.e. HV) is generated significantly by vegetation while the ground 

contribution produces practically no cross-polarization (Massonnet & Souyris 

2008). Accordingly, the vegetation canopies influence, in different behaviour, the 

reflected wave polarization, which then provides information about their identity. 

Moreover the type of polarization influences also the radar signal penetration into 

canopies with vertical structures and those planted in strips (Gomarasca 2009; 

Thomas 2008).   

 

Effect of Incident Angle  

It is obviously a function of the wavelength as well as the crop type and its 

development stage. Shorter wavelengths will penetrate less plant material; while 
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higher biomass crops will stronger attenuate the microwave signal. Conversely, 

the path length through the vegetation increases as the incident angle increases 

(i.e., > 40°), thus maximising the crop response. As the radar signal propagates 

through the canopy, its mean (statistical) strength decreases exponentially with 

increasing canopy height as a result of microwave absorption and the scattering 

out of the propagation direction (Henderson et al. 1998). 

 

2.2.1.2 Target Parameters 

The radar backscattered energy is influenced by geometrical and dielectric 

characteristics of crops and soils. Hence, vegetation canopies may be divided into 

several groups, depending on the complexity of the canopy architecture and the 

sizes of the scattering elements relative to the wavelength (Henderson et al. 

1998). 

 

Crop Type  

Crop phenology governs the plant water-content and thus the crop's dielectric 

properties. When crops mature, the water content decreases which generally 

reduces the contribution to σ° from the plants and increases the penetration of the 

transmitted microwave energy into the vegetation which can then increase the soil 

contribution to the total backscatter (Wilson & Ulaby 1984). Furthermore, some 

crops require particular cultivation practices (i.e. small soil-ridges) which may 

influence the radar backscatter according to the looking direction (Brisco et al. 

1991). 

 

Plant Parameters 

Several parameters consistently show significant correlations including plant 

height, leaf area index (LAI), plant biomass, and plant water content (Bouman 

1991; Daughtry, Ranson & Biehl 1991; Henderson et al. 1998; Major, Brisco & 

Brown 1991). 

 

Soil Parameters  

For all bare-soil surfaces, most residue-covered surfaces, and some vegetated 

fields, soil surface roughness and moisture content are important factors 
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governing σ° (Ulaby, Moore & Fung 1986). Soil-type effects the radar backscatter 

through the soil water holding characteristics and the relative amounts of bound 

and free water-contents (Dobson, Kouyate & Ulaby 1984). Other soil parameters 

such as organic matter, salinity, etc. have been shown to have some effect, 

although to a lesser degree than roughness and water content (Henderson et al. 

1998).  

 

2.2.2  Crop Type Identification 

A single channel and date of SAR data contains useful information for crop 

classification, however, low accuracies are typically obtained unless the region in 

question is characterised by a few crop types which are significantly different with 

respect to their microwave signatures. Thus, the classification results can be 

improved using the multi-dimensional SAR data, as the multi-sensor data utilise 

the synergism between SAR and optical data. The repetitive observations from the 

same platform in a multi-date approach could be The easiest way to generate 

multi-dimensional data (Henderson et al. 1998). Due to crop development and soil 

moisture changes, the multi-temporal behaviour of the backscattering coefficient in 

different fields during the year changes. Therefore, the crop definition in the 

images becomes better (Oliver & Quegan 2004).  

Multi-frequency approach affords more information of a SAR data-set for crop-

identification purposes. Since the relationship between crop geometry and 

wavelength ensures that different information is obtained from the same crop as a 

function of frequency (Henderson et al. 1998). Recently, Multi-polarisation 

technique is increasingly important as the fully polarimetric SAR data are now 

being available (Evans et al. 1988; Ulaby et al. 1987). Likewise, combining 

polarisations from different sensors revealed significant classification improvement 

(Ulaby, Batlivala & Bare 1980). Multi-sensor approaches are also very useful for 

crop identification as most studies report a synergism between optical and 

microwave sensors (Ulaby, Li & Shanmugan 1982). On the other hand, the 

combination between the tone and texture extracted from a single image is 

considered as a multi- feature approach for crop classification (Treitz et al. 1993) 

and forest classification (Ulaby, Moore & Fung 1986).   
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2.3   Soil Moisture Extraction from SAR Data 

Soil moisture information is an important input to crop development models to set 

the initial conditions in the spring. The radar backscatter is related to soil moisture 

at the surface and, subsequently, this information is related to the lower layers of 

the soil. Also, soil moisture data is important for the hydrological models, as it is a 

critical state variable of the watershed in assessing flood hazards (Henderson et 

al. 1998). Microwave remote sensing can provide a direct measurement of the 

surface soil moisture (Liang 2004). Basically, two properties govern the 

backscatter response observed by the SAR system: the permittivity of the medium 

and the roughness characteristics of the surface. Both parameters are, in turn, 

related to different geophysical parameters of the soil. With the advent of the 

polarimetric SAR, radar remote sensing of soil moisture has attained significant 

prominence in the past two decades (Liang 2008; Zhongxin et al. 2008). 

 

2.3.1 Importance of Microwaves in Soil Moisture Content 

Soil-moisture studies are not suitable for non-microwave regions due to the 

following: 

(a) The reflection coefficient is not so sensitive to soil moisture variations in the 

visible region compared to its equivalent parameters like reflectivity and 

emissivity in other regions of the EM spectrum. 

(b) Scattering and attenuation due to atmosphere are high. 

(c) The reflection coefficient is highly sensitive to soil surface roughness and 

vegetation cover variation. 

Microwave sensors offer the potential for remote sensing of soil moisture because 

of the big change due to the addition of water makes to the dielectric constant of 

dry soil (Alharthi & Lange 1987). 

 

2.3.2 Dielectric Behaviour of Wet Soils 

The dielectric constant (Ɛˊ) of dry soil is essentially independent of temperature 

and frequency. The imaginary part Ɛ˝ is < 0.05. Wet-soil behaviour is, however, 

very complex. The dielectric behaviour of soil-water mixtures has been studied 

over the past two decades (Alex & Behari 1996; Ghosh, Pyne & Behari 1998; Roth 

et al. 1990; Scott & Smith 1992). A wet-soil medium is a mixture of soil particles, 
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air pockets and liquid water. This water is usually divided into two fractions; 

namely bound water and free water. The relative fractions of bound and free water 

are related to the particle size distribution (soil texture). These, in turn, are 

dependent upon the bulk soil density and the shape of the water inclusions (Behari 

2005). 

 

2.3.3 Soil Moisture Measurements 

In the microwave region, the dielectric constant of soil is very sensitive to the soil-

volumetric moisture content mv (Buchroithner & Granica 1997; Henderson et al. 

1998). Thus, microwave sensors are well-suited for soil remote-sensing due to the 

sensitivity to soil-moisture variation together with their relative transparency of the 

atmosphere (> 90%) (Behari 2005). Owing to the large disparity between the 

dielectric constant of dry soil surfaces (3-5) and of water (approximately 80) at 

microwave frequencies, therefore, adding a relatively small amount of water to the 

soil drastically changes the value of the dielectric constant (Van Zyl 2011).  

For example, at L-band the real part of the dielectric constant ranges from 3 for dry 

soil to about 25 for saturated soil. This variation can result in a change in the order 

of 10 dB in the magnitude of the radar-backscatter coefficient (Oh, Sarabandi & 

Ulaby 1992). Also, with a proper choice of frequency, look angle and polarisation, 

the effect of surface roughness can be minimised (Behari 2005). 

 

2.3.4 Roughness Estimation 

Several investigators (Boisvert et al. 1997; Zribi et al. 2003) have pointed out that 

the difference ∆σ0 between signal measurements (in dB) taken at two different 

incidence angles is essentially linked to soil roughness and depends only weakly 

on soil moisture. Therefore: 

 

ଵሻߠሺߪ െ	ߪሺߠଶሻ 	ൎ ݄	ሺݏݏ݄݁݊݃ݑݎሻ                         (2.7) 

 

The soil roughness can be estimated by fitting the σ0 angular differences to the 

IEM predictions. 
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2.3.5 Penetration Depth 

The penetration depth is often referred to as the skin depth. It is one of the basic 

concepts in electromagnetic remote sensing. An expression for the penetration 

depth Pd can be obtained by considering a wave incident from air upon a soil 

surface in the z-direction. In general, a part is scattered back into the air and the 

remaining is penetrated into the medium. Knowing the dielectric properties of the 

materials involved, penetration depth Pd can be calculate the by the following 

relation (Behari 2005): 

 

ௗܲ ൌ  (2.8)                                               ˝ߝߨ	ሻ.ହ/2	ˊߝ	ሺ	ߣ

The effect of frequency must be considered when interpreting multi-frequency 

radar imagery. The multi-frequency data may allow the distinction between 

roughness types, as the different wavelengths are to a varying extent sensitive to 

varying roughness of the investigated surface (Elachi 1988). Also the attenuation 

and scattering by the vegetation canopy increases with increasing frequency. 

Therefore, for soil moisture sensing, lower frequencies are preferable to higher 

frequencies. In addition to their advantages like a higher penetration capability into 

the soil (Schmullius & Furrer 1992). 

 

2.3.6 Target Parameters Influencing Microwave Signatures 

2.3.6.1 Effect of Soil Texture and Roughness  

In general the influence of the soil type onto the complex dielectric constant is 

weak and the influence of soil moisture is dominant (Buiten & Clevers 1993). At 

any given moisture content and at all given frequencies, Ɛˊ is found to be roughly 

proportional to the sand content. And the effect of soil texture decreases with the 

frequency. Alex and Behari (1996) concluded that in the case of dry soils the 

dielectric parameters are not sensitive to the soil texture. However, for wet soils 

(mv > 0.2) the dielectric parameters are significantly dependent upon soil texture 

(Alex & Behari 1996). On the other hand, it was observed that the use of lower 

frequencies can minimise the variation of the scattering coefficient σ0 related to 

surface roughness (Ulaby, Li & Shanmugan 1982). Following Jackson and O’Neill 

(1985) it can be summarised as follows: 
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(a) σ0 increases with increasing soil moisture, incidence angle θ and frequency. 

(b) Maximum correlation between σ0 and soil moisture occurs at frequencies near 

4.5 GHz and incidence angle near 10°, with preference for like polarisation 

(Jackson & Oneill 1985). 

 

2.3.6.2 Bulk Density Effects 

It has been demonstrated that for a given soil at a given gravimetric moisture-

content mg the measured dielectric constant Ɛ is proportional to the soil bulk 

density ρ (Hallikainen et al. 1985). The effect of soil bulk density on the dielectric 

constant of the soil can be reduced significantly using the volumetric soil moisture 

content instead of the gravimetric one. Electromagnetically, the volumetric 

measure is preferred because the dielectric constant of the soil-water mixture is a 

function of the water volume fraction in the mixture (Chukhlantsev 2006). 

Assuming the soil to be homogeneous, the randomly dispersed mixture of solids, 

liquids and air along with all inclusions, is much smaller than the wavelength 

(Dobson et al. 1985). 

 

2.3.6.3 Effect of Vegetation 

The sensitivity of σ° to soil moisture is in general decreased by the presence of a 

vegetation cover. This is due to increased scattering and attenuation of the 

electromagnetic signal (Tansly & Millington 2001). When a soil is covered by 

vegetation the backscattering power from soil suffers a two-way attenuation due to 

its propagation through the vegetation layer. In general, the attenuation is a 

function of the vegetation parameters such as plant height, density, water content 

and shape of the plant. In addition, the vegetation layer contributes a backscatter 

component of its own due to volume scattering (Demirican, Ramach & Mauser 

1992). The sensitivity also decreases with the increase of incidence angle and 

frequency. Moreover, like-polarisation has a better correlation with σ° than cross 

polarisation. In conclusion, the preferred approach is to have a single algorithm 

relating the backscattering coefficient σ° with the soil moisture for bare and 

vegetation-covered soil (Mehta et al. 1995). 
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2.3.7  Volumetric Soil Moisture Using Backscattering Data 

For bare soil the backscattering coefficient σ° is related to soil moisture by the 

expression: 

ߪ ൌ                                                      (2.9)	ሻܯܤexpሺ	ܣ

where A and B are constants and M is the soil moisture content. Eq. (2.9) can be 

rewritten as: 

 

ሻܤሺ݀	ߪ ൌ ߪ	݈݃	10 ൌ 10 log ܣ  ܯܤ	4.34 ൌ ଵܣ	   (2.10)            ܯܵ
 

where  A1 = 10 log A   and   S = 4.34 B. The radar sensitivity to soil moisture S is 

given as:  

ܵ ൌ
ఋఙబ

ఋெ
                                                      (2.11) 

The radar response to soil moisture is determined using linear regression analysis 

in accordance with the above equations (Behari 2005; Schmugge 1983a; Ulaby, 

Razani & Dobson 1983). Zribi et al. (2003) stated that the volumetric soil moisture 

mv up to value around 35-40% is linearly related to the backscattering coefficient 

σ° by the relation: 

 	݉௩ ൌ ܣ	  .	ܤ  ሻ                                     (2.12)ܤሺ݀			ߪ

where A and B are constants to be obtained from mv vs σ° curve. These can be 

applied to the SAR images, whereby classification can be done by moisture range. 

The slope of regression curve is almost the same for all test fields and soil 

moisture change show linearity of a similar type. In general: 

∆݉௩ ൌ 	݉௩,ଶ െ	݉௩,ଵ                                    (2.13) 

The change in volumetric soil-moisture is given in terms of change in the 

backscattering coefficient: 

∆݉௩ ൌ  ሺdBሻ                                             (2.14)		ߪ∆	ˊܣ

Where ∆σ° is the backscatter change, i.e. ∆σ° = σ° (dB) – σ0
1 (dB) and A′ is a 

constant pertinent to the given set of measurements (Zribi et al. 2003). The 

advantages of this method are: (i) the errors due to the unknown roughness 

remain relatively small, and the exact slope of regression is approximated within a 



 2 Theoretical Basics 
 

28 
 

soil-moisture change estimation-error of 10%; (ii) calibration error (e.g. local 

topography etc.) does not affect the quality of the result, as long as the calibration 

is uniformly maintained for both the measurements and (iii) influences of the 

incidence angle may also be neglected. Therefore it is a useful method for 

measuring the soil moisture with a certain degree of accuracy. However, using this 

method only permits the estimation of the moisture change and not the absolute 

soil moisture (Behari 2005). 

With no a priori information about surface roughness, several approaches may be 

considered. The simplest approach is to select the proper radar parameters (i.e., 

polarisation configuration), so that σ° is almost independent of surface roughness 

(over reasonably wide range), while retaining a strong sensitivity to moisture 

content. The next approach is using dual-frequency radar system to separate the 

effect of roughness and moisture on σ°. Another possible approach is to use 

change detection, whereby two images of the same scene, recorded on two 

different (but closely spaced) dates, are co-registered, and the difference in grey 

level is used to estimate the change in moisture content over the time period 

between the two observations (Ulaby, Moore & Fung 1986).        

 

2.3.8  Time Domain Reflectometry (TDR) 

TDR operates in the frequency range of 1 MHz to 1 GHz, well below the relaxation 

frequency of water. Only a little frequency dependence of Ɛˊ across this range has 

been reported, although the electrical conductivity contributes to dielectric loss if 

the solution contains ions. Ɛ˝ is generally small and insignificant in non-saline 

homogenous soils (Behari 2005).  

The use of remote shorting diodes and calibrated reference airlines can, in many 

cases, considerably improve the accuracy of TDR measurements (Topp, Zegelin & 

White 1994). The signal-to-noise ratio of the reflected signals can be increased by 

using remotely switched diodes. This combined with a waveform subtraction 

procedure provides a reliable identification of the two reflections that define Ɛair. 

The high resolution TDR system offers many advantages of detecting very small 

changes in soil water content (Pepin, Livingston & Hook 1995). 
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2.3.9 Radiometric Calibration 

2.3.9.1 Sigma Naught σ0 

Sigma naught represents the average reflectivity of a horizontal material sample, 

normalised with respect to a unit area AL on the horizontal ground plane (Figure 

2.12), also called the scattering coefficient (Ulaby, Moore & Fung 1981). Sigma 

naught is a dimensionless parameter, as it represents the ratio of the statistically 

averaged scattered power density to the average incident power density over the 

surface. It depends on the given frequency, the polarizations of the incident and 

scattered waves, and the incident and scattering directions (Lee & Pottier 2009). 
 

2.3.9.2 Gamma γ 

Gamma is defined with respect to the incident area Ai orthogonal to the incident 

ray of the radar (Figure 2.12). Also, it is called normalised backscatter coefficient, 

as it results from dividing σ0 by cos θ. Therefore, plots of ɤ as a function of 

incident angle are more constant than comparable plots using σ° (Henderson et al. 

1998; Stimson 1998). 
 

2.3.9.3 Radar Brightness β° 

Radar brightness is the default radiometric observable of a radar. By means of β°, 

the system radiometric response can be separated from the reflectivity 

dependence on terrain properties; accordingly, it does not require knowledge of 

the local incidence angle. If the slant range/azimuth area increment is set by the 

pixel spacing ∆R and ∆A respectively, then the quantity β°∆R∆A is the observed 

radar reflectivity per (two-dimensional) slant range pixel (Henderson et al. 1998).  

 

 

Figure 2.12. Definition of surface and incident 
area (from Henderson 1998). 
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3 Study Area and Data Preparation 

 

 

In this section, the study area is described. The characteristics of the used SAR data 

(TerraSAR-X and ALOS PALSAR) are discussed in quite details. Moreover, the 

general data-processing techniques applied to the data are explained.  

 

3.1  Description of the Study Area 

The study area is located in the free state of Saxony, Germany. It extends from Pirna 

town in the north, to the border between Germany and Czech Republic in the south, 

and covers the Gottleuba Catchment. The study area lies between latitude 50° 46ˊ 

13˝ N to 50° 58ˊ 02˝ N, and longitude 13° 48ˊ 38˝ E to 14° 02ˊ 19˝ E, with an area of 

about 350 km2 (Figure 3.1). The elevation of study area varies from about 110 m ASL 

in the north (around Elbe River) to about 655 m ASL in the southern part (Figure 

3.2a). The relief in the northern part is rather plain, while in the middle is more 

undulated. The southern part is a mountainous area and characterized by the hills of 

the Erzgebirge mountain range (Figure 3.2b).  

The study area is characterised by different land-use types (Figure 3.3). From which 

the agricultural area, in addition to the grass area (for grazing animals) were selected 

in the current study. The main cultivated crops in the study area are cereal, maize 

and rape.  

The study area covers three types of the soil regions in Saxony. The northern part of 

the study area is characterised by the loess and sandy loess landscapes, the eastern 

part is dominated by soils of the mountain and hill regions with a high proportion of 

sandstone, and the western part covers the soils of the mountain and hill regions with 

a high proportion of magmatic and metamorphic (Figure 3.4). Furthermore, the 

surface soil texture of the study area is illustrated in Figure 3.4. 
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Figure 3.1. Location of the study area. 

 

 

                      (a)                                                             (b) 

Figure 3.2. a) Hypsometric colouring of the DTM, and b) Slope map of the study area.    
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Figure 3.3. Land use map (2005) of the study area (source: GeoSN, Germany). 
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Figure 3.4. Surface soil texture of the study area (source: www3). 
 

 

The climate can be described as that of Saxony as the study area is a part thereof. 

The mean annual air temperature in Saxony is 7.6 ◦C (Table 3.1). Monthly mean 

temperatures below zero are only observed in January and February. The warmest 

month is July with a mean air temperature of 16.1 ◦C. The increase in annual air 

temperature in Saxony is 0.3 ◦C/decade (P<0.01). This means that in the last 40 

years the temperature rose by 1.2 ◦C. Spatial differences of air temperature in 

Saxony are mainly determined by topography. The warmest areas are located in the 

northern lowlands and along the river Elbe. In the low mountains the temperature is 

reduced. The coldest regions can be found on the peaks of the Erzgebirge mountain 

range in southern Saxony (Chmielewski, Muller & Kuchler 2005). The precipitation 

average is ca. 800 mm a-1 with a relatively even distribution throughout the year. 
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Table 3.1. Monthly and annual mean air temperature (◦C) in Saxony 1961–2000, as 
well as trends (◦C per decade) (from Chmielewski et al. 2005).  

 

 

 

3.2  Data Sources  

3.2.1 SAR Data 

In the current study, it was planned to investigate both TerraSAR-X (TSX) and ALOS 

PALSAR data for land cover and soil moisture mapping. Out of the proposed data 

sets, 4 TSX images and one PALSAR image have been acquired. These data sets 

have been applied to achieve plot-based land-cover and soil-moisture maps (cf. 

Figure 3.9). 

 

3.2.1.1 TerraSAR-X Data  

Two TSX (HH) images acquired in the StripMap mode on 31/05/2010 and 17/06/2010 

(Figures 3.5), and one TSX (HH/HV) images acquired on 18/04/2011 (Figure 3.6a). 

The look direction for all images is right. Table 3.2 illustrates the main characteristics 

of the TSX data. Figure 3.5 shows the TSX data of 31/05/2010 and 17/06/2010 of the 

study area with the plot boundaries in red colour. 

 

3.2.1.2 ALOS PALSAR 

The succeeded acquisition covering the study area was on 31/05/2010. Figure 3.7 

shows the status of the ordered PALSAR data. Data management and ordering was 

going through the EOLi-sa tool which allows users to access the catalogues of ESA’s 

Earth Observation data products. The main characteristics are illustrated in 

Table 3.2. The PALSAR data of the study area is shown in Figure 3.6b. 

 

 

 

 



                                                      3 Study Area and Data Preparation 

35 
 

 

 

 

   

       (a)      (b) 

Figure 3.5. a) TSX image acquired on 31/05/2010 and b) TSX image acquired on 
17/06/2010. Redlines: parcel boundaries. 

 

 

 

Table 3.2. SAR images specification. 

Sensor Date Overpass Mode Polarisa-
tion 

Incidence angle 
range Resolution

TerraSAR-X 

31/05/2010 ascending SM HH 41.76° – 43.89° 3 m 

17/06/2010 ascending SM HH 29.66° – 32.42° 3 m 

18/04/2011 descending SM HH+HV 40.98 -42.08 3.75 m 

ALOS/ 

PALSAR 
31/05/2010 ascending FBD HH+HV 34° 12.5 m 
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                             (a)                                                                  (b)      

Figure 3.6. a) TSX image of 18/04/2011 (RGB: HV, HH, HV) and b) ALOS PALSAR 
imagery (RGB: HV, HH, HV) acquired on 31/05/2010.  

 

 

 

Figure 3.7. Status of the ordered PALSAR data. 
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3.2.2 Digital Ortho-Photos (DOP) 

The digital ortho-photos for the study area were obtained from the Staatsbetrieb 

Geobasisinformation und Vermessung Sachsen (GeoSN), Germany. The DOP was 

provided in colour (red-green-blue) with spatial resolution of 20 cm. 

  

3.2.3 Digital Terrain Model (DTM) 

The DTM (Figure 3.2 a) was obtained from the Staatsbetrieb Geobasisinformation 

und Vermessung Sachsen (GeoSN), Germany. For this DTM data (ATKIS-DGM2) 

the laser scanner measuring absorption as the primary data collection method is 

applied. The data is provided with a grid spacing of 2 meters. The height accuracy of 

the grid points is + / - 0.2 m (www4). 

 

3.2.4 Field-Map 

The field-map showing the field boundaries was obtained from the webpage of the 

“Landwirtschaft in Sachsen” (www5), where number of sheets were downloaded to 

cover the study area (Figure 3.2). 

 

3.3  Instrument and Software  

3.3.1  Instruments 

TDR: Volumetric soil moisture was measured in-situ using the Time Domain 

Reflectometry (TDR - HH2 Moisture Meter). The WET sensor detects the dielectric 

properties of the soil and sends that to the HH2 which calculate the soil moisture 

using its calibration tables (Delta-T 2005). 

  

3.3.2  Software 

The current study has been utilised the following software: 

a. ERDAS IMAGINE 9.2 

b. ARCGIS 10 

c. ENVI  

d. ASF MapReady 2.3.6 

e. VISUAL BASIC .NET 2008 

f. “R”  Programming Language 
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3.4  Data Preparation and Processing  

3.4.1 Radiometric Calibration of TerraSAR-X Data 

TSX images were imported into ERDAS Imagine, and then backscattering coefficient 

(σ°) was calculated. According to Fritz and Eineder (2008), it can be derived either 

from the radar brightness (β°), or from the image pixel values (Digital Number (DN)) 

as the following (Fritz & Eineder 2008). 

 

Radar Brightness (β°) 

 

β° ൌ 	݇௦	.                                           (3.1)		ଶ|ܰܦ|

where 

- DN is the pixel intensity values, 

- ks is the calibration factor (also called calFactor), is given in the TerraSAR-X data 

delivery package annotation file “calibration” section. It is processor and product 

type dependent and might even change between the different beams of a same 

product type. Table (3.3) illustrates the calibration factor values for the used TSX 

data. 

Equation (3.2) converts β° to dB, 

 

β°ୢ ൌ 	10	.                                        (3.2)		ሺβ°ሻ	ଵ݈݃

 

 

Sigma Naught (Radiometric Calibration) 

 

σ° ൌ 	 ሺkୱ	.		|DN|ଶ െ 	NEBNሻ. sinθ	୪୭ୡ	                           (3.3) 

 

where: 

- NEBN is the Noise Equivalent Beta Naught. It represents the influence of different 

noise contributions to the signal.  

- θloc is the local incidence angle. It is derived from the Geocoded Incidence Angle 

Mask (GIM) that is optional for the L1B Enhanced Ellipsoid Corrected (EEC) 

product ordering.  
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Table 3.3. Calibration factors for the used TerraSAR-X data. 

Date Polarisation calFactor 

31/05/2010 HH 9.08104534113524660E-06 

17/06/2010 HH 1.19752740163255090E-05 

18/04/2011 
HH 9.52783674347650056E-06 

HV 1.90556734869530070E-06 

 

 

Geocoded Incidence Angle Mask (GIM) 

The local incidence angle is the angle between the radar beam and the normal to the 

illuminated surface. The GIM provides information about the local incidence angle for 

each pixel of the geocoded SAR scene and about the presence of layover and 

shadow areas. The GIM product shows the same cartographic properties as the 

geocoded output image with regard to output projection and cartographic framing. 

The content of the GIM product is basically the local terrain incidence angle and 

additional flags indicating whether a pixel is affected by shadow and/or layover or 

not. 

 

Extraction of the Local Incidence Angle 

 

θ୪୭ୡ ൌ
൫ୋ୍ି	ሺୋ୍	୫୭ୢ	ଵሻ൯

ଵ
                                         (3.4) 

 

- The resulting incidence angle is in degree (float value).  

- “GIM modulo 10” represents the remainder of the division of GIM by 10. 

The equation (3.3) can also be expressed in terms of Beta Naught, as: 

 

σ° ൌ 	β°. 	sinθ	୪୭ୡ െ 	NESZ                                     (3.5) 

- NESZ is the Noise Equivalent Sigma Zero, i.e. the system noise expressed in 

Sigma Naught. It is specified in (Fritz & Eineder 2008) between -19dB and -26dB. For 

this reason the noise influence can often be neglected, depending on the considered 

application. 
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In the case NEBN is ignored equation (3.5) reduces to the equations (3.6) and (3.7), 

σ° ൌ 	β°. 	sinθ	୪୭ୡ                                           (3.6) 

 

σ°ୢ ൌ 	β°ୢ	  10.  ሻ                             (3.7)ߠ݊݅ݏሺ	ଵ݈݃

 

Finally, the σ° can be directly derived using the image pixel value (DN) and GIM file 

as expressed in equation (3.8) 

 

 σ°ୢ ൌ 20. DN୧	ଵ݈݃  	10. ଵሺcalFactሻ݈݃  10.  ሻ        (3.8)ߠ݊݅ݏሺ	ଵ݈݃

 

Using DTM (2m) for Radiometric Calibration of TSX Data 

In addition to the radiometric calibration using GIM file, the TSX image acquired on 

31/05/2010 was utilized with the DTM (2m) to calculate sigma naught. The 

radiometric correction model available in ERDAS Imagine was applied to generate 

the incident file using the orbital information of the TSX on 31/05/2010 (the required 

model inputs were obtained from the corresponding XML file). Then, the generated 

incident file was used for calculating sigma naught.   

   

3.4.2 Radiometric Calibration of ALOS PALSAR Data 

ALOS PALSAR image were imported using the ASF Map Ready (V. 2.3.6; free 

software) which enables to apply ortho-rectification and radiometric correction to the 

original PALSAR image using the digital elevation model (DEM 2m). Appendix 1 

shows the list of Software that supports PALSAR Products. Then the backscattering 

coefficient was calculated using Equation 3.9 (ALOS products 2007). The sigma-

naught image was filtered using different filters with kernel size (3x3).  

 

ߪ
୭ሺ݀ܤሻ ൌ ܦଵ݈݃	20 ܰ   (3.9)                                    ܾ݀ܭ

 

This equation transforms the digital number of each pixel DNi (amplitude of the 

backscattered signal for pixel i) into a backscattering coefficient (σ°i), in decibels. The 

calibration constant for PALSAR L1.5 products is Kdb=−83 dB. 
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3.4.3 Data Re-Scaling  

One object of the current study is to test different quantisation levels in land cover 

classification. Therefore, a model in ERDAS Imagine was built to rescale the 

backscattering image into 32, 64, 128 and 256 grey-levels. Moreover, 2 standard- 

deviation and 3 standard- deviation of the input image were used to test the effect of 

such value on the classification process. 

 

3.4.4  Plot Mapping and Sampling 

The plot map of the study area has been revised using the TerraSAR-X images, in 

addition to the DOP for more details if required. Sample and reference plots were 

chosen after completion of ground truth, and the information added to the attribute 

table of the plot map. 

 

3.4.5 Speckle Reduction and Signal to Noise Ratio 

Various filter types with different kernel sizes were applied in order to reduce the 

effect of the speckles. In the same time, the effect of these filters was examined for 

the classification and soil moisture mapping performance. Moreover, some measures 

for filter evaluation (SNR, ENL) were calculated to compare those filters (Gupta & 

Gupta 2007). Such measures (i.e. ENL) require to be applied over a uniform area. 

Therefore, five area of interest (AOI) were defined to be – as much as possible - a 

uniform area, also to represent different land cover types (Figure 3.8). 

 

Signal-to-Noise Ratio (SNR)  

Signal-to-Noise Ratio (SNR) is used for quantitative comparison. 

 

ܴܵܰ ൌ ଵ݃10݈ ൬
∑ ௨

మಿషభ
సబ

∑ ሺ௨ି௩ሻమ
ಿషభ
సబ

൰                                        (3.10) 

 

where N is the total number of pixels, ui is the de-noised image, and νi is the original 

image (Gupta & Gupta 2007). 
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Equivalent Number of Looks (ENL) 

The ENL measures the speckle level in a SAR image over a uniform image region. A 

large value of ENL reflects better quantitative performance of the filter. The value of 

ENL depends on the size of the tested region (Gupta & Gupta 2007).  

ܮܰܧ ൌ
௨మ

ఙమ
                                              (3.11) 

where μ and σ are mean value and variance, respectively. 

 

 

         Figure 3.8. Selected AOIs (red polygons) for SNR and ENL calculations. 
 

 

 

          
Figure 3.9. General scheme showing the applied approach. For details see Figures 

4.2, 5.4, 6.1, 7.2. 
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4 Plot-Based Multi-Direction /-Distance Texture Analysis Model for 
Agricultural Land Cover Classification Using SAR Data 

I. Texture Analysis Module 

 

 

4.1  Introduction 

This Section reports on a model of multi-distance and multi-direction texture analysis 

on SAR data and its use for agricultural land cover classification. The model 

developed by the author has been built using VB.NET in ESRI ArcGIS software as an 

embedded software extension. Sets of texture measures, calculated on a plot basis 

and stored in an attribute table, can be compiled and evaluated by separability 

values. A sufficient separability as a pre-condition for successful classification has 

been tested for a typical Mid-European agricultural and horticultural land use pattern 

around the town of Pirna (Saxony/Germany) which had been mapped in the field 

before. An optimised subset of indicative textural features could be identified. It forms 

the basis for an efficient and fast classification. The classification steps, methods and 

parameters are user-controlled selection. 

High-resolution SAR data, TerraSAR-X (TSX) strip mode images from 31 May and 17 

June of 2010 and an ALOS/PALSAR (dual polarisation) scene from 31 May of 2010 

were used for the development and following performance tests of the model.  This 

Section will concentrate only on the texture analysis model. Calculation starts with 

texture features which are assigned to pre-existing agricultural plot polygons, 

followed by a performance assessment of all features. The strongest performers are 

isolated using training data and then calculated for all parcels. 

  

4.2 Land Cover Classification Using SAR Data 

4.2.1 General Objectives 

Land cover change can be studied at various spatial and temporal scales. In the 

following a methodology of topic large-scale land use monitoring is presented. 

Detailed knowledge on land use is demanded by numerous disciplines: spatial 
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planning is concerned about high “losses” of land for technical and residential 

developments, ecology about implications on habitats and genetic diversity, 

meteorology and hydrology about boundary layer effects of changing land cover such 

as evaporation, ground-water formation or surface run-off. National geo-database 

specifications have only recently reacted by providing contiguous land use 

information as an integral part, as e.g. mirrored by the “Real Land Use” category of 

the German reference geo-data basis (Schauer 2010). Due to a universal demand of 

such data, their class schemes remain coarse and show no or little differentiation 

within farm land. In this respect the widely-used European land cover database 

CORINE performs more specific. A standardised large-area data set, however, 

cannot carry information on a plot basis. CORINE concentrates on generalised land 

use patterns with update cycles of 6 years and more (Keil et al. 2010). 

Mapping and identifying land cover and its change is perhaps the most important as 

well as the best investigated topic in remote sensing (Liang 2008; Soergel 2010). 

SAR data are almost independent from weather conditions. Nearly every data take of 

a SAR sensor can theoretically find entrance into monitoring. A time filter can be 

adapted to the best-possible differentiation of agricultural plants within their 

phonological cycles. Moreover, multi-temporal monitoring can reveal seasonally 

changing conditions of annual crops (Baghdadi et al. 2009; Borghys et al. 2006; Mróz 

& Mleczko 2008; Waske & Braun 2009). The 3-meter resolution of TerraSAR-X data 

even allows a monitoring of highly diversified and fine-grained plot patterns. 

It will be shown, how an integrated model can strongly facilitate a texture analysis of 

SAR data using different directions and distances and result in stable classifications 

of agricultural land cover. 

 

4.2.2 Test Area and Imagery  

In order to get a suitable and representative study area for land cover and crop 

mapping, a subset of the study area was chosen (Figure 4.1, demarcating the parcels 

in red). The parcels in this area were divided into smaller areas according to the 

digital ortho-photos of the study area to increase their total number. The all parcels 

(with a number of 183) were used in this section for testing the model. Simultaneous 

to the acquisition of the SAR data the following land cover classes were mapped in 

the field: cereals, rape, maize, grass and orchards. 
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Figure 4.1. (a) TSX image acquired 31 May 2010, (b) TSX image acquired 17 June 
2010 and (d) ALOS/PALSAR image (RGB: HV, HH, HV) acquired 31 May 
2010. Redlines: parcel boundaries. 

 

 

4.3  Texture Analysis  

4.3.1 Use of Texture 

Human beings use both spectral and spatial features to decode visual signals. 

Spectral features describe tonal variations as such, while spatial features reflect a 

spatial distribution of intensities of grey-values or colours. Two kinds of spatial 

relationships can be defined: texture and context. Texture is seen as a specific tonal 

variation within a small area (Tso & Mather 2009). It refers to a spatial frequency of 

change and the arrangement of shades (tones) (Weng 2010). Context may be briefly 

described as the topology between different image objects, no matter if already 

semantically tagged or just appearing as a delimited pixel cluster of specific tonal or 

textural properties. Contextual information assists object identification by its specific 

setting within a neighbourhood. In many cases texture proves to be more informative 

than tonal information. This has encouraged the development of numeric texture 

measures for use in remote sensing and other image detection techniques (Tso & 

Mather 2009). 

Texture is used in low-level image analysis (Gupta, Mangai & Das 2008) for the 

identification of objects or regions of interest (Haralick, Shanmuga & Dinstein 1973; 

Liang 2008; Tso & Mather 2009). Combinations of texture and spectral features are a 

key to improvements in classification accuracy. As the spatial resolution of remotely 

sensed data is steadily increasing, the importance of image texture does the same 

cba
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(Coburn & Roberts 2004). Objects of interest mostly form pixel clusters within images 

of a ground resolutions of one meter and better, while at the same time spectral 

properties of individual pixels become less predictable and indicative (Coburn & 

Roberts 2004; Ouma, Ngigi & Tateishi 2006). Consequently, texture information is 

often inevitable for a successful classification (Blaschke, Lang & Hay 2008; 

Buchroithner 1993; Coburn & Roberts 2004; Kayitakire, Hamel & Defourny 2006). 

This has been demonstrated with image data of various sensors like IKONOS 

(Kayitakire, Hamel & Defourny 2006), SPOT (Lewinski & Bochenek 2009), SAR 

(Kuplich 2006; Zhang, Wu & Wei 2009) and InSAR data for mountainous areas 

mapping (Damoiseaux 2003). The value of textural information depends on the 

spatial resolution of the image in relation to the coarseness of the land cover (Coburn 

& Roberts 2004; Ouma, Ngigi & Tateishi 2006). Where the image resolution is fine 

relative to the frequency of real-world surface variation, texture forms a valuable 

classification source. Conversely, where homogeneous regions are small in the 

image and do not portray object changes due to severe under-sampling, texture will 

not be indicative (Tso & Mather 2009).  

 

4.3.2  Systematisation of Textural Features 

An operational definition of texture features is difficult. Texture recognition 

approaches have been grouped as a result of different underlying theories. The 

concept defines features of the Fourier power spectrum by frequency domain 

filtering. The second one is based on neighbourhood (focal) statistics which are 

thought to be related to texture, for example a standard deviation. A third approach 

uses the joint grey-level probability density (Haralick, Shanmuga & Dinstein 1973). 

Another one makes use of an image model on the basis of structural assumptions 

such as the existence of fractal properties or compliance to the random-field model 

such as the multiplicative autoregressive random field (Tso & Mather 2009). 

Alternately, all textural measures can be characterised depending on whether they 

stem from the original image, or from transformations of the original (like a grey-level 

co-occurrence matrix or a wavelet-decomposed image). The first group is termed 

first-order; the latter one is second-order textural measures. Whatever the approach 

might be, textural measures should be applicable to both classified and unclassified 

images (Liang 2008). 
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The present work concentrates on statistical operators for texture description. Within 

the group of first-order statistics we find simple measures like average, standard 

deviation, mode or variance. More sophisticated calculations reveal properties of 

secondary image features and include, for instance, the texture spectrum and 

frequency-based contextual classifiers. Other second-order statistics seek to 

characterise the distribution of pixel values over a fixed space by describing grey 

value dependencies of pixel subsets. Here, the most popular method starts from a 

grey-level co-occurrence matrix (GLCM) and calculates a number of properties 

relating to pair-wise defined relationships of pixels (Coburn & Roberts 2004). This 

solution has been chosen in the project. 

 

4.3.3  Texture and Scale 

Scale and scale-related uncertainty is a difficult problem and increasingly also a topic 

of research. Strategies have to be developed to account for scale effects. Two 

principal approaches have been suggested (Lam et al. 2004): The first one tries to 

define indicative scale ranges for an observation of specific phenomena. A second 

approach aims at multi-scale assessment, meaning to perform the same analysis 

over multiple scales, in order to compare the results and to estimate uncertainty. Still 

a thorough benchmark study is much needed in order to examine how, within the 

objective of land cover classification and change detection, texture detection 

performs at different spatial scales and resolutions (Liang 2008). In the present study 

the problem has been tackled by flexible sizing of the displacement vector in the co-

occurrence matrices. 

 

4.3.4  Texture in Radar Imagery 

The concept of texture is essential in the exploitation of radar images: Texture is an 

image equivalent of surface macro-roughness. It is directly related to the dimension 

and average spatial organization of the elementary cells as smallest homogeneous 

elements. Three theoretical levels of texture analysis exist: micro, meso and macro 

scale. Besides well-known advantages, radar images are subject to distortion, both 

geometric and radiometric (speckle). Speckle, inherent to all radar images, is a 

micro-scale grain effect (salt–and-pepper effect), a statistical fluctuation associated 

with individual pixels. In fact, within a zone of many scatterers, constructive and 
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destructive interferences occur and shine up as light or dark tones in the image. It is 

mainly this phenomenon which inhibits recognition or classification on a pixel-by-pixel 

basis. For visualisation, speckle is a source of disturbance and should be minimised 

by applying digital filters. Within other applications like SAR interferometry, speckle is 

rather useful and must be treated differently (Gomarasca 2009). 

 

4.3.5  Spatial Reference for Textural Features 

Until the mid-1990s information extraction from remotely sensed imagery was mainly 

using statistical techniques applied to features of individual pixels. The ability of these 

traditional methods for resolving interclass confusion is limited. As a result, 

alternatives have been proposed. They proposed new classifiers as well as 

alternative sets of input data, such as texture data (cf. above) and/or a-priori spatial 

knowledge like a spatial segmentation of the study area. Such an additional layer 

defines spatial reference objects as recipients of any later calculated image 

properties. The object extent is known, but its state is unknown prior to classification. 

Such a strategy is in particular suitable for areas with sharp boundaries (e.g. an 

agricultural plot mosaic). It will perform robust in terms of an adverse influence of 

boundary pixels, which normally degrades a classification. When combined to an 

image, each spatial object (e.g. plot) can then be characterised by zonal statistics (be 

it a mean spectral signature or a textural measure), and will thus be represented by 

one unique vector in the feature space (Tso & Olsen 2005; Wang & Wang 2004). 

Moreover, per-plot classification provides an elegant solution for eliminating internal 

spectral variability and mixed pixel effects (De Wit & Clevers 2004). 

 

4.4  The Concept of the Model 

4.4.1  Modules 

The developed software solution offers several functionalities for a complex 

processing task. From the user’s point of view it comprises the following sequence of 

analytical steps: 

 Data import 

 Calculation of textural features for all training areas 

 Definition of a best-performing feature subset as derived from the reference 

plots by separability matrices 



                                                      4 Texture Analysis Module 

49 
 

 Global calculation of the best texture features and storage in the feature  

attribute table 

 Per-plot classification of land cover by means of the feature space as defined 

in the previous step 

 Data visualisation. 

Both, all built-in functions and the associated user interfaces have to be well 

structured in order to arrive at a software product which can be handled, maintained, 

and updated in a convenient way. 

Processing starts at data import, and applies to the geo-referenced imagery and 

ancillary vector data. The vector input is plot polygons and land-use training data, the 

first ones defining spatial units for the feature calculation, the latter ones for an 

optimised feature selection and for the training of the classifier (in the classification 

module; Section 5). 

A first central task-specific module is dedicated to texture calculation. Every run 

generates series of grey-level co-occurrence matrices from an (optionally) re-scaled 

image. Re-scaling compresses the grey value range. The matrix size automatically 

adjusts to the quantisation level, and the number of matrices to the number of 

parcels. In addition to mean and standard deviation, ten parameters are extracted 

from the GLCM and stored in the attribute tables of the parcels. Various distances 

and orientations for the GLCM can be invoked and can thus optionally greatly 

enlarge the available feature space. 

The calculation of separability forms the subsequent step. For the determination of 

separability the Jeffries-Matusita Distance has been implemented. The separability 

values are based on the computed features of the training areas, in our case plots 

with a known land use. On the basis of the separability matrix a selection of 

potentially best-performing features can be carried out. All these steps can be run in 

a batch mode for different directions and distances combinations, resulted in a 

collective representation of the output separability matrices. The separability values 

are sorted in a descending way with relative batch number. Subsequently the texture 

feature calculation is invoked for all image cells corresponding to the plots of the 

study area. Technically this implies another run of the feature extraction module with 

an adjusted reduced parameter set. 
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Figure 4.2. Methodological flowchart. 
 

 

Finally, the classification module comes into the game. It exploits the entries of the 

feature attribute tables and assigns a code of class membership to each plot 

polygon. Graphically the classification result can quickly be assessed since the class 

code is visualised in the graphic data window in associative colour codes. Figure 4.2 

shows the methodological flow chart applied in this study. 

 

4.4.2  GIS Integration 

The strength of GIS lies in its potential to provide a comprehensive database and 

analytical capabilities to be applied to a wide range of geo-referenced data sets, 

including those obtained by means of digital image analysis. Databases need 

frequent updates (Gao 2009), land use/cover is a prominent example. While land use 

often remains quite static on a highly generalised observation level, as in case of a 

coarse classification into agricultural, forested, built-up areas and water bodies, land 

cover change becomes an extremely dynamic process if we look more closely, for 

example at the crops cultivated and their status on a plot basis. With the principal 

objective of agricultural monitoring in mind, the benefits of using a GIS as data 

management and analysis platform become obvious: Database updates can be 

assisted by provision of specialised image analysis tools. Aerial photographs, satellite 

images and all digital maps can be activated in the GIS and function as a part of the 

analysis or as a reference to the analysis. Vector GIS data even forms an integral 

part of the processing within the given concept. It represents a-priori knowledge on 
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plot shapes and agricultural crops (training data). The process chain results in a map, 

which can completely be produced using built-in GIS functionality. 

 

4.5  Selected Model Features in Detail 

4.5.1  Grey-Level Co-Occurrence Matrix (GLCM) 

The principal concept of a grey-level co-occurrence matrix (GLCM) is that the texture 

information contained in an image is expressed by the adjacency relationship of grey 

values. It is assumed that the texture information is specified by frequencies fij within 

the GLCM, where fij denotes the frequency of occurrence of a grey value pair i and j 

respectively, separated by a distance d in a specific direction α within the image. 

Basically, co-occurrences can be calculated for any direction and distance (cf. 

Figures 4.3 and 4.4). Practically, only four directions corresponding to angles of 0°, 

45°, 90°, and 135° are used, since they coincide with the cell topology. 

Figure 4.3a represents a 4 x 4 image with four grey levels. Figure 4.3b displays the 

general form of the corresponding GLCM. For example, the value contained in cell (2, 

3) represents the number of times that grey levels 2 and 3 co-occur in a specific 

direction and distance. Figures 4.3c through 4.3f present the results for four 

directions given above with d = 1, while H, V, LD, and RD denote the angles of 0° 

(horizontal), 90° (vertical), 135° (left diagonal), and 45° (right diagonal), respectively. 

Instead of directly using the frequency values, it is common practice to normalise in a 

GLCM in order to avoid scaling effects (Tso & Mather 2009).  

 

4.5.2 Features Derived from GLCM 

Already Haralick et al. (1973) proposed a variety of texture measures based on the 

GLCM and termed them textural features. In the following text, p(i, j) denotes the 

(i,  j)th entry within a normalised GLCM, and N denotes number of grey levels. All 

suggested textural features are extracted from these grey-tone spatial-dependence 

matrices. One group of these measures relates to image properties such as 

homogeneity, contrast, and the presence of an organised structure. Another group 

indicates the nature of grey-value transitions. It is, however, hard to identify which 

verbally specified textural feature is exactly represented by each numeric feature 

(Tso & Mather 2009). All features measure different properties, but are nevertheless 

not independent of each other. The texture-feature equations are listed in Table 4.1. 



4 Texture Analysis Module 
 

52 
 

The homogeneity measure indicates local uniformity. If elements concentrate on the 

main diagonal, its value will be high (Navulur 2007). Conversely, the contrast is high, 

if high frequencies occur distantly from the main diagonal. Dissimilarity indicates how 

far adjacent elements are located from each other intensity-wise (Navulur 2007). The 

measure of the ASM will output a higher value when co-occurrence frequencies p(i, j) 

concentrate at few spots in the GLCM. If the p(i, j) entries are dominantly close to 

each other, then ASM will generate a small value. High ASM values indicate textural 

homogeneity, low values indicate heterogeneity (Tso & Mather 2009). 

 

 

 

Figure 4.3. (a) A 4 x 4 image with four grey levels. (b) General form of GLCM with 
grey levels 0–3. The value in cell (i, j) stands for the number of times grey 
levels i and j occur with a specific direction and distance d. (c)–(f) present 
the results with respect to the four principal directions 0°, 90°, 135°, and 
45° degrees, and d = 1 (from Tso & Mather, 2009). 
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Table 4.1. Texture Features on the basis of a GLCM (after Haralick et al. 1973). 

Homogeneity Homo.ൌ
P୧,୨

1  ሺi െ jሻଶ

ିଵ

୧,୨ୀ

 

Contrast Con.ൌ  ܲ,ሺ݅ െ ݆ሻଶ
ேିଵ

,ୀ

 

Dissimilarity Diss. ൌ  ܲ, |݅ െ ݆|
ேିଵ

,ୀ

 

Angular Second Moment  

(ASM) 
ASM ൌ ሾܲሺ݅, ݆ሻሿଶ

ேିଵ

,ୀ

 

Energy Energy ൌ  ܯܵܣ√

Entropy Entropy ൌ  ܲ,

ேିଵ

,ୀ

ሺെ ln ܲ,ሻ 

GLCM Mean ߤ ൌ  ݅

ேିଵ

,ୀ

ሺ ܲ,ሻ ߤ ൌ  ݆

ேିଵ

,ୀ

	ሺ ܲ,ሻ 

GLCM Variance ߪ
ଶ ൌ  ܲ,

ேିଵ

,ୀ

ሺ݅ െ ሻଶߤ ߪ
ଶ ൌ  ܲ,

ேିଵ

,ୀ

	ሺ݆ െ  ሻଶߤ

GLCM Standard Deviation ߪ ൌ ටߪ
ଶ ߪ ൌ ටߪ

ଶ 

GLCM Correlation GLCM Corr.ൌ  ܲ,

ேିଵ

,ୀ


ሺ݅ െ ሻሺ݅ߤ െ ሻߤ

ඥሺߪ
ଶሻሺߪ

ଶሻ
൩ 

 

 

 

In comparing energy and ASM, the first measure reacts on the extent of pixel pair 

repetitions; and the second one on the pixel orderliness (Navulur 2007). The entropy 

measure outputs a high value for a very even distribution of entries of p(i, j) to the 

GLCM, and a low one for sharp peaks within the matrix (Tso & Mather 2009). Entropy 

is a measure of randomness, and it will be at maximum when all the elements of C 

are equal (Navulur 2007).  
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Despite of a frequent use, there are disadvantages of grey-level co-occurrence 

matrices. There exists no established method for determining an optimum dimension 

of a displacement vector d and the angle α, which together define the partner cells to 

be compared. Second, a large number of properties can be computed from the co-

occurrence matrices which, consequently, requires an intelligent feature selection 

approach in the follow-on steps (Rahul 2008; Weng 2010). Third, each co-occurrence 

matrix must be computed for a spatially fixed group of pixels or objects. The result 

will be scale-dependent, since the analysis window determines what features will be 

highlighted (Lam et al. 2004). 

 

4.5.3 Calculation of Separability 

Separability for each class-pair of land cover types was quantified in two steps: the 

Jeffries-Matusita Distance J (Equation 2) was calculated using the Bhattacharya 

Distance B (Equation 1) as an intermediate result (Nussbaum & Menz 2008). Then 

the threshold T for each pair of the classes was calculated using the Equation 3.  
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The values of J range from 0 to 2.00 and are commonly divided into 4 classes 

according to the following assumptions (Mróz & Mleczko 2008): 

 0 < J ≤ 1.0 : very bad separability: classes have to be redefined 

 1.0 < J ≤ 1.8 : bad separability: classes rather have to be merged 

 1.8 < J ≤ 1.9 : good separability: good results can be expected 

 1.9 < J ≤ 2.0 : very good separability: perfect results can be expected. 
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4.6  Implementation 

The present model has been implemented as an add-in to ESRI ArcGIS software. A 

toolbox allowing any user interaction to the added functionality can be opened. It 

makes use of the extensive programming interface of ArcGIS: The ArcObjects 

libraries. They give access to the complete built-in program functionality via COM 

classes and a COM-compatible programming language. As programming 

environment VB.NET has been chosen to build this model. Main programming tasks 

have been dedicated to the GLCM calculation on a polygon-feature basis (plots) and 

the derivation of the ten texture measures including the assignment of their values to 

the plot-attribute table. Moreover, the program extracts and displays the separability 

measures, in order to assist the user in successful texture-feature choice. Moreover, 

the above mentioned calculations can be run in a batch mode. Figure 4.4 shows the 

user interface generated for these tasks. 

 

The proposed interface was designed to provide different capabilities for more 

flexible interaction according to the available data characteristics. This can be 

described as follow: 

1- The model can be run one time for specific combination, either for one class-

pair or for all classes 

2- The processed parcels can be divided into subgroups in case of the large 

parcels number that exceeds the computer processing capacity. 

3- For the available dimensions and distances, all possible combination can be 

selected. 

4- The pixel-value range for the GLCM calculation can be adjusted according to 

the data used. Therefore, the very low values (i.e. close to zero) or the very 

high values can be excluded if required.  

5- Separability value is calculated for selected features for quick review. While 

the statistics and thresholds are displayed, as in Figure 4.5, for selected class-

pair. Figure 3.6 shows the output separability matrix for all class combinations. 

6- The “copy” button copies the separability values of the selected class-pair to 

the clipboard (i.e. can be pasted in a text file) which can be used for further 

analysis. 
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Figure 4.4. User interface for texture and separability calculation (top: one run, down: 
batch mode). 
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7- The batch mode is designed to save different combinations of distances and 

directions in a batch file to be run in a batch mode. Then both batch file and 

the separability matrices are saved as text files. 

8- Figure 4.7 shows the output of the batch process, where all separability 

matrices are listed. The separability values are sorted in a descending order 

followed by the combination-number in the batch file. Therefore, the best 

separability values can be easily defined and the corresponding combination.  

9- The final step is to run the model for all parcels using the best defined texture 

features from the previous steps. In this case the model can be run for one 

direction/distance combination (Figure 4.8) or in a batch mode (Figure 4.9) 

using the required combinations and corresponding field-name to be saved in 

the parcels attribute-table.   

   

 

 

 

 

Figure 4.5. User interface showing the statistics and threshold output of one 
class-pair.  
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Figure 4.6. User interface for separability output for one run. 
 
 
 

 

Figure 4.7. User interface for the output separability matrices of the batch process. 
Where the separability values are sorted in a descending order followed 
by the corresponding combination number in the batch file.  
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Figure 4.8. User interface for the final texture calculation step in case of a single run. 
 
 
 

 

Figure 4.9. User interface for the final texture calculation step in case of a batch 
mode. 
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4.7  Results of the Model Application 

This Section is dedicated to model functionality and texture feature extraction, 

comparison between different parameters used in the model, in addition to the effect 

of speckle filtering on the separability values. In this case, the separability is used to 

test and evaluate the developed model for different functionalities. In addition to the 

separability, the model supports different feature-selection methods. They will be 

discussed in Section 5 besides their performance in terms of data reduction, and 

classification accuracy.       

 

4.7.1 Influence of Image Quantization  

In order to determine the influence of image quantisation, the subset images have 

been rescaled to quantisation levels of 32, 64, 128, and 256. A uniform pixel distance 

of 1 in the 4 directions has been checked. Then, the separability values were 

statistically analysed with respect to varying quantisation using the ANOVA test. The 

results show no significant difference in separability values calculated from different 

grey levels in the case of TSX image and PALSAR, except for PALSAR there is only 

a significant difference (p < 0.01) in the 2nd Angular Moment of HV-Band (Table 4.2). 

Accordingly, the user can compress the image with no significant loss of accuracy, 

especially in case of a large input image or a big number of parcels, in order to 

reduce memory space and computing time. The following results are based on a 

grey-value reduction to 5-bit data (32 grey-levels).  

 
4.7.2 Feature Extraction 

TerraSAR-X images (31/05/2011 and 17/06/2011) and ALOS PALSAR (31/05/2010) 

were used in order to investigate the behaviour of texture features of the predefined 

land cover types. The model has been used in the proposed order. First, the actual 

land cover classes were assigned to all plots. For this, the texture features were 

calculated for all plots using different distances and directions for further analysis. 

Then, the separability was calculated by means of the Jeffries-Matusita Distance (cf. 

Figure 4.4).  
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Table 4.2. Significant differences in the mean of separability values of image 
quantisation levels.  

Texture Feature 
Significance 

TSX ALOS B1 ALOS B2 

Mean 1.000 1.000 1.000 

Standard Deviation 0.999 0.999 0.997 

Homogeneity 0.992 0.908 0.362 

Contrast 1.000 0.994 0.997 

Dissimilarity 1.000 0.992 0.998 

Sec. Angular Moment 0.890 0.095 0.006 

Energy 0.897 0.068 0.037 

Entropy 0.962 0.019 0.588 

GLCM Mean 1.000 1.000 1.000 

GLCM Variance 1.000 1.000 1.000 

GLCM Standard Deviation 0.972 0.995 0.484 

GLCM Contrast 0.929 0.977 0.642 

 

 

4.7.3 Influence of Direction 

In order to investigate the effect of the direction, each direction has been combined 

with all distances. The distance effect can thus be minimised, while the direction 

effect is emphasized. Therefore, the available four directions were tested for both 

TSX and PALSAR data. The results showed that for some class-pairs there are no 

significant differences between different directions, while others showed a strong 

response to the direction. For TerraSAR-X images the results showed, in general, no 

significant effects of the direction on the separability values in the case of GLCM-

Mean, GLCM-Variance and GLCM-Contrast. For PALSAR image this occurs only for 

GLCM-Mean and GLCM-Variance. For other texture features the direction-effect 

varies from one feature to another according to the class-pair.   

In the TSX image (31/05/2010) the response of different class-pairs to the direction 

ranges from slight effects in the case of cereals-orchards and cereals-maize (Figure 

4.10a and b), to significant effects like for maize-grass and maize-rape (Figure 4.10c 

and d). In case of the cereals-orchards and cereals-maize (Figure 4.11a and b) for 

the TSX image (17/06/2010) the effect was also weak, while it was significant in the 
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case of cereals-rape (Figure 4.11c and d).  On the other hand, the HH-polarisation of 

the PALSAR image (31/05/2010) shows a significant response to different directions 

in all class-pairs; i.e. cereals-maize and maize-grass (Figure 4.12a and b). While for 

HV polarisation the minimum effect was found in the case of cereals-orchard, there 

was a significant effect in some class-pairs, i.e. grass-rape (Figure 4.12c and d). For 

PALSAR imagery, in general, a direction setting of 135° shows a strong response on 

the J values for most features. 

 

4.7.4 Influence of Distance 

To emphasize the effect of distance, each distance has been combined with all 

directions. Thus, the direction effect can be minimised. The available five distances 

were tested for both TSX and PALSAR data. The results indicate that, in general, no 

significant effect of the distance on the separability values of GLCM-Mean and 

GLCM-Variance for all SAR data and all parcel-pairs.  

In the case of the TSX image (31/05/2010) the response of different class-pairs to the 

distance ranges from slight effects in case of cereals-orchard (Figure 4.13-a), to a 

significant effect for maize-grass (Figure 4.13b). For the TSX image (17/06/2010) the 

effect was also weak in case of orchards-grass (Figure 4.13c), while it was significant 

in case of cereals-grass (Figure 13d).  On the other hand, for the PALSAR image 

(31/05/2010) the HH polarisation shows a significant response to different directions 

in all class-pairs, i.e. cereals-maize and maize-rape (Figure 4.14a and b). While for 

the HV polarisation there was almost no effect in the case of cereals-orchard, there 

occurred a significant effect in other class-pairs, i.e. for grass-rape (Figure 4.14c and 

d). 
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 (a)  (b) 

   

(c) (d) 

Figure 4.10: Effect of direction on separability values for TSX imagery (31/05/2010). 
 
 

 (a)  (b) 

(c) (d) 

Figure 4.11: Effect of direction on separability values for TSX imagery (17/06/2010).        
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 (a)  (b) 

(c) (d) 

Figure 4.12: Effect of direction on separability values for ALOS imagery (31/05/2010); 
a, b) HH polarisation and c, d) HV polarisation. 

 
 

 
( a ) ( b ) 

 
( c ) ( d ) 

Figure 4.13: Effect of distance on separability values for TSX imagery (a, b: 
13/05/2010 and c, d: 17/06/2010).  
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( a ) ( b ) 

( c ) ( d ) 

Figure 4.14: Effect of distance on separability values for ALOS imagery (31/05/2010); 
a, b) HH polarisation and c, d) HV polarisation 

 
 
 
4.7.5  Influence of Speckle Filtering 

 
The effect of different speckle filters on separability values has been investigated. In 

this case, the distance was set to one combined with all directions, and then the 

separability values were calculated for the studied images. On the other hand, 

different signal-to-noise ratio (SNR) and equivalent number of looks (ENL) were 

calculated. As shown in Table 4.3, Gamma, Mean and Lee filters perform better in 

SNR and ENL measures. However, for some class-pairs the behaviour of these filters 

varies significantly in separability values. Moreover, the non-filtered TSX image 

achieved a higher separability value for some class-pairs. Two texture features, 

namely Homogeneity and Angular 2nd moment for the image from 31/05/2010 were 

chosen as an example to explain the variation in separability regarding to the filter 

type (Figure 4.15).  

As shown in Figure 4.15a, the Gamma (3x3) filter improved the separability value for 

the cereals class-pairs, while the Median (3x3) filter improved the separability of 
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maize-grass. In the case of angular second moment (Figure 4.15b), the Gamma 

(3x3) filter improved the separability value for the cereals class-pairs, while the non-

filtered image improved the separability of maize-grass and grass-rape. On the other 

hand, it is noticed that for most of the class-pairs (especially in the case of cereals) 

the kernel size of 3x3 performs better than 5x5 and 7x7. Figure 16a shows that the 

(5x5) kernel size performed better for maize-grass. In Figure 4.16b, the (3x3) kernel 

size either performs better (in most cases) or slightly lower than other kernel sizes. 

It can be concluded that, the performance of different filters varies according to the 

land-cover type. Thus, for better separability between land-cover classes, more than 

one filter-type could be applied. Moreover, the results showed that, in general, the 

small kernel-size performs better than the larger ones. This can be attributed to the 

effect of the large kernel-size on speckle reduction and consequently to reducing the 

texture variation in the image.       

    

 

        Table 4.3. Signal-To-Noise Ratio and ENL for different filters of TSX 31/05/2010. 

Filter Kernel size SNR ENL

Adaptive 
Median 

3x3 26.71 35.68 
5x5 21.25 54.38
7x7 19.09 76.97

Frost 
3x3 23.19 44.43 
5x5 19.59 67.06
7x7 17.78 98.61

Lee 
3x3 21.65 51.21 
5x5 17.40 93.83
7x7 15.91 150.64

Local 
Region 

3x3 18.80 33.24 
5x5 15.51 47.38
7x7 14.38 68.40

Mean 
3x3 21.50 51.90 
5x5 17.12 96.63
7x7 15.60 155.27

Median 
3x3 21.77 45.33 
5x5 17.19 82.39
7x7 15.58 129.30

Local 
Sigma 

3x3 27.12 30.40 
5x5 25.68 36.90
7x7 25.00 41.13

Gamma 
3x3 21.50 51.90 
5x5 17.12 96.63
7x7 15.60 155.27
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Figure 4.15. Effect of filter type on separability values for TSX imagery of 31/05/2010. 
a) homogeneity, and b) angular 2nd moment texture features.   
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Figure 4.16. Effect of filter’s kernel size on separability values for TSX imagery of 
31/05/2010. a) homogeneity, and b) angular 2nd moment texture features.    
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4.8  Conclusion  

Texture analysis on a pre-defined plot basis proved to have a high potential in 

processing SAR images for the use in land cover classification. Full flexibility is 

offered by the developed software solution with respect to features, directions, and 

distances associated to texture, whilst the performance of all members of the 

calculated feature space can well be evaluated and reduced to a best-performing 

subset. Various feature combinations can easily be tested. Some of them can 

deliberately be included or excluded to estimate individual effects like those of 

direction or distance.  

The so far developed software might help in gaining more knowledge about the 

information content of high-resolution SAR imagery in relation to the acquisition date. 

Until present all tests have been carried out with images presenting late spring 

phenology of the farm land. Using a time-series comprising phenological stages from 

late winter till harvest time might reveal variations of image texture due to cultivation 

measures and plant development. The prediction of an optimum data acquisition time 

is feasible. 
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5 Plot-Based Multi-Direction /-Distance Texture Analysis Model 
for Agricultural Land Cover Classification Using SAR Data  

 
II - Classification Module 

 

 

5.1  Introduction 

As discussed in the previous section, the multi-distance and multi-direction Texture 

Analysis and Classification (TACL) model supports various classification approaches. 

Whereas the integration with R programming language facilitates a wide range of 

classification capabilities. This results in a flexible use and choice of the proper 

classification method according to the given classification problem. This section aims 

to give an overview of the main classification methods used in this model. Also, to 

evaluate those approaches using extracted SAR texture features for land cover 

classification. The optimum texture features could be defined depending on the 

separability value, as explained in the previous section, in addition to other data 

selection methods. 

Different land-use/cover classification methods may be needed for different problems 

under different environmental conditions, making generalization and hence 

automation of the image classification process across time and space extremely 

difficult (Nina 2008). The question which classification approach is suitable for a 

specific study is not easy to answer. Different classification results may be obtained 

depending on the classifier(s) chosen (Lu & Weng 2007). As a result, new and 

sophisticated classification methods designed to improve the classification process 

continue to appear in the literature (Gong 2006; Jensen 2005; Nina 2008). Various 

approaches have been developed and successfully applied to SAR data, such as 

Maximum likelihood (Davidson et al. 2006; Frery, Correia & Freitas 2007; Kwarteng 

et al. 2008; Xing et al. 2010), fuzzy methods (Carincotte, Derrode & Bourennane 

2006; Kersten, Lee & Ainsworth 2005; Park & Moon 2007), support vector machine 

(Lardeux et al. 2009; Lardeux et al. 2011; Michifumi Yoshioka, Toru Fujinaka & 

Sigeru Omatu 2008; Zhang et al. 2010), artificial neural network (Kuplich 2006; Peng, 

Wang & Zhang 2005; Zhang & Wu 2011; Zhang, Wu & Wei 2009), logistic regression  
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(Borghys et al. 2006), object-based classification (Benz et al. 2004; Definiens AG 

2007; Evans et al. 2010) and others. However, these methods require extensive 

training and human supervision (Nina 2008). 

Lu and Weng (2007) suggest that designing a suitable image processing procedure 

is a prerequisite for a successful classification of remotely sensed data into a 

thematic map. Effective use of multiple features of remotely sensed data and the 

selection of a suitable classification method are especially significant for improving 

classification accuracy (Lu & Weng 2007). Many factors, such as spatial resolution of 

the remotely sensed data, different sources of data, a classification system, and 

availability of classification software must be taken into account when selecting a 

classification method for use. Different classification methods have their own merits.  

Non-parametric classifiers such as neural network, decision tree classifier, and 

knowledge-based classification have increasingly become important approaches for 

multisource data classification (Lu & Weng 2007). With non-parametric classifiers, 

the assumption of a normal distribution of the dataset is not required. No statistical 

parameters are needed to separate image classes. Non-parametric classifiers are 

thus especially suitable for the incorporation of non-spectral data into a classification 

procedure. Much previous research has indicated that non-parametric classifiers may 

provide better classification results than parametric classifiers in complex 

landscapes. Among the most commonly used non-parametric classification 

approaches are neural networks, decision trees, support vector machines, and expert 

systems (Lu & Weng 2007). Integration of remote sensing, geographical information 

systems (GIS), and expert system emerges as a new research frontier (Lu & Weng 

2007). 

 

5.2  Feature Extraction and Selection 

Selecting suitable variables is a critical step for successfully implementing an image 

classification. Many potential variables may be used in image classification, such as, 

textural or contextual information, multi-temporal images, multi-sensor images, and 

ancillary data. Due to different capabilities in land-cover separability, the use of too 

many variables in a classification procedure may decrease classification accuracy 

(Price, Guo & Stiles 2002). It is important to select only the variables that are most 

useful for separating land-cover or vegetation classes, especially when hyper-
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spectral or multisource data are employed (Lu & Weng 2007). Many approaches, 

such as principal component analysis, discriminant analysis, non-parametric 

weighted feature extraction, and Bhattacharyya distance, Jeffreys–Matusita distance 

(Asner & Heidebrecht 2002; Lobell et al. 2002; Myint 2001; Okin et al. 2001; Platt & 

Goetz 2004) may be used for feature extraction in order to reduce the data 

redundancy inherent in remotely sensed data or to extract specific land-cover 

information (Lu & Weng 2007). 

In practice, a comparison of different combinations of selected variables is often 

implemented, and a good reference dataset is vital. In particular, a good 

representative dataset for each class is the key for implementing a supervised 

classification. The divergence-related algorithms are often used to evaluate the class 

separability and then to refine the training samples for each class (Lu & Weng 2007). 

 

5.3  Feature Selection Methods 

The TACL model supports several feature selection methods. In addition to the 

separability method, which is discussed in Section 3, there are two approaches 

available in the classification module. Attribute selection approach and Principle 

Component Analysis (PCA) approach. 

 

5.3.1  Attribute Selection Approach 

The attribute selection approach provides various functions for selecting attributes 

from a given dataset. This process identifies and removes as much of the irrelevant 

and redundant information as possible. This approach contains different algorithms 

for filtering attributes, i.e. Entropy (H) based filters (information gain, gain ratio, 

symmetrical uncertainty), and Random Forest filter (random forest importance). In 

addition, algorithms for choosing a subset of ranked attributes based on attributes’ 

weights. These algorithms are available in “FSelector” package which is utilised in 

the current model (Piotr 2011). 

 

5.3.1.1 Entropy-Based Filters  

The algorithms find weights of discrete attributes based on their correlation with 

continuous class attribute. 

- Information Gain is 
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- Gain Ratio is 
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- Symmetrical Uncertainty is 

 

2	
ሻݏݏ݈ܽܥሺܪ  ሻ݁ݐݑܾ݅ݎݐݐܣሺܪ െ ,ݏݏ݈ܽܥሺܪ ሻ݁ݐݑܾ݅ݎݐݐܣ

ሻ݁ݐݑܾ݅ݎݐݐܣሺܪ  ሻݏݏ݈ܽܥሺܪ	
 

 

5.3.1.2 Random Forest Filter 

The algorithm finds weights of attributes using Random Forest (RF) algorithm. RF is 

a newly developed machine learning algorithm as an extension to classification and 

regression trees (CART). The basic idea is to construct many trees using random 

vectors sampled from a data set. RF is able to provide a number of excellent 

features, for instance, the capability of handling a large number of variables, ranking 

the variables, and detecting the interaction among the variables (Yang 2010). 

 

5.3.1.3 Cut-offs Algorithms 

These algorithms choose a subset of ranked attributes based on attributes’ weights. 

Therefore, after finding these weights through different filter-attribute algorithms, a 

specific subset can be extracted using one of the following methods: 

    

- Cutoff k: chooses k best attributes 

- Cutoff k percent: chooses best k * 100% of attributes 

- Cutoff biggest difference: chooses a subset of attributes which are significantly 

better than others. 

 

5.3.2  Principle Component Analysis 

Principal component analysis (PCA) as statistical technique aims, in general terms, at 

reducing the complexity of the interrelationships among a potentially large number of 

observed variables to a relatively small number of linear combinations of them, which 



 5 Classification Module 
 

74 
 

are referred to as principal components (Raykov & Marcoulides 2008). These 

components are uncorrelated, and ordered so that the first few retain most of the 

variation present in all of the original variables (Jolliffe 2002). 

 

5.4  Use of Multiple Features of Remotely Sensed Data 

As discussed previously, remote-sensing data have many unique spatial, spectral, 

radiometric, temporal and polarisation characteristics. Making full use of these 

characteristics is an effective way to improve classification accuracy. Generally 

speaking, the feature of spectral response is the most important information used for 

land-cover classification. As high spatial resolution data become readily available, 

textural and contextual information become significant in image classification (Lu & 

Weng 2007). 

 

5.5  The R Environment 

R is an environment for data analysis and graphics based on a high-level language 

(Crawley 2007). It is an open-source project developed by dozens of volunteers 

(Everitt & Hothorn 2006)  and is made available through the Internet under the 

General Public License (GPL). This means it is supplied with a license that allows 

you to use it freely, distribute it, or even sell it, as long as the receiver has the same 

rights and the source code is freely available (Dalgaard 2002).  

R is an integrated suite of software facilities for data manipulation, calculation and 

graphical display. Among others, it has: 

 

 an effective data handling and storage facility, 

 a suite of operators for calculations on arrays, in particular matrices, 

 a large, coherent, integrated collection of intermediate tools for data analysis, 

 graphical facilities for data analysis and display either directly at the computer 

or on hardcopy, and 

 a well-developed, simple and effective programming language (called ‘S’) 

which includes conditionals, loops, user defined recursive functions and input 

and output facilities (Indeed most of the system-supplied functions are 

themselves written in the S language). 

 



                                                      5 Classification Module 

75 
 

The term “environment” is intended to characterise it as a fully planned and coherent 

system, rather than an incremental accretion of very specific and inflexible tools, as is 

frequently the case with other data analysis software. “R” is very much a vehicle for 

developing new methods of interactive data analysis. It has developed rapidly, and 

has been extended by a large collection of packages. However, most programs in “R” 

are essentially ephemeral, written for a single piece of data analysis (Venables, 

Smith & Core Team 2011). 

 

R Packages  

All R functions and datasets are stored in packages. Only when a package is loaded, 

its contents are available. This is done both for efficiency (the full list would take more 

memory and would take longer to search than a subset), and to aid package 

developers who are protected from name clashes with other codes (Venables, Smith 

& Core Team 2011).  

 

5.6  Classification Approaches 

Image classification approaches may be grouped into supervised and unsupervised, 

or parametric and nonparametric, or hard and soft (fuzzy) classification, or per-pixel, 

sub-pixel, and per-field (Lu & Weng 2007). In recent years, many advanced 

classification approaches, such as artificial neural networks, fuzzy-sets, and expert 

systems, have been widely applied for image classification (Lu & Weng 2007). 

The parametric classifiers assume that a normally distributed dataset exists, and that 

the statistical parameters (e.g. mean vector and covariance matrix) generated from 

the training samples are representative. However, the assumption of a normal 

spectral distribution is often violated, especially in complex landscapes. In addition, 

insufficient, non-representative, or multimode distributed training samples can further 

introduce uncertainty to the image classification procedure. Another major drawback 

of the parametric classifiers lies in the difficulty of integrating spectral data with 

ancillary data. The maximum likelihood may be the most commonly used parametric 

classifier in practice, because of its robustness and its easy availability in almost any 

image-processing software. 

With non-parametric classifiers, the assumption of a normal distribution of the dataset 

is not required. No statistical parameters are needed to separate image classes. 
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Non-parametric classifiers are thus especially suitable for the incorporation of non-

spectral data into a classification procedure (Lu & Weng 2007). Much previous 

research has indicated that non-parametric classifiers may provide better 

classification results than parametric classifiers in complex landscapes (Foody 2002). 

Among the most commonly used non-parametric classification approaches are neural 

networks, decision trees, support vector machines, and expert systems (Lu & Weng 

2007). 

 

5.6.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) is a quantitative method for data analysis. It is 

based on the simulation of biological nervous systems' functions. The basic premise 

of this approach is that biological systems perform extraordinarily complex 

computations without recourse to explicit quantitative operations (Rosaria 2007). 

Generally, an ANN is an adaptive system that changes its structure based on 

external or internal information that flows through the network (Bhatta 2010). An 

advantage of ANNs lies in the high computation rate achieved by their massive 

parallelism, resulting from a dense arrangement of interconnections (weights) and 

simple processors (neurones), which permits real-time processing of very large data 

sets (Tso & Mather 2009). Furthermore, the nonparametric nature of ANN, arbitrary 

decision boundary capability, easy adaptation to different types of data and input 

structures, fuzzy output values, and generalisation for use with multiple images, 

making it a promising technique for land-cover classification (Lu & Weng 2007). 

ANN may be viewed as a mathematical model composed of non-linear computational 

elements, named neurons, operating in parallel and connected by links characterised 

by different weights. A single neuron computes the sum of its inputs, adds a bias 

term and drives the result through a general non-linear activation function to produce 

a single output (Pacifici et al. 2008). Since the neural networks do not need any 

information about the probability distribution and a priori probabilities of different 

classes, they are widely used in pattern classification (Zhang, Wu & Wei 2009). 

However the performance of ANN depends to a significant extent on how well it has 

been trained (Tso & Mather 2009). A two-hidden-layer back-propagation neural 

network is adopted with sigmoid neurones in the hidden layers and linear neuron in 

the output layer. In this technique, the available data is divided into three subsets. 
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The first one is the training subset, which is used for computing the gradient and 

updating the network weights/biases, the second one is the validation subset, and 

the third one is the test subset (Zhang, Wu & Wei 2009). 

During the training phase, the neural network “learns” about regularities present in 

the training data, and then constructs rules that can be extended to the unknown 

data. This is a special capability of neural networks. However, the architecture of the 

network, parameters such as the learning rate, and the rate of convergence of a 

neural network must be defined. There are no clear rules to assist with the design of 

the network. In general, five kinds of fundamental neural network architecture have 

been, or can be, used for classifying remotely sensed images. These kinds are the 

multilayer perceptron with back-error propagation, the self-organised feature map 

(SOM), counter-propagation networks, Hopfield networks, and ART systems (Tso & 

Mather 2009). Whereas the multilayer-perceptron with back-propagation technique is 

applied in the current study, it is discussed in quite details as follows.   

 

Multilayer Perceptron 

The multilayer perceptron using the back-propagation learning algorithm (Pacifici et 

al. 2008; Tso & Mather 2009) is one of the most popular type of neural network in 

image classification. However, the accuracy of image classification is sensitive to the 

variation in the dimensionality of a dataset and the characteristics of training and 

testing sets (Lu & Weng 2007). In the case of networks with more than one layer of 

artificial neurons, and only forward connections from the input towards the output are 

allowed, these networks are called Multi-Layer Perceptrons (MLP) or Multilayer Feed-

forward Neural Networks. Where each MLP consists of a set of input terminals, an 

output neural layer, and a number of layers of hidden neural units between the input 

terminals and the output layer (Rosaria 2007). A typical three-layer multilayer 

perceptron neural network is shown in Figure 5.1a. It can be seen that the leftmost 

layer of neurones in Figure 5.1a is the input layer, which contains the set of neurones 

that receive external inputs (i.e. feature values), and performs no computations, 

unlike the elements of the other layers. While the central layer is the hidden layer  

(Tso & Mather 2009).   
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Figure 5.1. a) A typical three-layer multilayer perceptron neural network, and b) 
Example of forward propagation procedure on neurone j  (Tso & Mather 
2009). 

 

 

The classification results are produce by the output layer (the rightmost layer of 

neurones). Within the same layer, there are no interconnections between neurones, 

but all of the neurones in a given layer are fully connected to the neurones in the 

adjacent layers. And the adjusted numerical weights wjm are assigned to the 

interconnections. The value held by each neurone is called its activity am as shown in 

Figure 4.1b. The performance of a multilayer perceptron is controlled by several 

factors: the model-associated parameters, the network structure, and the nature of 

the training samples. Choosing the optimum combination of those factors is very 

difficult. For the most classification problems, a single hidden layer is enough. 

Whereas, for the large number of output classes, using two hidden layers may 

produce a more accurate result (Tso & Mather 2009). 

 

Back-Propagation  

The back-propagation rule is used in the training process of the multilayer perceptron 

(Mather 2004). The discrimination capability of an ANN is contained in its weights. 

During training, the numerical weights wjm are iteratively adjusted towards a 

configuration that allows the network to discriminate the prototype patterns of 

interest. The back-propagation algorithm minimizes the squared error over all 

patterns at the output of the network (Schowengerdt 2007). It involves two major 

steps, namely forward and backward propagation, to accomplish its modification of 

the neural state. The back-propagation is the most popular algorithm used for 
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updating the neuronal activities and the interconnection weights in a multilayer 

perceptron (Tso & Mather 2009).  

 

Neural Networks in Remote Sensing Image Classification 

Neural networks have been most widely used in remote sensing for image 

classification and regression-type analyses. Due to their freedom from restrictive 

assumptions as well as practical demonstrations of their ability to commonly provide 

more accurate outputs than conventional methods, the use of neural networks for 

classifying remotely sensed imagery has developed rapidly (G.M.Foody 2006; Tso & 

Mather 2009). The multilayer perceptron is the most popular neural network classifier 

in remote sensing (Atkinson & Tatnall 1997; Kanellopoulos & Wilkinson 1997; Paola 

& Schowengerdt 1995). Recently, several studies archived higher classification 

accuracy using the Artificial Neural Networks (Canty 2009; Gong, Im & Mountrakis 

2011; Heremans et al. 2011; Shimoni et al. 2009). 

 

5.6.2 Support Vector Machine 

Support Vector Machines (SVMs) has become an increasingly popular tool for 

machine learning tasks involving classification, recognition, or detection. SVM is 

based on the statistic learning theorem theorem’s VC Dimension concept and 

Structure Risk Minimization (SRM) principle. However, the SVM method does not 

need the statistic features of the training samples and it can easily deal with high-

dimension data and nonlinear problems and can also achieve global optimisation 

(Zhang et al. 2010). The aim of Support Vector classification is to devise a 

computationally efficient way of learning 'good' separating hyper-planes in a high-

dimensional feature space. The generalisation theory gives clear guidance about 

how to control capacity and hence prevent over-fitting by controlling the hyper-plane 

margin measures. Optimisation theory will provide the mathematical techniques 

necessary to find hyper-planes optimising these measures, and to study their 

properties (Nello & John 2007). 

SVM fundamental idea is that the feature of input space is mapped into a high-

dimensional feature space through nonlinear transformation. Then the Optimal 

Separating Hyper-plane (OSH) is established in the feature space. The nonlinear 

transformation is implemented by defining a proper kernel function. SVM has two 
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important features. First, the upper bound on the generalisation error does not 

depend on the dimension of the space. Second, the error bound is minimised by 

maximizing the margin, i.e. the minimal distance between the hyper-plane and the 

closest data points (Zhang et al. 2010). 

The attractiveness of SVMs is their ability to minimise the so-called structural risk, or 

classification errors, when solving the classification problem. The structural risk 

minimisation concept adopted by SVMs is to minimise the probability of 

misclassifying a previously unseen data point drawn randomly from a fixed but 

unknown probability distribution. Such a property is also different from the decision 

boundary–forming logic of ANN. Specifically, SVM training always finds a global 

minimum (Tso & Mather 2009). SVMs may reach in terms of accuracy performances 

similar to those obtainable by means of neural networks without suffering from the 

problem of local minima and with limited effort required for architecture design 

(Pacifici et al. 2008). It is not necessarily that all the training samples contribute to the 

building of the hyper-plane, but normally only a subset of training samples are 

chosen as support vectors. This attribute is unique to SVMs. As shown in Figure 5.2, 

only the shaded points are support vectors that define the hyper-plane b separating 

the two classes with maximal distance (Tso & Mather 2009). 

 

 

 

Figure 5.2. Hyper-plane b separates the two classes with the maximal margin. 
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Parameter Determination 

Performance of SVM models can be improved by defining the appropriate 

parameters. Two of these parameters are the Cost of Penalty (C) and Gaussian 

Kernel Parameter (σ). The parameter C influences the classification performance. If 

C is too large, the classification accuracy is very high in training data set, but very low 

in testing data set. If C is too small, the classification accuracy is lower. The 

parameter σ has more influence than parameter C on classification outcome, 

because the value affects the partitioning outcome in the feature space. Over-fitting 

and under-fitting occur in case of large value and small value of parameter σ 

respectively. In order to determine the parameters of SVM models, the Grid search is 

the most common approach. However, this approach is a local search technique, and 

tends to reach the local optima. Moreover, setting appropriate search intervals is an 

essential problem (Cortez 2011; Pai & Hsu 2011). The concept of grid search is 

similar to that of the exhaustive search within a solution space. The user starts by 

randomly choosing the parameter values that are input to the classifier to evaluate 

the t-fold cross-validation performance. Then the parameter values are increased or 

decreased, and the performance is re-evaluated until all the chosen parameters have 

been evaluated (Tso & Mather 2009). 

 

SVM Classification of Remotely Sensed Data 

Recent studies have shown that using SVMs to deal with classification issues may 

result in higher accuracy than other classifiers and also require fewer training 

samples. E.g. Huang et al. (2002) analysed four kinds of classifiers, including SVMs, 

maximum likelihood (ML), ANN and the decision tree classifier, and concluded that 

the SVMs generate more stable overall accuracies (Huang, Davis & Townshend 

2002). Also, Pal and Mather (2005) compare SVMs with ML and ANN methods. The 

results showed that the SVMs achieved a higher level of classification accuracy than 

either the ML or the ANN classifier. Moreover, the SVM can be used with small 

training data sets and high-dimensional data (Pal & Mather 2005). On the other hand, 

Foody and Mathur (2004, 2006) investigated both the characteristics and the size of 

training samples in SVMs, and illustrated the training data acquisition strategies to 

allow efficient and accurate image classification by small training samples (Foody & 

Mathur 2004; Foody & Mathur 2006). The study made by Keuchel et al. (2003) also 
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showed that SVMs are useful in classifying remotely sensed imagery (Keuchel et al. 

2003). 

 

5.6.3 Logistic Regression 

Statistics models are empirical models by nature and include both linear and logistic 

regression models that relate a dependent variable to one or more independent 

variables, which can be further used for prediction and simulation. When both 

dependent and independent variables are numerical, the linear regression model is 

applied. While in the case that the dependent variable is categorical and independent 

variables are numerical, categorical, or both, then the logistic regression should be 

used. Logistic regression uses the natural logarithm of the odds as the dependent 

variable. It does not require linear relationships between the dependent and the 

independents, but does assume a linear relationship between the logit of y and the 

independents. In this sense, logistic regression is still intrinsically linear (Wang, Zhou 

& Yang 2009). 

 

5.6.4 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a learning algorithm which has the advantages 

of simplicity and intuitiveness. It also referred to as Fisher discriminant analysis 

(FDA) and has been widely used in many areas. LDA aims at finding a linear function 

which linearly combines independent variables using a set of weights (model 

parameters) to determine the property of a dependent variable. The linear function is 

also called a hyper-plane which separates two classes of input vectors. The hyper-

plane is called the decision boundary or surface while the linear function is called a 

linear classifier. This linearity does not mean data are completely separable. Data are 

often not separable even when generated from two linearly separable sources. 

Rather they are not separable because of large overlap (Yang 2010). 

 

5.6.5 K-Nearest Neighbour  

K-Nearest Neighbour (KNN) is known as a fast learner because there is nearly no 

learning process at all. The theoretical background of KNN is simple. Imagine that 

there are K training input vectors around a query input vector within a specified 

volume, like shown in Figure 5.3. In this Figure the query input vector denoted by the 
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triangle is surrounded by two classes of training input vectors. Here, training input 

vectors are used to indicate that they have already been classified (Yang 2010). 

 

5.7  Combination of Multiple Classifiers 

Different classifiers such as parametric classifiers (e.g. maximum likelihood) and non-

parametric classifiers (e.g. neural network, decision tree) have their own strengths 

and limitations (Tso & Mather 2009). For example, when sufficient training samples 

are available and the feature of land covers in a dataset is normally distributed, a 

maximum likelihood classifier (MLC) may yield an accurate classification result. In 

contrast, when image data are anomalously distributed, neural network and decision 

tree classifiers may demonstrate a better classification result (Lu et al. 2004; Pal & 

Mather 2003). Previous research has indicated that the integration of two or more 

classifiers provides improved classification accuracy compared to the use of a single 

classifier (Huang & Lees 2004; Steele 2000). A critical step is to develop suitable 

rules to combine the classification results from different classifiers. Some previous 

studies explored different techniques such as a production rule, a sum rule, stacked 

regression methods, majority voting, and thresholds to combine multiple classification 

results (Lu & Weng 2007). 

 

 

 

Figure 5.3. An illustration of KNN. The open circles and the filled circles represent 
two classes of data while the triangle represents a query data point. The 
dashed circle indicates the volume centred by the query data point (Yang 
2010) 
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5.8  Selection of a Classification System and Training Samples 

A suitable classification system and a sufficient number of training samples are 

prerequisites for a successful classification. Cingolani et al. (2004) identified three 

major problems when medium spatial resolution data are used for vegetation 

classification: defining adequate hierarchical levels for mapping, defining discrete 

land-cover units discernible by selected remote-sensing data, and selecting 

representative training sites (Cingolani et al. 2004). In general, a classification system 

is designed based on the user’s need, spatial resolution of selected remotely sensed 

data, compatibility with previous work, image-processing and classification algorithms 

available, and time constraints. Such a system should be informative, exhaustive, 

and separable. In many cases, a hierarchical classification system is adopted to take 

different conditions into account. Many factors, like spatial resolution of the remotely 

sensed data, different sources of data, a classification system, and availability of 

classification software must be taken into account when selecting a classification 

method. Different classification methods have their own merits. The question which 

classification approach is suitable for a specific study is not easy to answer. Different 

classification results may be obtained depending on the classifier(s) chosen (Lu & 

Weng 2007). 

 

5.9  Classification Accuracy Assessment 

In addition to errors from the classification itself, other sources of errors, such as 

position errors resulting from the registration, interpretation errors, and poor quality of 

training or test samples, all affect classification accuracy. In general, the difference 

between an image classification results and the reference data is assumed to be due 

to the classification error. However, to provide a reliable report on classification 

accuracy, non-image classification errors should also be examined, especially when 

reference data are not obtained from a field survey. Generally, a classification 

accuracy assessment includes three basic components: sampling design, response 

design, and estimation and analysis procedures. Selection of a suitable sampling 

strategy is a critical step. The major components of a sampling strategy include 

sampling unit (pixels or polygons), sampling design, and sample size (Lu & Weng 

2007). 

 



                                                      5 Classification Module 

85 
 

The error matrix (sometimes called a confusion matrix or a contingency table) is one 

of the most common means used in classification accuracy assessment. Error 

matrices compare, on a category-by-category basis, the relationship between known 

reference data (ground truth) and the corresponding results of an automated 

classification. Such matrices are square, with the number of rows and columns equal 

to the number of categories whose classification accuracy is being assessed 

(Lillesand, Kiefer & Chipman 2008). The error matrix is used to derive other important 

accuracy assessment elements such as overall accuracy, omission error, 

commission error, and kappa coefficient. The kappa coefficient is a measure of 

overall statistical agreement of an error matrix, which takes non-diagonal elements 

into account. Kappa analysis is recognised as a powerful method to analyse a single 

error matrix and compare the differences between various error matrices (Lu & Weng 

2007). Classification accuracy depends mainly on the quality of features which 

should be robust with maximum discrimination power and must encompass most of 

the information available in the data (Zhang, Wu & Wei 2009). 

 

5.10 Classification Model Description 

5.10.1  Implementation 

As explained in Section 4, the present model has been implemented as an add-in to 

ESRI ArcGIS software. A toolbox allowing any user interaction to the added 

functionality can be opened. On the basis a polygon-feature and the derivation of 

texture measures, and in order to support different classification methods with flexible 

user-controlled selection, two main programming tasks have been dedicated to the 

GLCM calculation.      

For the classification module, the general capability of the “R” environment and the 

available free packages for various elaborate classification techniques, in addition to 

an available interface allowing an integration of R-classes into the VB.NET source, 

were utilised. Figure 5.4 represents the methodological flowchart. The current model 

enables the user to export the training, reference and test data (Figure 5.5) for a use 

in the “R” environment and calls the respective “R” code for the selected classification 

method. For convenience, the “R” code remains invisible to the user, since it is 

generated by the VB.NET program in the background.  

 



 5 Classification Module 
 

86 
 

 

 

Figure 5.4. Methodological flowchart. 
 
 

The corresponding user interface is given in Figure 5.6. Finally, the classification 

results are written back to the ArcGIS polygon attribute table. In addition, 

classification accuracy and kappa index are displayed in the model interface. Using a 

predefined colour scheme, the class assignment becomes visible in the map 

document immediately after the classification has been finished. Moreover, the 

selected features for the classification process can be modified, either manually or 

automatically, using one of the provided methods for feature selection. The model 

supports mainly two options: Attribute Selection methods (Entropy and Random 

Forest; Figure 5.7) and Principle Component Analysis (PCA; Figure 5.8). These two 

options can be applied either to all feature datasets or to a subset of features. On the 

other hand, the confusion matrix is saved as text file and could be shown in a matrix 

“R” Environment 
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format or in graphical format (Figure 5.9). Therefore, different classification methods 

using different combinations of texture features can be quickly evaluated. 

 
 

 

 

Figure 5.5. The user interface for data preparation. 
 
 

 

 

Figure 5.6. The user interface supporting different classification methods. 
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Figure 5.7. The user interface to modify the features selected for classification using 
filtering (attribute selection) methods. 

 
 
 
 

 

Figure 5.8. The user interface to modify the features selected for classification using 
principle component analysis technique. 
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Figure 5.9. The classification accuracy results can be presented as confusion matrix 
(left) and graphical presentation (right). 

 
 
 
5.10.2 R Packages Used in the Model 

Several packages support different classification approaches. In the current model, 

the “rminer” package was chosen. This package facilitates the use of data mining 

algorithms in classification and regression tasks by presenting a short and coherent 

set of functions. While several DM algorithms can be used, it is particularly suited for 

Neural Networks (NN) and Support Vector Machines (SVM) (Cortez 2011). This 

package depends on other packages (nnet, kknn, kernlab, rpart, lattice, methods, 

and MASS). 

   

5.11 Results of the Model Application 

In order to evaluate and compare the supported classification and feature selection 

methods in the TACL model, the subsets of TSX images (dated 31/05/2010 and 

17/06/2010), which are used in Section 4, are applied to land cover classification. 

Thus, both non-filtered images and Gamma (3x3) are used depending on the 

comparison results of different filters discussed in Section 4. A further image, termed 

Mean-TSX image, has been computed which contains the mean pixel intensities from 

both TSX images (Figure 5.10). On the other hand, the total number of plots (183) 

falls into two groups, one for training and a second one as independent reference 

(Table 5.1). The available classification methods were tested and compared for 
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TerraSAR-X images classification. For all classifications, accuracies and kappa 

indices were computed. 

 

5.11.1  Classification and Feature Selection Methods  

TerraSAR-X images were individually used for texture feature calculations. Whereas 

the model supports different feature-selection methods, the same parameters (i.e. 

TSX images, distances and directions) which have been used for separability 

analysis are again used for calculating texture features for all plots. Then, this 

texture-feature set is available for evaluating the feature selection methods in 

comparison to the separability method and their effects on classification results. 

 

 

   

         (a)                                (b)       (c) 
 

Figure 5.10. a) TSX image acquired on 31/05/2010, b) TSX image acquired on 
17/06/2010 and c) Mean-TSX image. Redlines: parcel boundaries. 

 

 

 

Table 5.1. Training and reference data used for land cover classification. 

Crop Training plots Reference plots 

Cereals 53 44 

Maize 4 4 

Rape 7 7 

Grass 4 5 

Orchard 22 33 

Total 90 93 
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Table 5.2. Batch-code for image-direction combinations. 

Direction 
TSX 

31.05.10 

Gamma 

31.05.10 

TSX 

17.06.10 

Gamma 

17.06.10 

Mean 

Image 

0° b1 b5 b9 b13 b17 

45° b2 b6 b10 b14 b18 

90° b3 b7 b11 b15 b19 

135° b4 b8 b12 b16 b20 

 

 

PCA as a feature selection method is important in the case of missing required 

training data for separability calculation (i.e. unsupervised classification). The 

combination of five images, four directions, ten texture features, mean and standard 

deviation of each image results in a total number of 205 features. The feature 

selection interface with checklist facilitates to select specific features; therefore, 

investigating different combinations is available (comparing images, comparing 

directions, etc.).  

 

5.11.1.1 Separability Analysis Approach 

The separability values of texture features for each class-pair were sorted in a 

descending order. The first two-values are shown in Table B.1 (in Appendix B), from 

which the features with high separability values, in general more than 1.75 were 

utilised for classification using different methods. The classification was evaluated in 

two ways; first, using the highest values for each class-pair, after that using the 

highest two values of separability for each class-pair.     

The results show that the classification accuracy varies according to the classification 

method (Table 5.3) and the number of features used in classification (Figure 5.11). In 

general, SVM performs better than other methods in both cases of selected 

separability values, after that come KNN and ANN (mlpe). According to the current 

results, choosing features with the highest separability values (for each class-pair) 

could provide high classification accuracy using SVM method.  
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Table 5.3. Classification performance using features selected by separability 

approach. 

 Highest separability-value Highest two separability-values 

Accuracy % Kappa% Accuracy % Kappa% 

SVM 94.62 91.58 94.62 91.58 

ANN (mlp) 89.25 83.51 91.40 86.90 

ANN (mlpe) 92.47 88.22 91.40 87.11 

KNN 91.40 86.58 93.55 89.94 

LR 81.72 73.70 81.72 73.22 

LDA 91.40 86.56 89.25 83.44 

 

 

5.11.1.2 Attribute Selection Methods 

In this module, two methods are provided Entropy-Based Filters (information gain, 

gain ratio and symmetrical uncertainty) and Random Forest filter (random forest 

importance). To evaluate these methods, different numbers of features were selected 

and used for classification, where the used cut-off method is “number of features”. 

As shown in Tables B.2, B.3 and B.4, the classification accuracy values vary 

significantly from the first method to the second and third methods. Starting with 10 

features, the Information Gain method performed well in the selection of the features 

that achieve significantly higher classification accuracy than other methods. These 10 

features are shown in Table B.7 for all selection methods. It is, however, clear that 

selected features are in general mean, GLCM-mean and GLCM-variance, but the 

corresponding images are different.   

The Information Gain method selected the TSX of 17/06/2010 and the Mean-TSX 

image, while for both Gain Ratio and Symmetrical Uncertainty the selected features 

are the same and the selected images are TSX of 31/05/2010 and Gamma 

31/05/2010. This means that the Mean-TSX image provides more information 

required for classification. Such image is, somehow, a combination between both 

TSX images, in which the pixels having consistent values in both images are 

preserved closed to the original images. On the other hand, the pixels with different 

response in each image are re-presented as the mean values. These conditions exist 

in the current datasets, where the brightness of both maize and rape are too close in 
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the TSX of 31/05/2010 while they are easily distinguishable in TSX 17/06/2010. It 

also happens with some other land cove classes, which results in better separation 

between those classes in the new Mean-TSX image. The selected images in the 

case of Random Forest Importance are the Gamma of 17/06/2010 and the Mean-

TSX image. Therefore, the classification (Table B.5) resulted in the same accuracy 

as that of the Information Gain method. 

 

 

 

Figure 5.11. Performance of different classification methods using features selected 
according to their separability values. 

 
 

On the other hand, for Gain Ratio and Symmetrical Uncertainty, increasing the 

number of features improved the accuracy. Selecting 30 features with Gain Ratio or 

25 with Symmetrical Uncertainty performs the same accuracy as Information Gain or 

Random Forest Importance using 10 features. These last two methods, selecting 

more features than 10, causes a little variation in the accuracy except for the LR and 

LDA methods, where the accuracy decreases with the large number of features. 

Figure 4.13 shows the final assignment to five land-cover types using the SVM 

method based on 40 features, moreover, the confusion matrix and overall 

classification accuracy are illustrated in Table 5.4. 
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5.11.1.3 Principle Component Analysis 

The principle component analysis can be applied to the texture features, and then the 

score values can be sorted in order to select features with highest values for 

classification. In the current comparison the dimension of PC is set to one, and then 

the selection is done with different numbers of features for classification comparison 

as shown in Table B.6. In comparison to the attribute selection methods, the selected 

10 features using PCA (Table B.7) provided high accuracy like that of Information 

Gain method. The selected features are Mean and GLCM-Mean, and the images are 

Gamma (17/06/2010) and Mean-TSX image. More than 25 features, however, 

decrease the accuracy especially for KNN, LR and LDA. 

Figure 5.12 depicts the comparison between different feature-selection methods and 

their performance in terms of the number of selected features, and the achieved 

classification accuracy. It is clear that both “information gain” and “random forest 

importance” perform well in all cases. The highest accuracy was achieved using 

“information gain” method to select 40 features.  

 

 
 

 
 
Figure 5.12. Performance of feature selection methods for different number of 

features and the classification accuracy using SVM. 
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Table 5.4. Overall classification accuracy statistics. 

Reference Data 

Classified Data Cereals Grass Maize Orchard Rape Sum. 

Cereals 44 0 0 0 0 44 
Grass 2 3 0 0 0 5
Maize 0 0 4 0 0 4
Orchard 1 0 1 31 0 33 
Rape 0 0 0 0 7 7
Sum. 47 3 5 31 7 93

Accuracy 

Producer 94 % 100 % 80 % 100 % 100 % 
User 100 % 60 % 100 % 94 % 100 % 
  
khat     93.20 % 

Overall Accuracy 95.70 % 

 
 

 

 

Figure 5.13. Land cover map based on the classification of TSX imagery acquired on 
31/05/2010 and 17/06/2010 using SVM method. 
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5.12  Conclusion 

The developed model provides various classification approaches in a flexible 

interaction like SVM and ANN. In addition, the capability of selecting the optimum 

features for further classification is supported. Feature selection can be conducted 

using i.e. separability analysis and principle component analysis. In order to evaluate 

and compare the supported classification and feature selection methods in the TACL 

model, the subsets of TSX images (dated 31/05/2010 and 17/06/2010) are applied to 

land cover classification. Different texture features were extracted for specific filtered 

images (according the obtained results in Section 4). Then the feature selection 

methods were utilised and subsequently different classification methods were 

evaluated. The results indicated that the separability analysis, entropy (Information 

Gain), random forest and principle component analysis perform well in feature 

selection (or data reduction). On the other hand the SVM performs better than other 

methods.  
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6 TerraSAR-X and ALOS PALSAR Data Application to Land 
Cover Classification 

 

 

6.1  Introduction 

Mapping and identifying land use/land cover (LULC) and its change is a highly 

important as well as the widely researched topic in remote sensing (Nina 2008). 

Radar remote sensing is an increasingly powerful tool for this mapping at regional 

and global scales (Henderson et al. 1998). Besides, Synthetic Aperture Radar 

(SAR) is unaffected by haze and clouds (Richards 2009), SAR data provide 

additional and unique vegetation characterizations when compared with the 

information obtained by optical imagery (Xianfeng et al. 2010). The magnitude of 

radar backscatter from agricultural targets is dependent upon frequency due to the 

variation in water contents and canopy parameters (Henderson et al. 1998). 

Improvement of classification accuracy has been achieved for radar imagery 

(Blaes et al. 2005; Waske and Braun, 2009). Recently, TerraSAR-X (TSX) imagery 

(Baghdadi et al. 2009; Biro 2011; Breidenbach, Ortiz & Reich 2010; Burini et al. 

2008; Esch et al. 2011; Mahmoud et al. 2011; Mróz & Mleczko 2008) and ALOS 

PALSAR imagery (Evans et al. 2010; Torbick et al. 2011; Wang et al. 2009; Zhang 

et al. 2009) have been used in various studies for land cover classification. 

Breidenbach et al. (2010) stated that the use of textural parameters (Haralick, 

Shanmuga & Dinstein 1973; Liang 2008; Lloyd et al. 2004; Tso & Mather 2009), 

object-based classification approaches and multi-temporal data can significantly 

improve the classification result of the TSX images. 

In this section the capability of TerraSAR-X (X-band) and ALOS PALSAR (L-band) 

data for land cover classification in single and combined use, representing a multi-

dimensional approach, is investigated. The TACL Model is used for land cover 

classification. The results show that the combined use of X- and L-Band improves 

the overall classification accuracy. 
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6.2  Multi-Dimensional SAR Data  

Under certain conditions, however, a single channel and date of SAR data, 

provides useful information for crop classification, multi-dimensional SAR data 

improve the classification results (Henderson et al. 1998). In this context, there are 

several approaches for multi-dimensional SAR data (i.e., multi-frequency, multi-

polarisation, multi-date, multi-features, etc.). Another concept for a multi-

dimensional SAR data approach is the combination of tone and texture features 

extracted from a single image. As texture is an important feature in many types of 

images (Liang 2008; Rahul 2008), using textural parameters can improve the 

classification results of SAR images. 

 

6.2.1  Multi-Frequency 

Multi-sensor or multi-frequency data provide more information for the same land-

cover type, whereas the crop-canopy behaviour differs according to the used 

frequency (Baghdadi et al. 2009; Kuhbauch et al. 1995; Schmullius & Nithack 

1995). Multi-frequency data has been applied to various land-cover classification 

studies using different band-combinations. Pierce et al. (1995) used different 

frequencies (X-, C-, L-band) for land-cover classification. They concluded that the 

joint use of both C- and X-band could reveal accurate land cover classification, 

and it is likely that temporal changes can be accounted for in a single classifier to 

allow for accurate single-date classification maps (Pierce et al. 1995). De 

Matthaeis et al (1995) used P-, L-, C-band for crop type identification where they 

found that L band is more effective for crops with low plant density, while C-band 

is better for high plant-density crops (de Matthaeis et al. 1995). 

Recently several studies achieved better results based on the combination 

between L-, C- and X-band. Hoekman et al. (2011) used full-polarimetric C- and L-

band (PALSAR) for classification of agricultural areas (Hoekman, Vissers & Tran 

2011). Jia et al. (2009) studied the effect of integrating C- and X-band (TerraSAR-

X) SAR data on the improvement of classification accuracy (Jia et al. 2009). 

Furthermore, the combined use of TerraSAR-X and ALOS PALSAR for land-cover 

classification (Lardeux et al. 2011; Xin et al. 2010) and for above-ground biomass 

estimations (Dhar et al. 2010; Englhart, Keuck & Siegert 2011) has been 

investigated and found effective in improving the results.  
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6.2.2 Multi-Polarisation 

Multi-polarisation data has an advantage for crop mapping due to the significant 

effect of plant canopy on the depolarisation process. Many studies have been 

carried out using multi-polarisation data for land-cover classification (Stolz & 

Mauser 1995; Wever, Henkel & Hafner 1995). Skriver et al. (1999, 2000) analysed 

the Danish polarimetric L- and C-band SAR (EMISAR) for crop classification. They 

found that both dual-frequency and multi-temporal combination produce large 

improvements over single frequency, single data acquisitions (Skriver et al. 1999; 

Skriver, Schon & Dierking 2000). Jong-Sen et al. (2001) evaluated the 

classification capabilities for fully polarimetric (P-, L-, and C-band) combinations of 

dual polarisation and single polarisation SAR. They found that L-band fully 

polarimetric SAR data are best for crop classification, but P-band is best for forest 

age classification. Also, for crop classification, the L-band complex HH and VV can 

achieve correct classification rates almost as good as for full polarimetric SAR 

data. For forest age classification, P-band HH and VV should be used in the 

absence of fully polarimetric data (Jong-Sen, Grunes & Pottier 2001). 

Furthermore, PALSAR multi-polarisation and polarimetric data have been used for 

land cover/crop classification (McNairn et al. 2009; Xinwu, Touzi & Huadong 

2008). Recently, the combination of different polarisations of ALOS PALSAR and 

TerraSAR-X proved to be effective in land cover classification (Dabrowska-

Zielinska et al. 2010).  

 

6.2.3 Multi-Temporal 

Multi-temporal SAR data reflects variations over time. Therefore the crop 

monitoring and preferred times during the growing season for classification can be 

defined (Baghdadi et al. 2010; Nezry 1997; Park 2010; Schmullius & Nithack 1995; 

Schmullius & Schrage 1998). In addition, the temporal radar signature for land-

cover classes can be investigated. Soo et al. (1998) investigated the temporal 

behaviour of ERS-2 images in delineating and mapping areas under different rice 

cropping systems (Soo et al. 1998). Del Frate et al. (2003) evaluated multi-

polarisation and multi-temporal C-band for crop classification (Del Frate et al. 

2003). Skriver (2008) used multi-temporal and polarimetric L-band for land-cover 

classification. He found that the best overall results are obtained using multi-
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temporal information (Skriver 2008). Lam-Dao (2009) concluded that time-series 

Envisat ASAR imagery can generate accurate maps of rice-planted areas (Lam-

Dao 2009). Also, temporal ALOS PALSAR data was applied to rice mapping 

(Wang et al. 2009). Skriver et al. (2011) used multi-temporal airborne SAR data to 

assess the performance of different polarisation modes for crop classification. 

They found that the multi-temporal information provides better results than that of 

multi-polarisation. If only few acquisitions are available, the polarimetric mode may 

perform better than the single and dual polarisation modes (Skriver et al. 2011).  

 

6.2.4 Multi-Features 

Using different features extracted from SAR imagery improves the classification 

results. Textural features are considered one of the most important features for 

land-cover mapping, especially in case of limited data sets (Paudyal, Eiumnoh & 

Aschbacher 1995; San Martin & Sadki 2004). Texture analysis of a single image 

improves the classification accuracy where the main land-cover classes can be 

defined (Esch et al. 2010; Mahmoud et al. 2011).   

 

6.3  TerraSAR-X and ALOS/PALSAR for Land Cover Classification 

Several studies demonstrated the potentiality of different SAR data for land-cover 

classification. For example TerraSAR-X (Esch et al. 2011; Mahmoud et al. 2011; 

Mróz & Mleczko 2008) and PALSAR (Evans et al. 2010; Torbick et al. 2011; Wang 

et al. 2009; Zhang et al. 2009). In this section the combined use of TerraSAR-X 

and PALSAR will be investigated using the TACL model applying texture analysis. 

 

6.4   Methodology 

6.4.1  Data Used 

In the current Section the following SAR data covering the study area were used: 

TSX data of 31/05/2010 and 17/06/2010 and ALOS PALSAR (31/05/2010). In 

addition, a further image, termed Mean-TSX image, has been computed which 

contains the mean pixel intensities of both TSX images. The used data were 

rescaled to 5 bits (32 grey levels). During the acquisition dates, the following land-

cover classes were mapped in the field: cereal, maize, rape, grass and orchard. 
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Both training and reference data were assigned to the attribute table of the plot 

shape file. 

 

 

 

Figure 6.1. Methodological flowchart. 
 

 
 
6.4.2 Feature Extraction and Classification 

The TACL Model was used in the proposed order to define the proper texture 

features separating between different land-cover classes (using representative 

samples for each land-cover type) and applying those features to all parcels. The 

separability values were used as a guide to calculate the texture features of all 

classes using the proper images and direction-distance combinations. All 

calculated features are stored in one attribute table, which enables further flexible 

selection for single-image attributes or various combinations within which the 

feature selection methods were utilised. The classification was applied to the 

images in a single and combined way. Figure 6.1 illustrates the methodological 

flowchart adapted in this study. 
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6.5   Results and Discussion 

6.5.1  Comparison between Different Grey Scales 

The backscattered images were rescaled into 32, 64, 128 and 256 grey-level using 

2 and 3 standard deviations of the original image (backscattered images). The 

results of separability for each case were compared. In general, the rescaled data 

using 2 standard deviations revealed a higher separability for some texture 

features than when using 3 standard deviations (Table C.1, in Appendix C). The 

grey-scale comparison is illustrated in section 4.7.1. 

 

6.5.2  Comparison between DTM and GIM in Backscattering Calculation 

A subset of the TSX image from 31/05/10 was used in this comparison where the 

backscattering coefficient was calculated in two ways: using the DTM (2m) and 

using the GIM file of the mentioned image. The backscattered images were 

rescaled into 8 bits (256 grey-level) using 2 standard deviations. Then the 

separability values (Table C.2) were calculated for all class-pairs of both images. 

The results show that the separability values are quite similar in both cases. 

Therefore, the GIM method is used for further analysis. 

 

6.5.3  Separability Values  

As shown in Table C.3, in the case of the TSX image of 31/05/2010, the 

separability values for different class pairs indicate that there will be mixed 

classes. For example, for rape-orchard, maize-orchard and maize-rape the 

separability values are poor. Therefore, there will be a mixed classification among 

these pairs. The TSX image of 17/06/2010 revealed better separability values in 

the case of rape-orchard and maize-rape, but still low for maize-orchard.  

Accordingly, a combined use of both images can improve the classification 

accuracy. On the other hand, PALSAR (HV) has, in general, higher separability 

values than the HH polarisation (Table C.4). For example, rape-cereals and 

cereal-orchard are not well separated in HH; also maize-cereal is not well 

separated in HV. Therefore, using each single band will result in a mixed 

classification, while using both bands together improves the classification 

accuracy.  
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6.6   Classification Results 

The most suitable features for classification were defined using the feature 

selection methods available in the model. According to the separability values in 

case of TSX (31/05/2010), the land cover could be classified into three classes: 

cereals/grass, rape/maize and orchards. Therefore, using more sources of 

information, such as multi-temporal or multi-frequency data, improves the 

classification accuracy in addition to the multi-feature approach of the proposed 

TACL model. This model facilitates the investigation of combining different feature-

sources and their performance in classification process. The following are 

examples of such combinations where the SVM approach is selected as the 

classification method. 

 

6.6.1  Multi-Date Example 

In the multi-date approach the texture features of TSX 31/05/2010, 17/06/2010 

and Mean-TSX images (with a total number of 324 features) were tested for 

classification. Different numbers of features were selected using feature selection 

methods and tested with respect of classification accuracy. The best performance 

was reached when using 80 features where the overall accuracy was 88.05% with 

a kappa value of 77.74% (Table 6.1). Figure 6.2a shows the obtained land cover 

map.    

 

6.6.2  Multi-Frequency Example 

The joint use of TerraSAR-X (HH) and PALSAR (HH) was also evaluated. The 

results show that, using features of both images, improved the classification 

accuracy, as all classes could be separated in a better way (Figure 6.2b), since 

the behaviour of different land-cover types differs according to the used frequency. 

In this example, only PALSAR (HH) polarisation is used with TerraSAR-X (HH) to 

investigate the combination of two different frequencies. The total number of 

features for both data types is 277 and the classification was applied using 155 

selected features. The overall accuracy lies at 87.29% with a kappa value of 

83.49% (Table 6.2). 

On the other hand, the same procedure was applied to combine features of TSX 

(31/05/2010) with features of ALOS PALSAR (HV). With 100 selected features the 
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classification accuracy reached 88.98% with a kappa value of 85.67% (Figure 

5.2c). This slight improvement can be attributed to the fact that the HV polarisation 

is more sensitive to the vegetation. 

      

6.6.3  Multi-Polarisation Example 

The classification results of the PALSAR image both HH and HV polarisation show 

lower accuracy than when using two TSX images. This can be attributed to the 

higher resolution of TSX data, In addition to the higher texture-information 

contained in the TSX image. The total number of used features of PALSAR 

(HH/HV) is 253 from which 100 features were selected for classification. The 

obtained accuracy was 77% with a kappa value of 70% (Figure 6.2d). 

  

6.6.4  Multi-Frequency/Multi-Polarisation Example 

The combination of different features from both TSX of 31/05/2010 and ALOS 

PALSAR (HH/HV) from 31/05/2010 was also investigated. A total number of 349 

features were used. This combination achieved higher classification accuracy. 

Using 110 selected features resulted in overall accuracy of 91.5% with a kappa 

value of 88.97% (Table 6.3). The corresponding land-cover map is shown in 

Figure 6.3.           

 

Table 6.1. Overall classification accuracy statistics using features of TSX imagery 

of 13/05/2010, 17/06/2010 and Mean-TSX. 

Reference Data 
Classified Data Cereals Grass Maize Orchard Rape Sum. 
Cereals 41 0 0 0 0 41 
Grass 2 11 1 0 2 16 
Maize 0 2 18 2 5 27 
Orchard 0 0 1 8 2 11 
Rape 0 0 0 3 20 23 
Sum. 43 13 20 13 29 118 

Accuracy 
Producer 95% 85% 90% 62% 69% 
User 100% 69% 67% 73% 87% 
Kappa 100% 65% 60% 69% 83% 
   
khat  77.74% 
Overall 83.05% 
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Table 6.2. Overall classification accuracy statistics using features of TSX imagery 

of 13/05/2010 and ALOS PALSAR (HH) of 31/05/2010. 

Reference Data
Classified Data Cereals Grass Maize Orchard Rape Sum.
Cereals 35 6 0 0 0 41 
Grass 2 13 0 0 1 16 
Maize 0 2 25 0 0 27 
Orchard 0 0 0 9 2 11 
Rape 0 0 0 2 21 23 
Sum. 37 21 25 11 24 118

Accuracy 
Producer 95% 62% 100% 82% 88% 
User 85% 81% 93% 82% 91% 
Kappa 79% 77% 91% 80% 89% 
  
khat  83.49% 
Overall 87.29% 

 

 

 

Table 6.3. Overall classification accuracy statistics of using features of TSX 

imagery of 31/05/2010 and ALOS PALSAR (HH/HV) of 31/05/2010. 

Reference Data
Classified Data Cereals Grass Maize Orchard Rape Sum. 
Cereals 38 3 0 0 0 41 
Grass 1 13 0 1 1 16 
Maize 0 3 23 1 0 27 
Orchard 0 0 0 11 0 11 
Rape 0 0 0 0 23 23 
Sum. 39 19 23 13 24 118 

Accuracy 
Producer 97% 68% 100% 85% 96% 
User 93% 81% 85% 100% 100% 
Kappa 89% 78% 82% 100% 100% 
  
khat  88.98%
Overall 91.53%

 

 

 

 

 



6 TerraSAR-X & PALSAR Application to LCC 
 

106 
 

        
       (a)                                                                                  (b) 
   

          

                                  (c)                                                                                  (d) 

Figure 6.2. Land cover map of the study area using a) TSX imagery of 31/05/2010 
and 17/06/2010, b) TSX and PALSAR HH of 31/05/2010, c) TSX and 
PALSAR HV of 31/05/2010 and d) PLASAR HH/HV acquired on 
31/05/2010. 

 



6 TerraSAR-X & PALSAR Application to LCC 

107 
 

 

 

 

 

 
Figure 6.3. Land cover map of the study area using TSX and PLASAR HH/HV of 

31/05/2010. 
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As shown in Figure 6.2, using both TSX of 31/05/2010 and 17/06/2010 achieved 

higher accuracy for cereal than other combinations. However there is a mixed 

classification between maize and rape. Using TSX of 31/05/2010 and PALSAR 

(HH) improved the separation between maize and rape, but the accuracy of the 

cereal is decreased. In Figure 6.3, using TSX of 31/05/2010 and PALSAR 

(HH+HV) achieved higher overall accuracy (91.53%) than the combinations in 

Figure 6.2.   

 
 
 
6.7  Conclusions 

In the current study, combinations of different features extracted from multi-

temporal TSX data and single-date ALOS PALSAR imagery were investigated for 

land-cover classification. The combined use of TSX and ALOS PALSAR (HH), as 

a multi-frequency approach, improved the LCC accuracy. The improvement was 

higher when using two TSX images of different dates or using PALSAR HH and 

HV polarisations. The TACL model provided a flexible selection of various 

features, in addition to the potential of dealing with a large amount of features. 

Multi-dimensional SAR data proved to possess a high potential for land-cover 

classification (LCC). The findings of the study serve as a testimony of the 

applicability of multi-sensor SAR images for improving the classification accuracy. 
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7 Soil Moisture Mapping using TerraSAR-X Data 

 

 

7.1  Introduction 

Soil Moisture (SM) is important for various applications like crop-water 

management and hydrological modelling. For example, it is required as an 

important input to crop development models to set the initial conditions in the 

spring (Henderson et al. 1998). The deficit or surplus of soil moisture is often the 

key indicator of natural disaster events, such as drought and flood (Du, Shi & Sun 

2010), as soil moisture data is a critical state variable of the watershed in 

assessing flood hazards (Henderson et al. 1998). 

In situ soil-moisture measurements are invaluable for calibrating and validating 

land surface models and satellite-based soil moisture retrievals (Dorigo et al. 

2011). Soil moisture mapping over a large area requires a lot of equipment and 

intensive field work. Therefore, active remote sensing can be applied in soil 

moisture mapping to overcome such problems (Ulaby, Aslam & Dobson 1982). 

Microwave remote sensing is able to provide quantitative information about 

surface soil moisture, particularly in the low-frequency microwave region from 1 to 

10 GHz (Schmugge 1983).  

Soil moisture can be studied at two spatial scales: regional or global scale and an 

agricultural field plot scale approximately between 0.01 and 0.5 km2. At the 

regional scale, different studies attempted to neglect the influence of roughness on 

soil moisture and proposed a linear relationship between surface moisture and 

backscattered radar signals with uncertainty of approximately 0.04 cm3.cm−3. 

While at the scale of an agricultural field, the roughness effect cannot be neglected 

(Anguela et al. 2010). Different studies have focused on coupling the data from 

different configurations in order to retrieve roughness and moisture 

simultaneously. Other analyses implement an approach involving the detection of 

changes while making the hypothesis that one parameter is stabilized (Anguela et 

al. 2010). Ulaby et al. (1978) demonstrated that the influence of surface roughness 



7 TSX for Soil Moisture Mapping 
 

110 
 

decreases with increasing radar frequency (Ulaby, Batlivala & Dobson 1978). The 

dynamics of the relationship between the radar signal and roughness parameter 

are stronger in the L-band than in the C- and X-bands (Baghdadi et al. 2008a; 

Ulaby, Moore & Fung 1986) Moreover, SAR data are more sensitive to soil 

roughness at high incidence angles (Baghdadi et al. 2008a; Baghdadi et al. 2008b; 

Zribi & Dechambre 2003). 

Aubert et al. (2011) concluded that for agricultural bare plots, the effects of soil 

roughness on the TerraSAR-X signal are small and function of the moisture 

content. Moreover, The results demonstrates that the SAR signal in the X-band is 

slightly more sensitive to soil moisture at a low incidence angle (25°), but soil-

moisture mapping can be carried out with either low or high incidence angles, 

because both showed high sensitivities. And the sensitivity of the radar signal to 

soil moisture appears to be higher in the X-band than in the C-band, regardless of 

the incidence angle (Aubert et al. 2011).  

Soil moisture extraction has been investigated using various SAR data sources. 

Paloscia et al. (2010) confirmed the sensitivity of C-band data (ENVISAT/ASAR) to 

SMC even in heterogeneous landscapes with soil covered by dense grass. 

Merzouki et al. (2011) investigated the potential of C-band RADARSAT-2 in 

combination with local autocorrelation statistics to estimate near-surface soil 

moisture. They concluded that the spatial soil moisture pattern was clearly 

captured (Merzouki, McNairn & Pacheco 2011). Several studies investigated the 

L-band SAR data for soil moisture mapping (Kasischke et al. 2011; Mattia et al. 

2009). X-band data has been applied in several studies indicating their potentiality 

in soil-moisture mapping for bare fields and specific conditions of vegetated area. 

Kseneman et al. (2011) used Spotlight TerraSAR-X data for soil moisture mapping 

for bare soils and vegetated areas, obtaining well estimated results (Kseneman, 

Gleich & Cucej 2011).  

In fact, the speckle effects and low resolution (between 10 and 30 m) of the first-

generation SAR data (ERS, RADARSAT-1 and ASAR) prevented the analysis of 

small-scale variations. The high spatial resolution of the TerraSAR-X sensor (1 m) 

provides access to soil-surface heterogeneities at a finer scale (Aubert et al. 

2011). 
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The current Section (soil moisture extraction) represents a continuous work on a 

joint project to investigate the potentiality of TSX and ALOS PALSAR data for soil 

moisture mapping. The first results considered both SAR data types (Elbialy 

2011). The current work investigates only the TSX data, where an additional TSX 

imagery (on 18/04/2011) was acquired. Furthermore, selection of optimum linear-

regression equations takes into consideration the coefficient of determination (R2) 

value besides the ENL and visual evaluation of filtered images, as explained 

below. 

     

7.2  Data Used and Methodology 

7.2.1 Data Used  

The data preparation and processing are explained in Section 3. The data used in 

this section are:   

- TerraSAR-X data namely; TerraSAR-X imagery acquired on 31/05/2010, 

17/06/2010 and 18/04/2011.    

- DTM-based Backscattering coefficient image of TerraSAR-X imagery acquired 

on 31/05/2010.  

 

7.2.2 Field Work 

TDR Measurements 

Synchronise soil moisture measurements were applied around the acquisition time 

using TDR instrument. For each sampling plot, two perpendicular sampling 

sections were applied with total number of 8–12 measurements for the first 5 cm of 

the surface layer. These measurements were filtered to exclude the strange 

values (outliers), and then the mean and standard deviation were calculated. The 

obtained mean is assigned to the representative sampling-point (Figure 7.1) for 

the further processes. 

 

Soil-Moisture Sampling 

Laboratory measurements for volumetric soil moisture were conducted to validate 

the TDR measurements. This validation yielded Route Mean Square Error (RMSE) 

of 0.98 %. Soil core sampler (with height of 5 cm, and diameter of 5 cm) was used 
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to collect relatively undisturbed soil samples for soil moisture measurement. And 

then gravimetric soil moisture content was determined and converted to volumetric 

soil moisture content. These calculations can be explained as following: 
 

Gravimetric	Soil	Moisture ൌ 	
mass	of	water

mass	of	oven െ dried	soil
 

   

Volumetric	Soil	Moisture ൌ 	gravimetric	soil	moisture ∗ soil	bulk	density 

 

Soil Roughness 

Due to some technical limitations, soil roughness has not been investigated. 

However, a recent study by Aubert et al. (2011) found that for agricultural bare 

plots, the effects of soil roughness on the TerraSAR-X signal are small and 

function of the moisture content.    

 

7.2.3 Data Processing 

7.2.3.1 Speckle Reduction 

Two different approaches were applied: 

a) Starting with applying different filters then calculating the backscattering 

coefficient for each filtered image, 

b) Starting with calculation of the backscattering coefficient then applying 

different filters. 

The results of both sequences were compared to find out the highest correlation 

between measured soil moisture and backscattering (σ0); then the best approach 

was defined. The decision was made according to: the ENL of the last product of 

each approach, the coefficient of determination (R2) between the calculated σ0
 

values and the measured SMv data, in addition to the visual evaluation of the 

filtered images. The methodological flowchart is shown in Figure (7.2).  

 

7.2.3.2 Comparison between DTM and GIM for Backscattering Calculation 

This comparison was applied to the TSX image of 31/05/2010 where the 

backscatter coefficient was calculated using DTM (2m) and GIM file accompanied 

with the mentioned TSX image. The image was filtered using different filters and 
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kernel sizes (3x3, 5x5 and 7x7), then the coefficient of determination R2 was 

determined in each case (Table D.1). 

 

 

Figure 7.1. TDR measurements collected during the field work. 
 

 

 

 

Figure 7.2. Methodological flowchart. 
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7.2.3.3 Extracting the Backscattering Values 

The obtained backscattering images from the above mentioned approaches were 

used to extract the sigma naught values which represent the collected samples. 

These images were used directly to extract the sigma naught values. In addition, 

the mean (convolution 3x3) of backscattering image was calculated, and then 

sigma values were extracted to the corresponding sampling point. This process 

was applied using the ArcGIS spatial analyst module (extract multi value to point). 

 

7.3  Results and Discussion 

7.3.1 DTM and GIM for Backscattering Calculation 

The coefficient of determination R2 values (Table D.1, in Appendix D), as an 

indicator to compare DTM and GIM for Backscattering Calculation, show almost 

no significant variation between these two methods under the conditions of the 

studied agricultural area. However, using the higher resolution DTM provided more 

details in undulated areas. In the current study, the GIM data were used in 

backscatter coefficient calculation of TSX data.            

 

7.3.2 Effect of Speckle Reduction on Backscattering 

As shown in Tables D.1 and D3 there are significant differences in R2 values 

according to the applied filtering parameters (type and kernel size). The soil 

moisture is measured in sampling plots (represented as points) and it has some 

kind of heterogeneity within the same field. Whereas the speckle reduction will be 

followed by quantitative image analysis using point targets, therefore, speckle 

filtered images must retain relative gain levels of mean reflectivity, and of impulse 

responses (Henderson et al. 1998). For the tested filters (Tables D.1 and D3) the 

R2 values varies independently of the SNR and ENL (Tables D.2 and D4). 

Therefore, selection of filtered image will be according to R2 value, in addition to 

the visual evaluation of the image.     

TSX (31/05/2010) achieved high R2 value using median filter (5x5) with and 

without convolution mean (3x3). However the smoothed one has lower R2 value 

(0.873) than non-smoothed one with R2 value of 0.935, the smoothed one is 
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selected for further analysis according to the visual interpretation. Whereas the 

non-smoothed one shows the pixel values to be rounded to the integer values. 

        

7.3.3 Soil Moisture Extraction 

The proper filtered images for soil moisture extraction were selected. Then, jointly 

with the measured soil moisture values (Table 7.1) were used to calculate the 

parameters of the linear regression equations (Table 7.2). These equations were 

subsequently used to calculate the soil moisture for each corresponding area (land 

cover class). ERDAS imagine is used to achieve this process with the aid of the 

land cover map of the study area (which is obtained in Section 6). Figure 7.3 

shows the soil moisture distribution over the study area for the studied two land 

cover classes. This pixel based map can be used as an input for some modelling 

process.   

 

      Table 7.1. Measured soil moisture, extracted sigma naught and The R2 values 
for TSX imagery acquired on 31/05/2010 and 17/06/2010. 

Sample 
Nr. 

31/05/2010 17/06/2010 
Early growing 

maize 
Grass Early growing 

maize 
SMv% Sigma0 SMv% Sigma0 SMv% Sigma0 

1 17.73 -9.111 43.85 -11.333 18.12 -10.222 
2 17.98 -8.889 39.91 -13.111 22.04 -9.889 
3 17.48 -8.889 40.23 -12.000 18.81 -9.000 
4 16.41 -8.889 39.85 -12.000 13.28 -11.111 
5 15.17 -10.333 39.76 -12.222 11.27 -12.667 
6 17.78 - 9.000 39.86 -13.000 19.60 -9.556 
7 21.69 -7.444   28.86 -7.778 
8     32.65 -7.222 

R2 0.873 0.495 0.885 
       

 

Table 7.2. Regression equations for TSX acquired on 31/05/2010 and 17/06/2010. 

TSX Land cover Regression equation 

31/05/2010 Early growing maize mv = 2.233 σ°+ 37.71 

31/05/2010 Grass mv = 1.685 σ° + 61.27 

17/06/2010 Early growing maize mv = 3.888 σ° + 58.21 
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Moreover, the plot- boundary map or catchment/sub-catchment map can be used 

to calculate different statistics (i.e. average) of soil moisture distribution for each 

plot or catchment/sub-catchment respectively. TSX image acquired on 17/06/2010 

with lower looking angle performs better than TSX of 31/05/10. This is clear in 

Table D.3 where the R2 values in general are higher in comparison to the TSX of 

31/05/2010 for different filtering parameters. However, in case of the early growing 

maize fields, the R2 value increased only by 0.012. This can be attributed to the 

difference in the plant parameters due to the degree of growth that occurred 

between the two acquisition dates (Appendix E-1). While the crop parameters and 

crop management are still enables the X-band to reach the soil surface.  

The TSX imagery of 18/04/2011 shows various land cover classes (bare-soil, early 

growing maize, cereal, grass, rape and orchard) from which the bare-soil and early 

growing maize expressed high values of R2, while cereal and grass showed lower 

values of R2. These four classes (Appendix E-2) were represented by in-situ soil-

moisture measurements (Table 7.3) and the corresponding linear regression 

equations were calculated (Table D.3). According to R2 values and the visual 

evaluation of the filtered images, two filters were selected as shown in Table 7.4. 

These two filters are the convolution (3x3) of: median 3x3 and median 5x5. The 

obtained equations were applied to each corresponding image and then by 

applying the conditional-statement, they were grouped in one image representing 

soil moisture for the studied land cover classes (Figure 7.4).    

 

Table 7.3. Measured soil moisture, extracted sigma naught and The R2 values for 
TSX imagery acquired on 18/04/2011. 

Sample 
Nr. 

Bare-soil 
Early growing 

maize 
Cereal Grass 

SMv% σ° SMv% σ° SMv% σ° SMv% σ° 

1 23.97 -8.889 21.37 -9.000 27.64 -16.111 39.943 -9.778 
2 24.34 -9.000 23.38 -8.111 27.60 -15.556 38.340 -13.556 
3 22.49 -11.778 25.92 -8.000 27.33 -14.889 37.533 -12.333 
4 24.41 -7.556 21.76 -9.222 27.80 -13.667 38.460 -12.444 
5 22.73 -11.111 21.73 -9.333 27.54 -15.333 38.517 -13.111 
6 23.37 -10.889 19.25 -9.667 25.74 -17.000  

R2 0.892 0.836 0.513 0.569 
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The obtained soil moisture map is a raster format which can be used as input for 

specific modelling. Various statistics can be applied to the raster image as 

required. For example, the average of soil moisture can be calculated for each plot 

(Figure 7.5) or any areal features, i.e. sub-catchments. 

 

 

Table 7.4. Regression equations for TSX acquired on 18/04/2011 and the 
corresponding filtered image. 

Land cover Regression equation  image 

Bare-soil fields mv =  0.4761 σ° +  28.251 Median 3x3_conv3 

Early growing maize mv =  3.0016 σ° + 48.916 Median 5x5_conv3 

Cereal mv =  0.4875 σ° + 34.795  Median 3x3_conv3 

Grass mv = 0.4473 σ° +  44.036 Median 3x3_conv3 

 
 
 

       
                                     

(a)                                                                              (b) 
Figure 7.3. The extracted volumetric soil-moisture over the study area; a) on 

31/05/2010 for early growing maize and grass, and b) on 17/06/2010 
for early growing maize. 
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Figure 7.4. a) Land-cover map, and b) Extracted volumetric soil-moisture using a 
subset of the TSX image acquired on 18/04/2011. 

 
 
 

 
 

Figure 7.5. Average of volumetric soil-moisture at the plot level on 18/04/2011. 
 

 

(a) (b) 
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7.4  Conclusion 

Soil moisture is important for various applications like crop-water management and 

hydrological modelling. In this section, the TerraSAR-X imagery were utilised to 

map the soil-moisture over the study area. In-situ measurements simultaneous 

with the acquisition time were conducted. The effect of different speckle filters was 

studied. In order to find the proper filtering parameters, three criteria were taken 

into consideration. These criteria are; the SNR and ENL, the coefficient of 

determination R2 between the calculated σ0
 values and the measured SM data, 

and the visual evaluation of the image. The results demonstrated that the R2 

values are good indicator in addition to the final visual evaluation. The TSX 

imagery expressed high R2 values for bare-fields and early-growing maize. For 

example, TSX image of 18/04/2011 achieved R2 value of 0.89 for the bare fields 

and 0.84 for the early-grown maize. These results proved the potential use of TSX 

imagery in soil moisture mapping at the field scale. 
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8 Conclusions and Outlook 

 

 

8.1  Conclusions 

A plot-based texture-analysis and classification model has been developed 

supporting the combination of different directions and distances for texture analysis 

and various classification methods. The model has been tested and applied to the 

TerraSAR-X and ALOS PALSAR data. On the other hand TerraSAR-X imagery were 

utilised for soil moisture mapping. The following conclusions can be drawn from the 

present study. 

 Full flexibility is offered by the developed software solution with respect to 

features, directions, and distances associated to texture, whilst the performance of 

all members of the calculated feature space can be evaluated and reduced to a 

best-performing subset, in addition to the potential of dealing with large amounts of 

features for the classification process. 

 The results indicate that multi-distance texture analysis enhanced the separability 

between some classes. Utilizing feature selection methods proved to be efficient in 

data reduction and improving the classification accuracy. Moreover, since all 

classification input is derived from the attribute tables, the feature space can 

eventually be extended to sources different from imagery (terrain parameters etc.). 

 The performance of different filters to enhance separability varies according to the 

land-cover type. Thus, in case of few numbers of images, extracting multi-features 

from different filtered images will increase the classification accuracy. 

 Various classification approaches are available and can flexibly react on different 

data distributions associated with the individual features. The results showed that 

for the current datasets, support-vector machine classification-method performs 

better than KNN and ANN.  

  Combinations of different features extracted from temporal TSX data and a single 

ALOS PALSAR image were investigated. Using two different acquisitions of TSX 
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achieved an overall accuracy of 83%, while using TSX imagery (X-band) with a 

nearly synchronous PALSAR imagery (L-band) revealed an accuracy of 88.98%. 

Thus, multi-dimensional SAR data proved to have a high potential for land-cover 

classification (LCC). These findings serve as a testimony of the applicability of 

multi-sensor SAR images for improving the classification accuracy. 

 Land-cover classification using two different acquisition dates of TSX achieved an 

overall accuracy of 83%, while using TSX imagery (X-band) with a nearly 

synchronous PALSAR imagery (L-band, HH/HV) revealed an accuracy of 91.53%. 

 TerraSAR-X proved to be efficient for soil moisture mapping. The results revealed 

a high sensitivity of X-band to surface soil-moisture, where the obtained coefficient 

of determination R2 reached values about 0.885 for an early growing corn field.  

 The R2 values vary significantly according to the filtering parameters and 

independently of the signal-to-noise ratios. Therefore, further studies are needed 

to investigate and improve the filtering techniques for point-target image analysis. 

 

8.2  Outlook 

In addition to some general recommendations, some functional additions to the 

software are yet desirable: 

 The choice for the potentially most suitable classifier might be guided by extended 

software functionality in the form of an expert system. This will require an 

analytical handling of the specific properties of the feature space after each model 

run. 

 Further work needs to be done to establish the capability of the multi-classifier 

approach which will improve the overall accuracy through using the benefits of 

different classifiers.  

 The so far developed software might help in gaining more knowledge about the 

information content of high-resolution SAR imagery in relation to the acquisition 

date. Using a time-series comprising phenological stages from late winter until 

harvest time might reveal variations of image texture due to cultivation measures 

and plant development. The prediction of an optimum data acquisition time is 

feasible. 
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 A further study could assess the contribution of soil roughness to the radar 

backscattering, trying to investigate modern techniques for soil roughness 

estimation. 

 More research is needed to better understand the effect of speckle reduction 

techniques on land-cover and soil-moisture mapping. 

 The developed model can be applied to different remotely sensed data and 

different regions. Therefore, further applications and suggestions are highly 

recommended. 
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     10 Appendices  
     

     Appendix A 
 

     Table A.1. List of Software that supports ERSDAC PALSAR Products (Oct. 2011) 
 
software 

 
version 

 
supported products 

Image 
processing 

SAR data 
processing

Inter- 
ferometry 

Polarimetric 
SAR data 
analysis 

 
URL 

ENVI 4.8 L1.1SLC, L1.5*1, L4.1*1, L4.2 O http://www.ittvis.com/language/en-US/ProductsServices/ENVI.aspx 

ENVI +  
SARscape  

 L1.0, L1.1SLC, L1.5, L4.1, 
L4.2 

 

O 
 

O 
 

O 
 

O 
 

http://www.ittvis.com/language/en-us/productsservices/envi/sarscape.aspx 

PCI Geomatica 10.3 L1.5, L4.1, L4.2, L1.5long O http://www.pcigeomatics.com/ 

PG-Steamer 4.1 L1.5, L4.1, L4.2 O http://www.pixoneer.com/ 

ERDAS IMAGINE L1.1SLC, L1.5, L4.1, L4.2 O http://www.erdas.com/products/ERDASIMAGINE/ERDASIMAGINE/Details.aspx 

ERDAS IMAGINE + 
Radar Mapping Suite 

  

L1.1SLC, L1.5, L4.1, L4.2 
 

O   

O   

http://www.erdas.com/products/ERDASIMAGINE/IMAGINERadarMappingSuite/Details.aspx 

PulSAR 8 L1.0, L1.1SLC O O O http://www.ists.co.jp/e/index.php/sc/products.html 

Gamma 
Modular SAR Processor

  

L1.0, L1.1SLC   

O    

http://www.gamma-rs.ch/software/msp-modular-sar-processor.html 

Gamma 
Interferometric 
SAR Processor 

  
L1.1SLC 

   
O 

  
http://www.gamma-rs.ch/software/isp-interferometric-sar-processor.html 

Focus L1.0 O http://www.seaspace.com/modules/layout/faceoff/attach/Focus_brochure.pdf 

Phase L1.1SLC O http://www.seaspace.com/modules/layout/faceoff/attach/phase_brochure.pdf 

Charge-free Software 

 
software 

 
version 

 
supported products 

 

Image 
processing 

 

SAR data 
processing

 

Inter- 
ferometry 

Polarimetric 
SAR data 
analysis 

 
URL 

RAT 0.21 L1.1SLC, L1.5, L4.1 O O O http://radartools.berlios.de/index.php 

POLSARPRO 4.2 L1.1SLC O http://earth.eo.esa.int/polsarpro/default.html 

Quad-pol Viewer 0.1.2.0 L1.1SLC, L4.1 O http://remote-sensing.isp.jp/Quad-pol/index.html 

GMTSAR L1.0 O http://topex.ucsd.edu/gmtsar/ 

ROI_PAC 3.0.1 L1.0 O http://www.roipac.org/ALOS_PALSAR 

 

Note: L1.5, L4.1 and L4.2 Ortho products are readable by general-purpose image software that supports GeoTIFF. 
*1: Please inquire for the import patch (for ENVI) of L1.5, L4.1 and L4.2 Ortho product (binary format data) to the following addresses. 

http://www.ittvis.com/UserCommunity/CodeLibrary.aspx 

 (http://www.palsar.ersdac.or.jp/doc/pdf/SoftwareforProducts_jp.pdf)  
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Appendix B 

 
Table B.1. Separability values of class-pairs indicating the relevant batch-code (Bold figures indicate value > 1.75).   

Class-pair Homo Dissim. Contrast Ang. 2nd Energy Entropy GLCM 

Mean

GLCM 

Variance

GLCM 

STD

GLCM 

Correlation

Orchard Cereals 1.39  b8 

1.37 b7 

1.58 b11 

1.57 b10 

1.42  b15 

1.39 b14 

1.84 b6 

1.83 b8 

1.7 b6 

1.69 b7 

1.34 b6 

1.33 b7 

1.77 b9 

1.77 b8 

1.97 b20 

1.97 b19 

1.44 b7 

1.43 b8 

1.58 b10 

1.54 b8 

Orchard Grass 1.48 b16 

1.28 b4 

1.43 b16 

1.41 b20 

1.45 b16 

1.44 b20 

1.5 b20 

1.44 b16 

1.5 b20 

1.43 b16 

1.51 b20 

1.5 b12 

1.98 b8 

1.98 b7 

1.97 b4 

1.97 b3 

1.24 b1 

1.18 b3 

1.59 b8 

1.55 b7 

Orchard Rape 0.31  b8 

0.27  b4 

0.23 b19 

0.21 b15 

0.15 b4 

0.15 b19 

0.27 b16 

0.24 b15 

0.27 b16 

0.23 b15 

0.18 b3 

0.17 b1 

1.4 b4 

1.4 b3 

1.4 b8 

1.4 b7 

1.04 b7 

0.96 b6 

0.43 b13 

0.21 b6 

Orchard Maize 0.95  b8 

0.76  b7 

0.6 b11 

0.6 b10 

0.71 b7 

0.55 11 

0.27 b11 

0.26 b16 

0.26 b11 

0.25 b12 

0.42 b11 

0.34 b10 

1.42 b8 

1.42 b7 

1.58 b8 

1.58 b7 

1.97 b2 

1.95 b3 

0.86 b11 

0.8 b10 

Cereals Grass 1.45  b5 

1.37  b8 

1.19 b16 

1.08 b20 

0.97 b16 

0.94 b5 

1.82 b8 

1.81 b6 

1.65 b8 

1.65 b5 

1.17 b8 

1.17 b5 

0.9 b4 

0.9 b3 

0.74 b17 

0.73 b20 

0.54 b10 

0.53 b14 

0.8 b8 

0.78 b4 

Cereals Rape 1.3 b16 

1.28  b6 

1.48 b16 

1.48 b3 

1.41 b16 

1.32 b12 

1.84 b6 

1.82 b7 

1.69 b6 

1.67 b7 

1.21 b6 

1.20 b7 

1.93 b8 

1.93 b7 

1.99 b9 

1.99 b8 

1.68 b7 

1.67 b8 

1.73 b6 

1.69 b8 

Cereals Maize 1.52  b6 

1.44 b16 

1.55 b16 

1.48 b20 

1.49 b16 

1.33 b3 

1.85 b8 

1.83 b7 

1.71 b8 

1.68 b7 

1.35 b7 

1.33 b6 

1.93 b8 

1.93 b7 

2.00  b9 

2.00  b8 

1.9  b8 

1.9  b3 

1.34  b11 

1.19  b12 

Grass Rape 1.73  b16 

1.25 b20 

1.55  b16 

1.48 b20 

1.63 b16 

1.43 b20 

1.74 b20 

1.74 b16 

1.72 b20 

1.72 16 

1.72  b12 

1.61  b16 

2.00  b8 

2.00  b7 

2.00  b8 

2.00  b7 

1.52  b6 

1.51  b8 

1.91  b6 

1.85  b8 

Grass Maize 1.75 b16 

1.46  b20 

1.33 b20 

1.24 b16 

1.51 b16 

1.43 b20 

1.47  b20 

1.39  b16 

1.47 b20 

1.39 b16 

1.34  b20 

1.27   b16 

2.00  b8 

2.00  b7 

2.00  b8 

2.00  b7 

1.97 b2 

1.97 b1 

0.99  b5 

0.96  b8 

Rape Maize 0.63  b6 

0.57 b8 

0.52 b12 

0.47 b16 

0.88 b7 

0.46 b8 

0.91  b16 

0.68  b13 

0.89  b16 

0.65  b13 

0.7  b12 

0.7  b11 

1.88  b12 

1.88  b11 

1.88  b12 

1.88  b11 

1.36  b2 

1.33  b11

0.71  b11 

0.52  b10 
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Table B.2. Classification accuracy (%) and Kappa index (%) using the Information Gain method. 

 10 15 20 25 30 40 50 
ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa

SVM 94.62 91.55 93.55 89.75 93.55 89.91 94.62 91.55 94.62 91.52 95.70 93.20 94.62 91.61 
ANN (mlp) 92.47 88.36 92.47 88.24 93.55 89.88 92.47 88.25 92.47 88.50 91.40 86.53 93.55 89.89 
ANN (mlpe) 92.47 88.24 92.47 88.24 93.55 89.88 92.47 88.24 92.47 88.16 91.40 86.78 93.55 90.02 
KNN 92.47 88.28 92.47 88.10 92.47 88.13 92.47 88.24 93.55 89.87 93.55 89.87 94.62 91.68 
LR 90.32 85.27 91.40 86.76 91.40 86.73 87.09 80.35 82.80 74.24 78.49 68.30 82.80 74.25 
LDA 91.40 86.70 90.32 85.10 90.32 85.09 92.47 88.25 92.47 87.98 89.25 82.97 88.17 81.26 
 
 

Table B.3. Classification accuracy (%) and Kappa index (%) using the gain ratio method. 

 10 15 20 25 30 40 50 
ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa

SVM 84.95  75.78 84.95  75.66 92.47 88.41 93.55 89.95 94.62 91.61 93.55 89.91 93.55 89.95 
ANN (mlp) 83.87 74.42 83.87 75.48 89.25 83.32 91.40 86.77 94.62 91.56 90.32 84.69 89.25 83.25 
ANN (mlpe) 84.95 76.13 84.95 76.71 92.47 88.29 91.39 86.82 94.62 91.71 91.40 86.66 91.40 86.79 
KNN 83.87 74.53 82.80 73.02 89.25 83.43 92.47 88.33 94.62 91.68 93.55 89.95 92.48 88.21 
LR 75.27 61.86 73.12 59.12 80.65 71.64 80.65 71.28 79.57 70.31 73.12 59.16 75.27 62.27 
LDA 77.42 63.91 77.42 64.30 90.32 84.71 89.25 83.14 87.09 79.82 89.25 83.40 88.17 81.61 
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Table B.4. Classification accuracy (%) and Kappa index (%) using the symmetrical uncertainty method. 

 10 15 20 25 30 40 50 
ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa

SVM 84.95 75.78 86.02 77.18 92.47 88.33 94.62 91.61 92.47 88.16 93.55 89.91 94.62 91.54 
ANN (mlp) 87.09 79.49 86.02 77.76 92.47 88.18 88.17 81.48 91.40 86.59 90.32 85.21 91.40 86.83 
ANN (mlpe) 86.02 77.82 86.02 77.78 91.40 86.63 91.40 86.51 91.40 86.63 90.32 85.02 93.55 89.92 
KNN 83.87 74.53 87.10 79.49 91.40 86.82 93.55 89.95 93.55 89.95 93.55 89.95 94.62 91.68 
LR 75.27 61.86 73.12 59.12 86.02 79.09 87.09 80.70 81.72 72.66 83.87 75.67 82.80 74.25 
LDA 77.42 63.91 77.42 64.30 91.40 86.59 90.32 84.90 89.25 83.26 89.25 83.26 88.17 81.26 
 
 
Table B.5. Classification accuracy (%) and Kappa index (%) using the random forest importance methods. 

 10 15 20 25 30 40 50 
ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa

SVM 94.62 91.52 94.62 91.46 93.55 89.77 94.62 91.46 93.55 89.80 93.55 89.72 93.55 89.98 
ANN (mlp) 90.32 84.97 90.32 85.35 92.47 88.15 90.32 84.99 90.32 85.19 90.32 84.99 90.32 84.83 
ANN (mlpe) 90.32 84.74 91.39 86.63 91.40 86.66 90.32 85.03 90.32 85.21 91.40 86.52 90.32 85.18 
KNN 92.47 88.21 93.55 89.87 93.55 89.95 93.55 89.87 92.47 88.21 93.55 89.95 91.40 86.73 
LR 83.87 75.71 84.95 77.42 87.09 80.43 87.10 80.38 80.65 71.73 87.09 80.47 84.95 76.33 
LDA 89.25 83.55 92.47 88.33 93.55 89.95 92.47 88.11 89.25 82.71 89.25 82.76 87.10 79.52 
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Table B.6. Classification accuracy (%) and Kappa index (%) using the principle component analysis method. 

 10 15 20 25 30 40 50 
ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa 

SVM 93.55 89.91 93.55 89.71 94.62 91.55 92.47 88.11 91.39 86.48 90.32 84.86 91.40 86.59 
ANN (mlp) 92.47 88.23 91.40 86.58 92.47 88.14 91.40 86.37 89.25 82.92 87.10 79.89 87.09 80.21 
ANN (mlpe) 92.47 88.36 91.40 86.61 92.47 88.31 91.40 86.50 89.25 82.92 87.10 80.14 87.10 80.11 
KNN 91.40 86.63 92.47 88.33 92.47 88.25 88.17 81.51 87.10 79.69 87.10 79.89 88.17 81.32 
LR 92.47 88.36 89.25 83.38 89.25 83.17 76.34 64.44 73.12 60.11 79.57 69.19 76.34 63.72 
LDA 89.25 82.98 91.40 86.52 92.47 88.39 80.65 70.19 79.56 68.89 84.95 76.63 81.72 72.34 

 
 
 
Table B.7. Selected 10 features using the four selection methods. 

Selection Method  Features 

Information Gain  b9_gm  b17_gm  b17_gv  b17_mean b18_gm b18_gv  b19_gm  b19_gv  b20_gm b20_gv 

gain ratio  b1_gm  b1_gv  b1_mean b2_gm  b2_gv  b3_gm  b3_gv  b4_gm  b4_gv  b5_gm 

Symmetrical Uncertainty  b1_gm  b1_gv  b1_mean b2_gm  b2_gv  b3_gm  b3_gv  b4_gm  b4_gv  b5_gm 

Random Forest  b3_gv  b8_gv  b9_mean b10_gm  b10_gv  b12_gm b13_gv  b14_gm b15_gv  b16_gv 

Principle component  b13_gm b13_mean b14_gm  b15_gm  b16_gm b17_gm b17_mean b18_gm b19_gm b20_gm 
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Appendix C 
 

Table C.1. Separability values for TSX backscattering image rescaled to 5 bits 

using 2 and 3 standard deviations. 

 
Class-pair 

Separability 

Mean StD H. C. D. Ang Enr Ent GM GV. GSD GC 

31
.0

5.
10

 –
 2

 S
T

D
 

Cereals-Orchard 1.66 0.50 0.68 0.67 0.73 0.44 0.44 0.79 1.66 1.82 1.08 0.67 

Cereals-Maize 1.89 0.76 1.60 1.30 1.47 0.94 1.00 1.51 1.89 1.99 1.61 0.55 

Cereals-Grass 0.98 0.13 0.14 0.25 0.24 0.27 0.23 0.13 0.98 0.73 0.29 0.57 

Cereals-Rape 1.90 1.21 1.40 1.32 1.36 0.88 0.95 1.46 1.90 1.99 1.59 1.01 

Orchard-Maize 1.38 0.06 0.56 0.44 0.56 0.41 0.44 0.39 1.38 1.43 0.37 0.09 

Orchard-Grass 1.89 0.23 0.23 0.18 0.20 0.44 0.42 0.42 1.89 1.86 0.38 0.02 

Orchard-Rape 1.56 0.44 0.31 0.48 0.40 0.35 0.37 0.31 1.56 1.58 0.41 0.13 

Maize-Grass 2.00 0.46 1.09 0.90 1.05 1.31 1.31 1.23 2.00 2.00 1.00 0.12 

Maize-Rape 0.17 0.24 0.11 0.07 0.10 0.00 0.01 0.01 0.17 0.14 0.08 0.22 

Grass-Rape 2.00 1.01 0.85 0.91 0.88 1.25 1.25 1.16 2.00 2.00 0.98 0.24 

 

31
.0

5.
10

 –
 3

 S
T

D
 

Cereals-Orchard 1.64 0.53 0.8 0.76 0.79 0.88 0.86 0.83 1.64 1.76 0.32 0.24 

Cereals-Maize 1.88 0.71 1.42 1.19 1.33 1.47 1.42 1.31 1.88 1.97 0.71 0.25 

Cereals-Grass 0.99 0.29 0.46 0.45 0.47 0.40 0.48 0.46 0.99 0.86 0.09 0.12 

Cereals-Rape 1.89 1.19 1.27 1.32 1.29 1.42 1.36 1.29 1.89 1.97 0.78 0.32 

Orchard-Maize 1.37 0.03 0.60 0.32 0.50 0.45 0.48 0.37 1.37 1.42 0.10 0.11 

Orchard-Grass 1.89 0.21 0.21 0.17 0.19 0.42 0.40 0.40 1.89 1.89 0.08 0.03 

Orchard-Rape 1.56 0.47 0.32 0.51 0.40 0.37 0.39 0.34 1.56 1.57 0.13 0.18 

Maize-Grass 2.00 0.36 1.15 0.76 1.00 1.35 1.34 1.20 2.00 2.00 0.33 0.08 

Maize-Rape 0.17 0.33 0.12 0.09 0.06 0.01 0.01 0.01 0.17 0.16 0.00 0.01 

Grass-Rape 2.00 1.04 0.86 0.93 0.89 1.27 1.26 1.18 2.00 2.00 0.39 0.14 

 

17
.0

6.
10

 –
 2

 S
T

D
 

Cereals-Orchard 1.76 1.08 0.70 1.34 1.41 1.18 0.97 0.66 1.76 1.93 1.00 1.32 

Cereals-Maize 1.73 1.35 1.01 1.51 1.60 1.46 1.33 1.00 1.73 1.87 1.10 1.05 

Cereals-Grass 1.05 0.05 0.04 0.37 0.32 1.13 0.86 0.03 1.05 1.09 0.77 0.77 

Cereals-Rape 1.92 1.64 1.16 1.69 1.77 1.36 1.24 1.29 1.92 2.00 1.34 1.51 

Orchard-Maize 1.07 0.19 0.23 0.18 0.22 0.28 0.31 0.27 1.07 1.20 0.55 0.06 

Orchard-Grass 0.75 0.71 0.53 0.61 0.60 0.90 0.86 0.89 0.75 0.66 0.37 0.36 

Orchard-Rape 0.76 0.44 0.28 0.43 0.37 0.48 0.50 0.45 0.76 0.78 0.12 0.06 

Maize-Grass 0.82 1.03 0.85 0.90 0.92 1.27 1.26 1.20 0.82 0.74 0.97 0.14 

Maize-Rape 1.98 0.64 0.55 0.48 0.52 0.98 0.97 0.89 1.98 1.98 0.98 0.22 

Grass-Rape 1.46 1.30 1.04 1.22 1.17 1.66 1.60 1.54 1.46 1.43 0.54 0.67 

 

17
.0

6.
10

 –
 3

 S
T

D
 

Cereals-Orchard 1.70 1.11 1.38 1.30 1.31 1.37 1.31 1.31 1.70 1.89 0.02 0.58 

Cereals-Maize 1.69 1.28 1.55 1.41 1.47 1.65 1.60 1.52 1.69 1.83 0.20 0.60 

Cereals-Grass 1.04 0.29 0.56 0.77 0.69 0.28 0.32 0.40 1.04 1.09 0.37 0.71 

Cereals-Rape 1.88 1.48 1.64 1.58 1.57 1.81 1.73 1.67 1.88 1.99 0.18 0.72 

Orchard-Maize 1.06 0.12 0.22 0.08 0.17 0.30 0.33 0.24 1.06 1.16 0.21 0.09 

Orchard-Grass 0.75 0.70 0.56 0.63 0.61 0.89 0.84 0.87 0.75 0.71 0.32 0.03 

Orchard-Rape 0.76 0.41 0.25 0.42 0.34 0.44 0.45 0.43 0.76 0.77 0.11 0.08 

Maize-Grass 0.81 0.92 0.88 0.78 0.87 1.29 1.27 1.18 0.81 0.78 0.77 0.08 

Maize-Rape 1.98 0.55 0.48 0.47 0.46 0.88 0.86 0.78 1.98 1.98 0.15 0.02 

Grass-Rape 1.46 1.29 1.05 1.22 1.16 1.61 1.55 1.52 1.46 1.45 0.58 0.04 
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Table C.2. Separability values according to the backscattering calculation method. 

 
Class-pair 

Separability 

Mean STD H C D Ang Enr Ent GM GV GSD GC 

G
IM

  

Cereals-Orchard 1.66 0.50 0.94 0.67 0.73 1.54 1.24 0.17 1.66 1.82 0.53 0.52

Cereals-Maize 1.89 0.77 1.07 1.31 1.48 1.73 1.51 0.34 1.89 1.99 1.69 0.38

Cereals-Grass 0.98 0.13 1.01 0.26 0.26 1.42 1.05 0.10 0.98 0.74 0.03 0.52

Cereals-Rape 1.90 1.23 1.20 1.32 1.36 1.67 1.43 0.23 1.90 1.99 1.31 0.90

Orchard-Maize 1.38 0.06 0.38 0.45 0.57 0.51 0.42 0.40 1.38 1.43 0.90 0.09

Orchard-Grass 1.89 0.23 0.15 0.18 0.20 0.11 0.10 0.09 1.89 1.86 0.33 0.02

Orchard-Rape 1.56 0.47 0.24 0.49 0.40 0.24 0.18 0.14 1.56 1.58 0.46 0.17

Maize-Grass 2.00 0.47 0.91 0.91 1.07 0.74 0.62 0.54 2.00 2.00 1.50 0.16

Maize-Rape 0.17 0.26 0.24 0.07 0.10 0.12 0.10 0.11 0.17 0.14 0.16 0.29

Grass-Rape 2.00 1.04 0.64 0.92 0.89 0.50 0.41 0.32 2.00 2.00 1.09 0.26
 

D
E

M
  

Cereals-Orchard 1.64 0.50 0.96 0.67 0.74 1.56 1.26 0.18 1.64 1.82 0.51 0.55

Cereals-Maize 1.89 0.75 1.15 1.32 1.48 1.73 1.52 0.34 1.89 1.99 1.67 0.37

Cereals-Grass 0.97 0.12 0.98 0.32 0.30 1.44 1.08 0.11 0.97 0.75 0.04 0.57

Cereals-Rape 1.91 1.23 1.18 1.32 1.37 1.67 1.42 0.23 1.91 1.99 1.31 0.76

Orchard-Maize 1.36 0.05 0.43 0.47 0.57 0.50 0.42 0.38 1.36 1.43 0.88 0.11

Orchard-Grass 1.80 0.21 0.13 0.16 0.19 0.11 0.10 0.09 1.80 1.77 0.28 0.03

Orchard-Rape 1.60 0.46 0.26 0.48 0.39 0.19 0.15 0.12 1.60 1.64 0.46 0.07

Maize-Grass 2.00 0.43 0.91 0.93 1.08 0.72 0.61 0.52 2.00 2.00 1.38 0.20

Maize-Rape 0.19 0.26 0.10 0.07 0.11 0.14 0.12 0.11 0.19 0.16 0.15 0.17

Grass-Rape 2.00 0.99 0.68 0.90 0.88 0.44 0.36 0.30 2.00 2.00 0.98 0.16
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Table C.3. Separability values for TSX imagery from 31/05/2010 and 17/06/2010. 

TSX (31/05/2010) TSX (17/06/2010) 
image Texture (angle/distance) Separability image Texture (angle/distance) Separability 

Cereals versus Maize 
TSX _σ°    GM     (90° / 1) 1.93 Local Sigma 3  GC (45° / 1) 1.69 
TSX _σ°    GV     (90° / 1) 1.96 Enhanced Lee 3 Ang (45° / 1) 1.61 
Gamma 3    GM  (90° / 1) 1.97 Gamma 3 Ang (45° / 1) 1.53 
Gamma 3    GV  (90° / 1) 1.93     
Gamma 3    GC  (90° / 1) 1.90     

Cereals versus Grass 
Gamma 3   H (135° / 3) 1.45 Local Sigma 3  GC (45° / 1) 1.71 
Gamma 3   Ang (135° / 3) 1.82 Local Sigma 3  Ang (0° / 1) 1.81 
Gamma 3   Enr (135° / 3) 1.63 Local Sigma 3  Enr (0° / 1) 1.63 
Gamma 3   GM (135° / 3) 1.38 Gamma 3 GV (45° / 1) 1.57 

Cereals versus Rape 
Gamma 3   Ang (135° / 1) 1.80 Enhanced Frost 3   GM (45° / 1) 1.70 
Gamma 3   Enr (135° / 1) 1.65 Enhanced Frost 3   GV (45° / 1) 1.63 
Gamma 3   GM (135° / 1) 1.99 Local Sigma 3  GC (45° / 1) 1.46 
Gamma 3   GV (135° / 1) 1.99     
Gamma 3   GSD (135° / 1) 1.87     

Cereals versus Orchard 
Gamma 3   Ang (135° / 3) 1.85 Local Sigma 3  Ang (45° / 1) 1.85 
Gamma 3   GM (135° / 3) 1.93 Enhanced Lee 3 GM (45° / 1) 1.83 
Gamma 3   GV (135° / 3) 1.84 Enhanced Lee 3 GV (45° / 1) 1.98 
Gamma 3   GSD (135° / 3) 1.53 Local Sigma 3  GC (45° / 1) 1.99 
Gamma 3   GC (135° / 3) 1.90 Gamma 3  GV (45° / 1) 1.99 

Maize  versus Grass 
Enhanced Lee GM (45° / 2) 1.79 Gamma 3  Ent (45° / 1) 0.78 
Enhanced Lee GV (45° / 2) 1.65     

Maize  versus  Rape 
Forest 5     GM (45° / 1) 1.29 Enhanced Lee 3  Ang (45° / 1) 1.69 
Forest 5     GV (45° / 1) 1.53 TSX _σ°_ Mean    Enr (45° / 1) 1.37 
    Local Sigma 3  Ent (45° / 1) 1.22 

Maize  versus   Orchard 
Forest 5     GM (45° / 1) 1.29 Local Sigma 3  Ang (45° / 1) 1.07 
Forest 5     GV (45° / 1) 1.53     

Grass versus Rape 
TSX _σ°    GM (45° / 1) 1.92 Local Sigma 3  Ang (45° / 1) 1.86 
TSX _σ°    GV (45° / 1) 1.88 TSX _σ°    H (90° / 3) 1.36 
    Local Sigma 3  Enr (0° / 1) 1.62 

Grass versus Orchard 
TSX _σ°    GM (45° / 1) 1.48 TSX _σ°    Ang (90° / 1-5) 1.35 
Enhanced Lee GC (135° / 1) 1.63 TSX _σ°    Ent (90° / 1-5) 1.30 

Rape versus Orchard 
Gamma 3       GM (45° / 1) 0.56 TSX _σ°    H (90° / 1-5) 1.51 
Gamma 3       GV (45° / 1) 0.60 TSX _σ°    Ang (90° / 1-5) 1.88 
    Local Sigma 3  Enr (45° / 1) 1.71 
    Local Sigma 3  Ent (45° / 1) 1.37 
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Table C.4. Separability values for the PALSAR image from 31/05/2010. 

Class-pair Texture feature (Direction / Distance) Separability 

Cereals versus Maize  

Alos_σ°_B1 ASM       (90° / 1,2 ,3) 1.51 
Alos_σ°_B1 Energy   (90° / 1, 2,3) 1.17 

Local region 3_B2 ASM       (45° / 1) 1.36 

Cereals versus Grass  

- - - - 
- - - - 

Cereals versus Rape  

Alos_ σ°_B2 GM         (45° / 1) 1.40 

Cereals versus Orchard  

Alos_ σ°_B2 GM         (45° / 1 ,2) 1.65 
Alos_ σ°_B2 GV         (45° / 1 ,2) 1.47 

Maize versus Grass  

Alos_σ°_B2 ASM       (45° / 1,2) 1.34 
Local region 3_B2 ASM       (45° / 1) 1.21 

Maize versus Rape  

Alos_σ°_B2 GM         (45° / 1,2) 1.94 
Local region 3_B2  GC         (90° / 1,2,3,4) 1.96 

Local region 3_B2  GM         (90° / 1,2,3,4) 1.94 

Alos_σ°_B2 GC         (45° / 1,2) 1.94 

Alos_σ°_B1 GC         (90° / 1,2,3) 1.83 

Alos_σ°_B1 ASM       (90° / 1,2,3) 1.61 

Maize versus Orchard  

Alos_σ°_B2 GM         (45° / 1,2) 1.96 
Alos_σ°_B2 GC         ( 45° / 1,2) 1.92 

Local region 3_B2 GM         (90° / 1,2,3,4) 1.96 

Local region 3_B2 GC         (90° / 1,2,3,4) 1.93 

Alos_σ°_B1 GC         (90° / 1,2,3) 1.73 

Alos_σ°_B1 ASM       (90° / 1,2,3) 1.69 

Grass versus Rape   

Alos_σ°_B1 GC         (90° / 1,2,3) 1.54 
Alos_σ°_B1 GM         (90° / 1,2,3) 1.45 

Alos_σ°_mean3_B1 GM        (45° / 1) 1.4 

Alos_σ°_B1 GM         (90° / 1) 1.39 

Grass versus Orchard  

Alos_σ°_B1 ASM       (45° / 1) 1.40 
Alos_σ°_B1 ASM       (90° / 1,2,3) 1.41 

Alos_σ°_B1 GM         (90° / 1,2,3) 1.34 

Alos_σ°_B1 GC         (90° / 1,2,3) 1.34 

Rape versus Orchard  

- - - - 
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Appendix D 
 
Table D.1. Coefficient of determination R2 values between measured soil moisture 

and calculated backscatter coefficient using DTM and GIM (31/05/2010) 
(land cover: maize; used images: filter of sigma-naught). 

Filter 
Kernel 

size 

GIM DTM 

Entire Pixel Mean 3x3 Entire Pixel Mean 3x3 

Frost 

3x3 0.232 0.367 0.251 0.390 
5x5 0.401 0.488 0.411 0.499 
7x7 0.590 0.643 0.579 0.635 

Lee 

3x3 0.266 0.43 0.289 0.461 
5x5 0.659 0.701 0.677 0.700 
7x7 0.721 0.627 0.667 0.572 

Local 
Region 

3x3 0.153 0.387 0.179 0.423 
5x5 0.700 0.665 0.661 0.690 
7x7 0.545 0.235 0.541 0.266 

Mean 

3x3 0.269 0.437 0.293 0.469 
5x5 0.690 0.727 0.704 0.720 
7x7 0.636 0.546 0.578 0.494 

Median 

3x3 0.289 0.423 0.289 0.463 
5x5 0.935 0.873 0.935 0.836 
7x7 0.465 0.641 0.466 0.564 

Lee Sigma 

3x3 0.192 0.367 0.212 0.396 
5x5 0.192 0.367 0.212 0.396 
7x7 0.192 0.367 0.212 0.396 

Gamma 

3x3 0.437 0.269 0.293 0.469 
5x5 0.727 0.690 0.704 0.720 
7x7 0.437 0.269 0.578 0.494 

Enhanced 
Frost 

3x3 0.437 0.269 0.293 0.469 
5x5 0.727 0.690 0.704 0.720 
7x7 0.546 0.636 0.578 0.494 

Enhanced 
Lee 

3x3 0.437 0.269 0.293 0.469 
5x5 0.727 0.690 0.704 0.720 
7x7 0.546 0.636 0.578 0.494 

Local 
Sigma 

3x3 0.270 0.104 0.117 0.288 
5x5 0.332 0.177 0.195 0.354 
7x7 0.340 0.124 0.142 0.370 

Gamma 
Map 

3x3 0.199 0.381 0.220 0.394 
5x5 0.223 0.392 0.236 0.392 
7x7 0.290 0.366 0.291 0.352 
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      Table D.2. SNR and ENL of TerraSAR-X imagery of 31/05/10. 

Filter 
Kernel 

size 
σ° then Filtering Filtering then σ° Filtered TSX 

SNR ENL SNR ENL SNR ENL 

Frost 
3x3 23.19 44.43 23.83 41.29 23.83 26.77 
5x5 19.59 67.06 20.54 55.23 19.72 36.73 
7x7 17.78 98.61 18.57 75.26 17.57 50.89 

Lee 
3x3 21.65 51.21 21.53 50.27 21.04 32.16 
5x5 17.40 93.83 17.28 90.05 16.08 58.96 
7x7 15.91 150.64 15.78 141.91 14.49 94.78 

Local 
Region 

3x3 18.80 33.24 18.87 33.78 17.51 20.75 
5x5 15.51 47.38 15.61 49.31 13.72 29.98 
7x7 14.38 68.40 14.51 72.98 12.48 44.97 

Mean 
3x3 21.50 51.90 21.30 51.11 20.78 32.67 
5x5 17.12 96.63 16.90 93.58 15.67 61.23 
7x7 15.60 155.27 15.36 148.15 14.03 98.77 

Median 
3x3 21.77 45.33 21.77 46.86 20.71 29.37 
5x5 17.19 82.39 17.20 87.47 15.53 54.91 
7x7 15.58 129.30 15.56 142.69 13.79 90.27 

Lee 
Sigma 

3x3 23.90 42.35 21.48 50.12 20.89 32.32 
5x5 23.90 42.35 17.66 84.94 16.10 56.70 
7x7 23.90 42.35 16.36 127.80 14.58 87.61 

Gamma 
3x3 21.50 51.90 21.30 51.11 20.78 32.67 
5x5 17.12 96.63 16.90 93.58 15.67 61.23 
7x7 15.60 155.27 15.36 148.15 14.03 98.77 

Enhanced 
frost 

3x3 21.50 51.90 21.38 51.00 20.74 32.43 
5x5 17.12 96.63 16.96 93.27 15.63 60.72 
7x7 15.60 155.27 15.42 147.76 13.99 97.93 

Enhanced 
Lee 

3x3 21.50 51.90 21.30 51.11 20.78 32.67 
5x5 17.12 96.63 16.90 93.58 15.67 61.23 
7x7 15.60 155.27 15.36 148.16 14.03 98.77 

Local 
Sigma 

3x3 27.12 30.40 26.96 30.85 29.36 19.04 
5x5 25.68 36.90 25.20 37.54 26.88 22.96 
7x7 25.00 41.13 24.31 42.08 25.74 25.44 

Gamma 
Map 

3x3 - - 21.87 50.20 21.11 31.45 
5x5 - - 17.39 91.13 16.01 58.50 
7x7 - - 15.83 144.67 14.36 94.79 
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Table D.3. Coefficient of determination R2 values between measured soil moisture 
and calculated backscatter coefficient for TSX (17/06/2010) for early 
growing maize. 

 

 
 
 
 
 
 

 

 

 

 

 

 

Filter Kernel Size 
TSX 17/06/2010 

σ° then Filtering Convolution 3x3 

Lee Sigma 
3 0.518 0.700 
5 0.518 0.700 
7 0.518 0.700 

Median 
 
 

3 0.593 0.768 
5 0.879 0.885 
7 0.686 0.827 

Frost 
3 0.494 0.657 
5 0.554 0.740 
7 0.742 0.842 

Local Region 
3 0.616 0.823 
5 0.699 0.873 
7 0.803 0.734 

Gamma Map 
3 0.232 0.415 
5 0.423 0.880 
7 0.343 0.381 

Lee 
3 0.587 0.749 
5 0.858 0.881 
7 0.870 0.878 

Mean 
3 0.597 0.758 
5 0.875 0.886 
7 0.830 0.857 

TSX 0.372 0.597 
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Table D.4. SNR and ENL of TerraSAR-X imagery on 17/06/10. 

Filter Kernel size 
σ°  then Filtering Filtering then σ° 

SNR ENL SNR ENL 

Frost 
3x3 22.49 27.82 23.98 25.56 
5x5 19.05 38.43 20.80 32.16 
7x7 17.15 53.35 18.66 42.07 

Lee 
3x3 19.86 34.85 19.76 34.46 
5x5 15.95 61.74 15.76 60.45 
7x7 14.57 94.94 14.40 92.00 

Local 
Region 

3x3 17.16 23.12 17.39 23.33 
5x5 13.99 33.83 14.17 34.72 
7x7 13.00 49.66 13.18 50.68 

Mean 
3x3 19.58 35.55 19.31 35.68 
5x5 15.55 64.10 15.21 64.43 
7x7 14.17 98.59 13.81 98.84 

Median 
3x3 19.83 31.70 19.89 32.22 
5x5 15.50 57.52 15.51 59.87 
7x7 14.04 88.46 14.04 93.36 

Lee 
Sigma 

3x3 22.15 29.05 20.29 32.05 
5x5 22.15 29.05 16.91 50.29 
7x7 22.15 29.05 15.77 69.53 

Gamma 
3x3 19.58 35.55 19.31 35.68 
5x5 15.55 64.10 15.21 64.43 
7x7 14.17 98.59 13.81 98.84 

Enhanced 
Frost 

3x3 19.58 35.55 19.41 35.52 
5x5 15.55 64.10 15.27 64.17 
7x7 14.17 98.59 13.86 98.46 

Enhanced 
Lee 

3x3 19.58 35.55 19.34 35.53 
5x5 15.55 64.10 15.22 64.25 
7x7 14.17 98.59 13.81 98.73 

Local 
Sigma 

3x3 26.09 20.68 25.72 20.99 
5x5 24.64 24.79 23.83 25.74 
7x7 23.97 27.26 22.86 28.82 

Gamma 
Map 

3x3 - - 19.87 34.70 
5x5 - - 15.66 62.48 
7x7 - - 14.19 97.20 
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Appendix E-2 

 

 
a) Bare soil c) Cereal 

 
 

 

 

 

b) Early growing maize d) Grass 

d 

b 

a 
c

TSX (HH) on 18/04/2011 
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