
Indexing For Improving Big Data Analysis

By

Hussien Shahata Abdel Aziz

A Thesis Submitted to the

Faculty of Computers & Information

Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

 (Master of Science)
In

Computer Science

Under the Supervision of

Prof. Fatma A. Omara

Computer Science Department

 Faculty of Computers & Information

Cairo University

Dr.Mohamed H.Khafagy

Computer Science Department

 Faculty of Computers & Information

Fayoum University

Faculty of Computers & Information

Cairo University

Jan. 2016

Cairo University

Faculty of Computers & Information

Computer Science Department

Abstract

Today Big Data analysis has become one of the most complicated computing

tasks today because data growing heavily in size, dimensionality, unstructured formats.

Recent studies expect data growing into zettabytes which gathered from different

sources like sensors, social networks, machines Logs, etc. Parallel Relational Database

Processing Systems can't fit into these large data sizes because of data indexing and

relational constraints that will slow down data storing / retrieval performance.

 MapReduce has become an effective framework for processing and analysis

huge data size in large systems. On the Other Hand, Hadoop represents one of the

core frameworks build on Map/Reduce for big data analysis and processing. Also

Hive is Database like software built on top of Hadoop. It is act as database engine

without data relations or data indexing also it's only a translator from SQL queries into

Hadoop map/reduce tasks. but HIVE join query execution pipeline (which based on

Hadoop map/reduce tasks) is complex pipeline, execution time consuming, temporary

storage consuming and java heap memory crashes done because the vast amount of data

needs to be hold in memory or hard disk through execution pipeline. Database star

schema model almost uses join query to gather required information/reports for

decision maker and this will be somehow very difficult to run over HIVE

pipeline.

Many approaches have been tried to index Hadoop data on HDFS by

injecting (online/offline, static/dynamic) data index to improve data retrieve. But it is

still suffer from Slow Join query execution although data been indexed on HDFS

because of the complex execution pipeline in HIVE itself.

In this thesis we have introduced an enhancement of HDFS and Hadoop

MapReduce that dramatically improves the runtimes of join operations of HIVE when

translated into MapReduce jobs. Two different execution pipelines for HIVE based on

static/offline data index built at data loading step for the first time of loading star

schema data into HIVE. This schema is joined into a table and be in a pre-join state all

the time to be ready for querying. This pre-joined sate saves memory/storage/time

through the execution pipeline. Interesting features of both pipelines that don't affect

HIVE framework anywhere since only add pre/post layers for HIVE framework. Also,

we typically create a win-win situation.

3

We improve both temporary data stored in HDFS and the runtime of the actual Hadoop

join MapReduce job. Join Once Use Many (JOUM) and Keys/Facts indexing

methodologies have been introduced and the evaluation of them has been done using

TPC-H benchmark data/queries. In terms of query execution time; the two

methodologies outperforms HIVE execution pipeline on join query by (٥٣.3%, 49.8%)

respectively for execution time, (٢٨%, ٢٧ %) for temporary storage, (2٧%, 1٩%)

overhead for permanent storage and small number of memory crashes. Generally,

JOUM and Keys/Facts indexing methodologies are suitable methodologies for Big Data

analysis. However, minimum overhead in permanent storage is produced because of

index, but it is small compared to the large size saved by temporary storage.

