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Abstract 

Cloud computing is widely considered as an attractive service model 

because it minimizes investment since its costs are in direct relation to usage 

and demand. However, the distributed nature of cloud computing 

environments, their massive resource aggregation, wide user access and 

efficient and automated sharing of resources enable intruders to exploit 

clouds for their advantage. To combat intruders, several security solutions 

for cloud environments adopt Intrusion Detection Systems. However, most 

IDS solutions are not suitable for cloud environments, because of problems 

such as single point of failure, centralized load, high false positive alarms, 

insufficient coverage for attacks, and inflexible design.  

The thesis defines a framework for a cloud based IDS to face the 

deficiencies of current IDS technology. This framework deals with threats 

that exploit vulnerabilities to attack the various service models of a cloud 

system. The framework integrates behaviour based and knowledge based 

techniques to detect masquerade, host, and network attacks and provides 

efficient deployments to detect DDoS attacks.  

This thesis has three main contributions. The first is a Cloud Intrusion 

Detection Dataset (CIDD) to train and test an IDS. The second is the Data-

Driven Semi-Global Alignment, DDSGA, approach and three behavior 

based strategies to detect masquerades in cloud systems. The third and final 

contribution is signature based detection. We introduce two deployments, a 

distributed and a centralized one to detect host, network, and DDoS attacks. 

Furthermore, we discuss the integration and correlation of alerts from any 

component to build a summarized attack report. The thesis describes in 

details and experimentally evaluates the proposed IDS and alternative 

deployments.  

 

Key Words: cloud computing, security, intrusion detection, attacks, 

masquerade, dataset, masquerade detection, sequence alignment, system 

calls, security events, NetFlow, feature extraction, DDoS.  



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

2 

Introduction 

Cloud computing is a large-scale distributed computing paradigm driven 

by economies of scale and outsourcing, where a pool of abstracted, 

virtualized, dynamically-scalable, managed computing, storage, platforms, 

and services are delivered on demand over the Internet. Cloud computing 

technology is enabling IT managers to provision services to users faster and 

in a much more flexible and cost-effective way without having to re-design 

or update the underlying infrastructure [4].  

Clouds in general provide services at three different levels [2] defined by 

what is called “SPI” models or Software as a Service (SaaS), Platform as a 

Service (PaaS), and Infrastructure as a Service (IaaS). In SaaS, a consumer 

can use applications running on a cloud infrastructure. In PaaS, the consumer 

can deploy onto the cloud infrastructure consumer-created or acquired 

applications developed through programming languages and tools supported 

by the provider. In IaaS, the provider offers a large amount of interconnected 

computing nodes to run a consumer-created network of virtual machines. 

Four deployment models exist for cloud services, with derivative variations 

that address specific requirements namely [4]: Public, Private, Community, 

and Hybrid Cloud. In a Public Cloud, the cloud infrastructure is made 

available to the general public or a large user group. In a Private Cloud, the 

cloud infrastructure is operated for a single organization. In a Community 

Cloud, the cloud infrastructure is shared by several organizations to support 

a specific community that has shared concerns, and in Hybrid Cloud, the 

cloud infrastructure interconnects two or more clouds (private, community, 

or public).  

Given the benefits of cloud computing, its broad appeal is not surprising. 

However, this new approach does raise some concerns. Chief among them is 

securing data in the cloud. Security controls in cloud computing are, for the 

most part, the same ones that any IT environment can apply. However, 

because of cloud service and operational models and the technologies to 

enable these services, cloud computing may present new risks and threats to 

an organization. Furthermore, due to their distributed nature, cloud 

computing environments are easy targets for intruders looking for possible 

vulnerabilities to exploit. The impact of intrusions in cloud systems is 

potentially very large, as intruders can exploit for their advantage the 
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massive resource aggregation, wide user access, efficient and automated 

resource allocation of a cloud. The Cloud Security Alliance has defined 

seven top threats to cloud computing systems [1] namely:  

1. Abuse and Nefarious Use of Cloud Computing. 

2. Insecure Interfaces and APIs. 

3. Malicious Insiders. 

4. Shared Technology Issues. 

5. Data Loss or Leakage. 

6. Account or Service Hijacking.  

7. Unknown Risk Profile.  

Some of these threats can be handled by an Intrusion Detection System 

(IDS). An IDS is a software or a hardware system that monitors and analyzes 

events in a computer system or network to discover signs of security 

problems. As attacks increase in number and severity, IDSs have become a 

necessary addition to the security infrastructure of most organizations. There 

are three main categories of IDSs based on the protection objectives, namely 

[2]: 

 Host-based Intrusion Detection System (HIDS), where sensors to 

detect an intrusion are focused on a single host. 

 Network-based Intrusion Detection System (NIDS), where  sensors 

are focused on a network segment.  

 Distributed Intrusion Detection System (DIDS) which integrates both 

types of sensors (i.e., HIDS and NIDS).  

According to the underlying technology and the characteristics of the 

system to be protected, DIDS can be categorized as Mobile Agent Intrusion 

Detection Systems (MAIDS), Grid based Intrusion Detection Systems 

(GIDS), and recently Cloud based Intrusion Detection Systems.  

Several deficiencies of current IDSs solutions hinder their adoption in a 

cloud environment. As an example, an attack against a cloud can be silent for 

a host-based IDSs (HIDS), because cloud-specific attacks may not leave 

traces in the operating system of the node running the host-based IDS. Since 

in a cloud computing environment distinct users share both computing and 

communication resources, attacks may be originated within the infrastructure 

itself. Hence, an attack originating in the cloud can be directed against 

resources of the same cloud. This increases the complexity of attack 
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detection for a NIDS as all the communications that implement the attack are 

among cloud nodes. Current distributed IDSs have shown their effectiveness 

in some large scale networks, but their adoption in cloud computing is still 

challenging. The complex architecture of a cloud infrastructure and the 

distinct kinds of users lead to different requirements and possibilities for an 

IDS. As an example, a distributed hierarchical IDS may be scalable but it has 

the problem of single point of failure because if any part of an internal node 

is disabled, a branch of the IDS will be unreliable. Furthermore, some IDSs 

lack the flexibility to support distinct cloud architectures. Another deficiency 

is that several IDSs detect attacks through either the behaviour base 

technique or the knowledge base one. Instead, a good IDS should integrate 

both techniques because the latter is efficient in detecting known attack 

patterns with low false positive alarms, i.e. an alert almost always signals a 

real attack, but it does not detect unknown attacks or even trivial 

modification of known attacks. Instead, the knowledge based technique 

detects unknown attacks but it has high false positive alarms.  

Hence, a proper defense strategy needs to: 

1. Support distinct cloud computing environments. 

2. Be distributed, resilient and with no single point of failure. 

3. Protect the intrusion detection components.  

4. Isolate the host from any vulnerability from the executed tasks. 

5. Integrate behaviour and knowledge base techniques to increase attack 

coverage. 

6. Collect and correlate user behaviours from all environments in the 

cloud system. 

Building a new cloud based IDS is a new challenging area of research. 

Few papers have addressed cloud IDSs in general and some have proposed 

some frameworks for cloud systems but without any real implementation and 

most of them do not satisfy the previous requirements. 

The main goal of this thesis is to develop a framework for a cloud based 

intrusion detection system that satisfies the previous requirements and deals 

with the following attacks:  
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1. Masquerade attacks: they abuse the privileges of a legitimate user to 

illegally use a service’s abundant resources. Only a behaviour based 

analysis can detect them. 

2. Host based attacks: they may be consequences of the previous attacks 

and result in an observable user behavior anomaly or leave some 

trails at the VM operating system. 

3. Network-based attacks: They generally result in an observable user 

behavior anomaly or leave some trails at the Network packets.  

4. Distributed Attacks: they are implemented with the help of tools or 

exploit scripts and include denial-of-service attacks, probes, and 

worms. They may leave their trails at several locations of a cloud’s 

infrastructure. 

The proposed framework assumes a fully distributed architecture to 

provide a scalable and elastic solution. To avoid a single point of failure, the 

framework distributes the processing tasks among cloud nodes. It isolates 

these tasks from the cloud node system, by executing them in a VM 

monitored by a VM monitor. The framework achieves a high coverage of 

attacks by integrating both knowledge and behaviour based techniques. It 

also provides an audit system to support the adoption of the framework in 

distinct cloud computing environments. This system also collects and 

correlates the user behaviours from the cloud VMs. The framework 

integrates the alerts from different IDSs and builds a final summarized attack 

report.  

To support several deployment models we have introduced two versions 

of the framework, the Cloud based Intrusion Detection System, CIDS, and 

its full virtual version, CIDS-VERT. CIDS P2P architecture hinders 

scalability but it achieves a high performance and low network overhead in 

small or private clouds. CIDS-VERT is ideal for hybrid and public clouds 

due to its better scalability and controllability. However, it consumes a large 

amount of resources because it reserves some management VMs for the 

detection and management tasks. The diagram in Figure 1 shows the main 

contributions of the thesis and the corresponding chapters. 
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Figure.1: Contributions of the thesis and chapters organization 

The first contribution is CIDD, the first cloud intrusion detection dataset 

that can be used to train and test any cloud IDS. It consists of both 

knowledge and behavior based audit data and has real instances of host and 

network based attacks and masquerades. CIDD provides complete diverse 

audit parameters from several environments to evaluate the effectiveness of 

detection techniques.  

The second contribution is related to behaviour based detection. The 

thesis defines the Data-Driven Semi-Global Alignment, DDSGA approach 

[DDSGA], and three detection strategies. DDSGA detects masquerade 

attacks in the cloud by aligning the sequence of the current session to the 

previous sequences of the same user. Then, it labels misalignment areas as 

anomalous and the presence of several anomalous areas is a strong indicator 

of a masquerade attack. DDSGA tolerates small mutations in user command 

sequences by allowing small changes in the low-level representation of the 

commands functionality. It also tolerates changes in user behaviour by 

updating the user signatures according to the current behaviours. We show 

that DDSGA improves both accuracy and performance with respect to 

current solutions. We apply three detection strategies based on DDSGA to 

detect masquerade attacks in clouds. The first one applies DDSGA to 

sequences of correlated audits from the VMs operating systems. This 

strategy is applied independently to two kinds of audits, system calls and 
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security events. The second strategy analyzes NetFlow data from the 

network environment. The third strategy improves the overall detection by 

integrating the first two strategies through a neural network. The evaluation 

has also considered the correlation of the behavior of the same user in 

distinct cloud nodes. We have evaluated three alternative correlation models 

through both CIDS and CIDS-VERT: Audit Exchange, Independent, and 

Centralized-Backup. These models are detailed in Chapter 3 that shows how 

the Independent model is the ideal one in combination with CIDS for small 

and private cloud, while the Centralized-Backup model is the most suitable 

one in combination with CIDS-VERT for large clouds such as public and 

hybrid ones.  

Finally, the third contribution is related to signature based detection. We 

introduce a hierarchical architecture that supports two deployments, a 

distributed and a centralized one for the proposed IDS. The deployments use 

host based and network based IDSs that exploit signature based analysis 

techniques. The hierarchical architecture overcomes some limitation of 

current IDSs and can efficiently detect host, network, and DDoS attacks. 

Furthermore, we discuss the integration and the correlation of alerts that 

come from all detection components.  

We briefly outline the content of the various chapters: 

Chapter 1: Background and Main Concepts.  

It introduces the main concepts underlying the thesis together with DDoS 

attacks and the related work on their detection in clouds. Finally, it outlines 

the software tools that the thesis uses.  

Chapter 2: Intrusion Detection and Related Works.  

It introduces the definition, architecture and techniques of intrusion 

detection systems, and surveys the previous works on intrusion detection, 

masquerade detection techniques, and the current intrusion detection 

datasets.  

Chapter 3: CIDS and CIDS-VERT Frameworks and their Correlation 

Models.  

It describes the components, architecture, testbed, pros and cons of both 

CIDS and CIDS-VERT frameworks. Furthermore, it discusses the proper 
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framework for each cloud deployment model. Finally, it details the three 

correlation models, Audit Exchange, Independent, and Centralized-Backup.  

Chapter 4: Cloud Intrusion Detection Dataset (CIDD).  

After discussing the major challenges to build a cloud dataset, it 

introduces the Log Analyzer and Correlator System (LACS) that helps in 

building CIDD dataset. Then it describes in details the distribution of attacks 

and masquerades in CIDD and compares CIDD against other publicly 

available datasets. 

Chapter 5: Data-Driven Semi Global Alignment (DDSGA).  

It introduces the DDSGA approach and describes its three main phases 

namely, configuration, detection, and update. It outlines the modules and 

experimental results for each phase and compares DDSGA against other 

approaches. 

Chapter 6: Detecting Masqueraders through System Calls and NetFlow 

Data. 

It introduces three strategies to detect masquerade attacks. The first one 

is based on sequences of system calls audits. We outline how it builds a 

consistent user profile from the features extracted from the system calls. 

Then, we adapt DDSGA to the extracted features by considering the CIDS 

and CIDS-VERT frameworks using the three correlation models in Chapter 

3. The second strategy is based on NetFlow data. We outline the main 

features extracted from the NetFlow data and the adaption of DDSGA to 

these features. The third detection strategy integrates the other two through a 

neural network. After evaluating the three strategies in isolation, the chapter 

compares their accuracy and performance. 

Chapter 7: Detecting Masqueraders through Security Events and 

NetFlow Data. 

Also this chapter considers the three strategies of Chapter 6 but with 

different audit data and distinct operating system. The first detection strategy 

uses sequences of security events. We outline the main features extracted 

from the security events and how DDSGA is adapted to these features by 

considering the CIDS and CIDS-VERT frameworks with the Independent 

and Centralized-Backup correlation models respectively. Lastly, we evaluate 

the efficiency and the computational performance of this strategy. The 
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second and third strategies are evaluated as in Chapter 6. Finally, this chapter 

compares the strategy based on security events and the one that uses system 

calls introduced in Chapter 6.  

Chapter 8: Efficient Deployments of HIDS and NIDS using A 

Hierarchical Architecture of CIDS-VERT  

It discusses the detection of host, network, and DDoS attacks by 

signature based techniques. It introduces a hierarchical architecture of CIDS-

VERT framework that supports two deployments: Distributed and 

Centralized one, and outlines their relative advantages. Furthermore, it 

discusses the approaches to integrate, correlate, and summarize distinct alerts 

from the signature based techniques i.e., HIDS and NIDS. Finally, this 

chapter shows some experimental results and evaluates the accuracy of the 

proposed deployments. 

Conclusion and Future Work: 

This section draws conclusion remarks and outlines future work. 
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Chapter 1 

Background and Main Concepts  

This chapter introduces the main concepts underlying the thesis namely 

the definition of cloud computing systems from the unique perspectives of IT 

network and security. Furthermore, we introduce the cloud essential 

characteristics and deployment and service models. We also present cloud 

security definition, the risks a cloud user should assess before committing 

and top threats to clouds. We also present some miscellaneous concepts 

regarding Virtual Machines (VM), Virtual Machine Monitors (VMM), 

system calls, security events, NetFlow, Entropy, Threshold Logic Unit 

(TLU), and the host based, network based attacks. Finally, this chapter 

discusses DDoS attacks and their detection in cloud systems and outlines the 

software tools we use. 

1.1. Cloud Computing 

Each of the current definitions of cloud systems addresses cloud systems 

from a distinct perspective. Here we assume the perspectives of IT network 

and security. 

According to NIST (National Institute of standards and Technology) [2], 

“Cloud computing (‘cloud’) is an evolving term that describes the 

development of several existing technologies and approaches to computing 

into something different. Cloud separates application and information 

resources from the underlying infrastructure, and the mechanisms used to 

deliver them”. According to Ian Foster et al. [4], “Cloud computing is a 

large-scale distributed computing paradigm that is driven by economies of 

scale, in which a pool of abstracted, virtualized, dynamically-scalable, 

managed computing power, storage, platforms, and services are delivered on 

demand to external customers over the Internet”. There are a few key points 

in this definition. First, cloud computing is a specialized distributed 

computing paradigm; it differs from traditional ones in that  

1) It is massively scalable. 

2) Can be encapsulated as an abstract entity that delivers different levels 

of services to customers outside the cloud.  
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3) It is driven by economies of scale, and 4) the services can be 

dynamically configured via virtualization or other approaches and 

delivered on demand. 

NIST defines cloud computing in terms of five essential characteristics, 

three service models, and four deployment models. They are summarized in 

visual form in Figure 1.1 and explained below as in [2, 4].  

1.1.1. Essential Characteristics of Cloud Computing 

Cloud services exhibit five essential characteristics that demonstrate their 

relation to, and differences from, traditional computing approaches [2]: 

 On-demand self-service. A consumer can unilaterally provision 

computing capabilities as needed and automatically, without human 

interaction with a service provider. 

 Broad network access. Computing capabilities are available over the 

network and accessed through standard mechanisms that promote use by 

heterogeneous thin or thick client platforms (e.g. mobile phones, laptops, 

and PDAs) as well as other traditional or cloud based software services. 

 Resource pooling. A provider pools computing resources to serve 

several consumers using a multi-tenant model, which dynamically 

assigns and reassigns physical and virtual resources according to 

consumer demand. There is a degree of location independence in that the 

customer generally has no control or knowledge over the exact location 

of the provided resources.  

 Rapid elasticity. Capabilities can be rapidly and elastically 

provisioned, in most cases automatically, and rapidly released to quickly 

scale out and scale in. For a consumer, the capabilities appear to be 

unlimited and can be purchased in any quantity at any time. 

 Measured service. Cloud systems automatically control and optimize 

resource usage by leveraging a metering capability according to the type 

of service. Usage can be monitored, controlled, and reported, providing 

transparency for both the provider and the consumer. 
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Figure 1.1: NIST Visual Model of Cloud Computing Definition 

1.1.2. Cloud Service Models 

In general, clouds offer services at three different levels [4]: IaaS, PaaS, 

and SaaS. However, some providers can expose services at multiple levels. 

 Software as a Service (SaaS) delivers software that is remotely 

accessible by consumers through the Internet with a usage-based pricing 

model. E.g., Live Mesh from Microsoft allows files and folders to be 

shared and synchronized across multiple devices. 

 Platform as a Service (PaaS) offers a high-level integrated 

environment to build, test, and deploy custom applications as in Google’s 

App Engine [7]. Inside this layer resides the middleware system, a 

portable component for both grid and cloud systems. Examples include 

WSO2 Stratos [5], Windows Azure [6], and our middleware HIMAN [8, 

9, and 10].  

 Infrastructure as a Service (IaaS) provisions hardware, software, 

and equipments to deliver software application environments with a 

resource usage-based pricing model. Infrastructure can scale up and 

down dynamically based on application resource needs. Typical 

examples are Amazon EC2 (Elastic Cloud Computing) Service [11], 

Eucalyptus [12], Microsoft Private Cloud [13]. 
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1.1.3. Cloud Deployment Models 

There are four deployment models for cloud services, with derivative 

variations that address specific requirements: 

 Public Cloud. The cloud is made available to the general public or a 

large industry group and is owned by an organization selling cloud 

services. 

 Private Cloud. The cloud is operated solely for a single 

organization. It may be managed by the organization or by a third 

party, and may exist on-premises or off- premises.  

 Community Cloud. The cloud is shared by several organizations to 

support a specific community that has shared concerns. It may be 

managed by the organizations or by a third party and may exist on-

premises or off-premises. 

 Hybrid Cloud. The cloud infrastructure consists of two or more 

clouds (private, community, or public) that remain unique entities but 

are bound together by standardized or proprietary technology that 

enables data and application portability. 

1.2.  Cloud Computing Security 

Cloud computing may adopt the same control of any IT environment. 

However, the cloud service models, the operational models, and the 

supporting technologies change the risk landscape for an organization with 

respect to traditional IT. The next section outlines seven risks a user should 

consider before committing and seven top threats to cloud computing 

systems. 

1.2.1. Seven Risks to be analyzed before Committing 

There are seven possible risks a user should assess before committing 

[14]: 

 Privileged user access: sensitive data should be processed outside the 

enterprise only with the assurance that they are only accessible and 

propagated to privileged users. 

 Data segregation: is the user data should be fully segregated from data 

of other users.  
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 Regulatory compliance: a cloud provider should have external audits 

and security certifications and the infrastructure should comply with 

regulatory security requirements.  

 Data location: the cloud provider should commit to storing and 

processing data in specific jurisdictions and to obey local privacy 

requirements on behalf of the customer;  

 Recovery: the provider should offer an efficient replication and 

recovery mechanism to fully exploit the potentials of a cloud in the 

event of a disaster;  

 Investigative support: support should to be ensured for forensics and 

investigation with a contractual commitment. 

 Long-term viability: a user data should be accessible even when the 

provider is acquired by another company or the user moves to another 

provider. 

1.2.2. Top Seven Threats to Cloud Computing 

We briefly highlight seven threats that CSA (Cloud Security Alliance) 

[1] ranks and that apply across all of the different cloud computing models. 

Threat #1: Abuse and Nefarious Use of Cloud Computing 

The top threat that CSA identifies is the abuse and nefarious use of cloud 

computing. This is related to the use of botnets to spread spam and malware. 

Attackers can infiltrate a cloud system, by abusing the relative anonymity 

behind the cloud registration system and usage models. Then, they can 

upload malware and use the power of the cloud to attack other machines. The 

CSA suggests to: 

1. Monitor public blacklists for one’s own network blocks.  

2. Use a stricter initial registration and validation processes. 

3. Enhanced credit card fraud monitoring and coordination. 

Threat #2: Insecure Interfaces and APIs  

The CSA cautions against unsure application programming interfaces 

between applications for interoperability. The CSA suggests to: 

1. Analyze the security model of cloud provider interfaces. 

2. Ensure strong authentication and access controls are implemented in 

concert with encrypted transmission. Some Grid and Cloud portals 
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can be used for this target e.g. Nubifer [15], Ubuntu Portal [16], and 

our HIMAN-GP [17]. 

3. Understand the dependency chain associated with the API. 

Threat #3: Malicious Insiders 

Organizations need to assess the risk on the service provider's end and 

demand segregation of duties to prevent a malicious insider from accessing 

data. The CSA suggests to: 

1. Enforce strict supply chain management and conduct a 

comprehensive supplier assessment. 

2. Specify human resource requirements as part of legal contracts.  

3. Require transparency into overall information security and 

management practices, as well as compliance reporting. 

4. Determine security breach notification processes. 

Threat #4: Shared Technology Issues  

Cloud users have to be aware of vulnerabilities in shared technologies, 

such as VMs, communications systems or key management technologies. A 

zero-day attack can use these technologies and quickly spread across a public 

cloud and expose all data within it. The CSA suggests to: 

1. Implement security best practices for installation/configuration. 

2. Monitor environment for unauthorized changes/activity. 

3. Promote strong authentication and access control for administrative 

access and operations.  

4. Enforce service level agreements for patching and vulnerability 

remediation. 

5. Conduct vulnerability scanning and configuration audits. 

Threat #5: Data Loss or Leakage  

There are several alternative ways to compromise data. Deletion or 

alteration of records without a backup is an obvious example. A cloud 

increases the risk of data compromise, due to risks and challenges which are 

either unique to cloud, or more dangerous because of the architectural or 

operational characteristics of a cloud environment.  
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The CSA suggests to:  

1. Implement strong API access control. 

2. Encrypt and protect integrity of data in transit. There are many 

encryption schemes for high performance systems e.g., GridCrypt 

[18] and our “Ultra GridSEC” [19, 20, 21]. 

3. Analyzes data protection at both design and run time. 

4. Implement strong key generation, storage and management, and 

destruction practices.  

5. Contractually demand providers wipe persistent media before it is 

released into the pool. 

6. Contractually specify provider backup and retention strategies. 

Threat #6: Account or Service Hijacking 

Cloud users need to be aware of account service and traffic hijacking. 

Examples for attacks that may cause these threats are: man-in-the-middle, 

phishing, spam campaigns, and DDoS. Cloud solutions add a new threat to 

the landscape. If an attacker gains access to a user credentials, then she can 

eavesdrop on activities and transactions, manipulate data, return falsified 

information, and redirect the user clients to illegitimate sites. The CSA 

suggests to: 

1. Prohibit the sharing of account credentials between users and 

services. 

2. Leverage strong two-factor authentication techniques where possible. 

3. Employ proactive monitoring to detect unauthorized activity. 

4. Understand cloud provider security policies and SLAs. 

Threat #7: Unknown Risk Profile 

One of the tenets of cloud computing is the reduction of hardware and 

software ownership and maintenance costs to allow companies to focus on 

their core business strengths. This has clear financial and operational 

benefits, which must be weighed carefully against the contradictory security 

concerns when the migration to a cloud is driven by expected saving only by 

groups who may lose track of security issues. Information about who is 

sharing an infrastructure may be pertinent, in addition to network intrusion 

logs, redirection attempts and/or successes, and other logs. An IDS is the 

ideal tool for this threat, as it can deal with all suggestions of CSA like: 
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1. Disclosure of applicable logs and data.  

2. Partial/full disclosure of infrastructure details (e.g., patch levels, 

firewalls, etc.). 

3. Monitoring and alerting on necessary information. 

1.3.  Virtual Machines 

A virtual machine (VM) is as an efficient and isolated duplicate of a real 

one [22]. Typical applications of VMs include the development and testing 

of new operating systems, simultaneously running distinct operating systems 

on the same machine, and server consolidation [23]. 

A “virtual machine” is a fully protected and isolated copy of the 

underlying physical machine’s hardware that gives to its users the illusion of 

a dedicated physical machine. Figure 1.2 illustrates the traditional 

organization of a virtual machine system. The virtual machine monitor, 

VMM, is a software layer that takes complete control of the machine 

hardware and creates VMs, each of which behaves like a complete physical 

machine with its own operating system (OS).  

 

Figure 1.2: A virtual machine monitor 

 To maximize performance, the VMM gets out of the way 

whenever possible and allows a VM to execute directly on the 

hardware, albeit in a non-privileged mode. The monitor regains control 

anytime the VM tries to perform an operation that may affect the 

correct operation of other VMs or of the hardware. The monitor safely 

emulates the operation before returning control to the VM. The result 

of a complete machine virtualization is the creation of a set of virtual 
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computers that runs on a physical computer. An OS that runs in a VM 

is a guest OS. Since VMs are isolated from each other, the crash of a 

guest OS does not affect other VMs. [23] 

VMMs build some useful properties for system security, among them 

[24, 25]: 

 Isolation: Software running in a VM cannot access or modify 

the monitor or other VMs. 

 Inspection: The VMM can access the entire VM state.  

 Interposition: The VMM can intercept and modify operations 

issued by a VM.  

There are two classical approaches to organize VMs [26, 27]:  

 A type II VMM runs on top of a hosting operating system and then 

spawns higher level virtual machines. Examples include the JavaVM, 

Dot Net environment, Virtualbox [28] and Hosted Xen project 

(HXen) [29]. These VMMs monitor their VMs and redirect requests 

for resource to appropriate APIs in the hosting environment. Figure 

1.3-A depicts type II VMM. 

 A type I VMM, or hypervisor runs directly on the hardware without 

the need of a hosting OS. Examples include the mainframe 

virtualization solutions offered by Amdahl and IBM, and on modern 

computers by solutions like VMware ESX [30], Xen [31] and 

Windows virtualization. Figure 1.3-B depicts type I VMM. 

             
   Figure 1.3-A: type II VMM.     Figure 1.3-B: type I VMM (Hypervisor)   

1.4.  System Calls 

A system call [32] is a request for an action of an OS on behalf of a user 

program. System calls provide an essential interface between a process and 
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the OS like the API. On Unix-like systems, this API is usually part of an 

implementation of the C library (libc). On Windows systems, it is part of the 

Native API. Several tools can record the system calls sequences, the most 

common ones are the UNIX tool “strace” and the Linux audit daemon 

“auditd”. System calls can be categorized into five main categories [32]: 

1. Process Control 

2. File management: 

3. Device Management:  

4. Information Maintenance: 

5. Communication:  

1.5.  The Event Logs  

An event is a notification to the user or an entry added to a log that 

denotes any significant occurrence in hardware, software, and system 

components of a local or a remote computer [33]. The event log service 

records application, security, and system events. Event logs support the 

prediction, the identification and the diagnosis of system problems. 

Monitoring security events helps in detecting attacks and threats. Each OS 

has a specific auditing or event log service. In Windows systems it is the 

“Event Viewer” service [33]. The log entry consists of two parts, (a) the 

header information and (b) event description. 

a) Event Header:  

This header records [33]:  

 Date: The date the event occurred.  

 Time: The time the event occurred.  

 User: The name of the logged user when the event occurred.  

 Computer: The name of the computer where the event occurred.  

 Event ID: An event number that identifies the event type.  

 Source: The source of the event. This can be the name of a program, 

a system component, or an individual component of a large program. 

 Type: The type of event.  

 Category: A classification of the event by the event source.  
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b) Event Description 

The description of an event depends on its type. Events can be classified into 

one of the following types [33]:  

 Information: It describes the successful operation of a task, For 

example, an Information event is logged when a network driver loads 

successfully. 

 Warning: It does not imply an urgent necessity but it may indicate a 

future problem. For example, a Warning message is logged when 

disk space starts to run low. 

 Error: It signals a significant problem, such as the failure of a critical 

task. For example, the startup of an important process failed. 

 Success Audit (Security log): It records the successful execution of a 

security action. For example, a user logs onto/off the computer. 

 Failure Audit (Security log): It signals a partial failure of a security 

action. For example, a user cannot log onto the computer. 

Chapter 6 details security events and their important features. 

1.6.  NetFlow Data (Network Flows) 

NetFlow is a network protocol developed by Cisco Systems to collect 

network flows. A network flow is a unidirectional sequence of packets that 

share seven values [34, 35]: 

 Ingress interface. 

 Source IP address 

 Destination IP address 

 IP protocol 

 Source port for UDP or TCP, 0 for other protocols 

 Destination port for UDP or TCP, type and code for ICMP, or 0 for 

other protocols 

 IP Type of Service (TOS). Based on TOS values, a packet would be 

placed in a prioritized outgoing queue, or take a route with 

appropriate latency, throughput, or reliability. 
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Figure 1.4: NetFlow architecture [34] 

Figure 1.4 shows the export of NetFlow records. The router outputs a 

flow record when it determines that the flow is finished. It does this by flow 

aging: when the router sees new traffic for an existing flow it resets the aging 

counter. Flow record can be transmitted at a fixed interval even if the flow is 

still ongoing. Several software tools support NetFlow recording such as, 

Cisco NetFlow [36], vSphere [37], and sFlow [38]. A NetFlow record can 

contain a wide variety of information about the flow traffic such as [34]: 

 Input interface index. 

 Output interface index or zero if the packet is dropped. 

 Timestamps for the flow start and finish time, in milliseconds since 

the last boot. 

 Number of bytes and packets observed in the flow 

 Layer 3 headers: 

 Source & destination IP addresses 

 Source and destination port numbers for TCP,UDP, SCTP 

 ICMP Type and Code. 

 IP protocol 

 Type of Service (ToS) value 

 For TCP flows, the union of all TCP flags observed over the life of 

the flow. 
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 Layer 3 Routing information: 

 IP address of the immediate next-hop along the route to the 

destination 

 Source & destination IP masks. 

1.7.  Entropy 

The definition of the entropy is a quite broad and general and it is 

expressed in terms of the application field. In information theory, entropy 

measures the amount of information that is missing before reception and it is 

also referred to as Shannon entropy [39]. The conditional entropy (or 

equivocation) [40] is one of the information entropy categories that 

quantifies the amount of information to describe the outcome of a random 

variable Y if the value of another random variable X is known. The entropy 

of Y conditioned on X is written as H(Y|X). If H(Y|X=x) is the entropy of the 

variable Y conditioned on the variable X taking the value x, then H(Y|X) is 

the average of H(Y|X=x) over all possible values of X. Equation 1.1 [40] 

formally defines conditional entropy given a discrete random variable X with 

support  and Y with support . 

H(Y|X) = 0 if and only if the value of Y is completely determined by the 

value of X. Conversely, H(Y|X) = H(Y) if and only if Y and X are 

independent. 

                                         (1.1) 

 

 

 

 

 

 

 

 

Chapters 6 and 7 use conditional entropy to measure the regularity of the 

training data for each user. 
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1.8.  The Artificial Neural Network (ANN) 

An ANN [41] is a mathematical function that consists of some artificial 

neurons that receives and sums their inputs. Usually the sums are weighted, 

and the sum is passed through a non-linear function, a transfer or activation 

function.  

 

Figure 1.5: The basic structure of the artificial neuron  

As shown in Figure 1.5, the basic structure of the ANN consists of three 

types of nodes, input, hidden, and output. The artificial neuron receives m + 

1 inputs with signals x₀ through  and weights w₀ through . Equation 1.2 

defines the output of the k
th

 neuron: 

 

                                                        (1.2) 

 

 

Where, ϕ is the transfer function that translates the input signals to output 

signals.  

1.8.1. ANN Transfer Function  

Four types of transfer functions are commonly used, Unit step 

(threshold), sigmoid, piecewise linear, and Gaussian. 

1) Unit step (threshold) function:  

The output is one of two values depending on whether the total input is 

larger than a threshold x. Figure 1.6 shows the shape of this function. 
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Figure 1.6: The Unit step (threshold) transfer function 

2) Sigmoid function: 

The sigmoid function consists of 2 functions, logistic and tangential. The 

logistic function has a range 0..1, while the range of the tangential one is -1.. 

+1. Figure 1.7 shows the shape of this function. 

 

Figure 1.7: The sigmoid transfer function 

3) Piecewise Linear function:  

The output of the Piecewise Linear function is proportional to the total 

weighted output. Figure 1.8 shows the shape of this function. 

 

  Figure 1.8: The Piecewise Linear transfer function 
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4) Gaussian function:  

Gaussian functions are continuous curves with a bell shape. The node 

output is interpreted in terms of class membership (1/0), depending on how 

close the net input is to a chosen average value. Figure 1.9 shows the 

function shape. 

 

Figure 1.9: The Gaussian transfer function 

1.8.2. Threshold Logic Unit (TLU): 

TLU [42] is a simple type of ANN similar to the threshold transfer 

function that uses a simple model with binary inputs and outputs, some 

restrictions on the possible weights, and a more flexible threshold value. Any 

boolean function can be implemented by networks of such ANN.  

1.8.3. ANN Types 

There are different types [41] of neural networks, but they are generally 

classified into feed-forward and feed-back networks. 

A feed-forward network is a non-recurrent network where the signal 

travels in one direction. Input data is passed onto a layer of processing 

elements where each element computes a weighted sum of its inputs that 

feed the next layer. The process continues through all the layers to compute 

the final output. The output layer sometime uses a threshold transfer 

function. 

A feed-back network has feed-back paths that send the signal in both 

directions using loops. All connections between the neurons are possible and 

this may result in loops. Because of these characteristics, this type of 

networks is a non-linear dynamic system which changes continuously until it 

reaches an equilibrium. Feed-back networks are often used in associative 
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memories and optimization problems. We use this type of networks to train 

our IDS system to adjust the weights of the ANN. 

1.9.  Host, Network, and DDoS Attacks 

Attacks utilize network media and manipulate computing and/or network 

resources to severely degrade the performance of the services of an ICT 

network and eventually shutdown the entire network. We can classify attacks 

according to the type of penetration (inside, outside), type of interactions 

(passive, active) and the mechanism to launch the attack. [43, 44] 

Penetration Type: Penetration can be carried out as an outsider or as an 

insider. Insiders are legal users that are conducting malicious activities 

through their accounts or by illegally using other user accounts. Instead, an 

outsider launches attacks from outside the network perimeter or implements 

probing or scanning attacks to acquire information on the network before 

launching the real attacks. Potential outsiders range from amateur to 

organized crime, cyber terrorists, and hostile governments. 

Interaction Type: Attack classification should also consider the interaction 

between the attackers and the network environment. Based on this criterion, 

network attacks can be either classified as active or passive. In a passive 

attack (e.g., wiretapping, port scanner, idle scan), the attacker listens to the 

streams of traffic to gather valuable information. Thus the anomalous 

behaviors caused by this type of attacks are hard to observe because they 

leave the minimum footprint. Active attacks aim to change the configuration 

of system resources or affect their operation (e.g., Denial of Service Attacks, 

Spoofing, Man-in-middle attack, ARP positioning). They trigger an 

anomalous behavior that can be observed and quantified provided that the 

appropriate metrics are used. 

Mechanism Type: the mechanisms and techniques to launch an attack 

partition attack into five classes: Denial of Service (DoS), User to Root 

(U2R), Remote to Local, probing, and virus/worm attacks. 

Denial of Service (DoS) attack: It prevents services for the users by 

limiting or denying their access to system resources such as bandwidth, 

memory, buffers, and/or processing power. To this purpose, these attacks can 

target software vulnerabilities, change configuration, or exhaust the network 

resource to its limit. Possible examples include ICMP Nukes, Teardrop, 

Land Attack, the ping of death, and playing with the configuration of a 
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compromised router. While these attacks can be easily fixed by installing 

proper software patches, reloading correct configuration, and limit the access 

to resources, they impose a critical load on network administrators that 

increases with the number of attacks. Section 1.9.2 describes a popular attack 

in this class, the Distributed Denial of Service (DDoS). 

User to Root (U2R) attack: Attackers with login access can bypass 

authentication to gain the higher privileges of another user in controlling and 

accessing the system. 

Remote to Local (R2L) attack: Attackers can bypass normal authentication 

and execute commands and programs on the target with local machine 

privileges. 

Probe/Scanning attacks: These attacks blueprint the network and its 

resources to discover vulnerability or entry points that the attacker can use to 

penetrate or attack network resources.  

Worm/virus: This attack is run by a malicious piece of code that spreads 

across a network and targets hosts or network resources to cause dysfunction, 

data loss, or data theft.  

Attacks against an information system can also be classified according to 

the number of involved computers. An attack that may involve even a large 

number of computers is the DDoS ones outlined in Section 1.9.2. Attacks 

can also be classified into network or host ones according to the mechanism 

or the type of vulnerabilities they exploit. 

 [45] presents classification criteria based on attack surfaces of the cloud 

computing scenario participants as shown in Figure 1.10.  

 
Figure 1.10: A Taxonomy for attacks on cloud services 
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(a) Service-to-User: includes attacks in common client-server 

architectures, e.g. buffer overflow attacks, SQL injection, or privilege 

escalation.  

(b) User-to-Service: includes attacks in the common environment of client 

program, e.g. browser-based attacks, attacks on browser caches, or 

Phishing attacks on mail clients.  

(c) Cloud-to-Service: includes attacks of a service instance against its 

hosting cloud system, e.g. the resource exhaustion attacks, or attacks 

on the hypervisor.  

(d) Service-to-Cloud: incorporates attacks of a cloud provider against a 

service, e.g., availability reductions, privacy related attacks or even 

malicious interference. This category is by far the most critical one, as 

the provider can implement them in a rather simple way and attack 

impacts are tremendous.  

(e) Cloud-to-User: includes user attacks against the interface of the cloud 

system to control the provided services and that enables the customers 

to add new services or change the number of service instances.  

(f) User-to-Cloud: involves every kind of attack that targets a user and that 

originates from the cloud system. It is similar to the phishing attempts 

to trigger a user into manipulating cloud-provided services. 

1.9.1.  Host and Network Attacks and Their Libraries 

We briefly classify attacks into network and host ones and describe the 

libraries that support their implementation. 

Network attacks exploit vulnerabilities in the communication protocols or 

in the interconnection structure to attack the integrity and confidentiality of 

communications. As an example, since most communications adopt an 

unsecured or clear text format, an attacker that can access network data paths 

can also read and interpreter the traffic these paths transmit. Some examples 

of these attacks are [43]: 

(1) Eavesdropping: it is also known as sniffing or snooping. This attack 

monitors the network traffic.  

(2) Data Modification: it modifies transmitted data in a way that cannot 

be detected by the sender or the receiver.  
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(3) Identity or IP Address Spoofing: it builds IP packets that appear to 

originate from valid addresses to modify, reroute, or delete some 

data. It is supported by specialized libraries. 

(4) Denial-of-Service Attack (DoS): It shuts down applications or 

network services by flooding them with invalid traffic. This can 

prevent legal user from accessing network resources.  

(5) Man-in-the-Middle Attack: This attack inserts a distinct entity 

between two communicating components to capture and modify their 

communications.  

Host based attacks are enabled by vulnerabilities in the host OS or in the 

applications. Some classes of these attacks are [Host-attack]:  

 Buffer overflow: It violates memory safety to overwrite adjacent 

memory positions. It exploits the lack of controls on the size of a 

parameter 

 Rootkit: It installs software components to hide a malicious processes 

running on the node and that grants to the attacker a privileged access 

to the system. 

 Format string: It can crash a program or execute harmful code. It 

exploits the lack of control on user inputs such as the format string in 

some C functions.  

Several libraries have been developed to support host and network 

attacks. As an example, Metasploit [46] is a consistent and reliable library of 

constantly updated exploits for network, OSs and applications. An exploit is 

a code fragment to automate, at least partially, an attack. Metasploit defines a 

complete environment to develop new tools and automate every aspect of an 

attack. It simplifies the development of attack vectors to extend its exploits, 

payloads, encoders to create and execute more advanced and specialized 

attacks against a target system. 

1.9.2. DDoS Attacks 

Distributed Denial of Service (DDoS) attacks [47] are a class of attacks 

that disrupt the service quality of a system. It is worth considering these 

attacks in relation with clouds because their effectiveness increases if an 

attacker can use the massive amount of resources in a cloud.  
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Figure.1.11: The DDoS Strategy. 

Figure 1.11 shows the four elements of DDoS attacks [48] namely:  

(1) The attacker machine. 

(2) The handlers: these are hosts controlled by the attacker as a result of a 

previous attack. They run some malware and act as an intermediate 

interfaces to control the agents and route to them the attacker 

commands. 

(3) The agents or zombie hosts: also these hosts are controlled by the 

attacker. They run some malware that either implements an attack on 

behalf of the attacker (botnets) or generates a stream of packets 

towards the target system. 

(4) The victim or target system. 

While several kinds of DDoS attacks exist, any implementation of these 

attacks includes the following stages: 
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(1) Search of vulnerable hosts to act as handlers and zombies. This step 

can exploit a standard vulnerability scanner such as Nessus [51].  

(2) Compromising the vulnerable hosts: The attacker exploits the 

vulnerabilities returned by the scanner to attack some vulnerable hosts 

and stealthy install some malware.  

(3) Communication, broadcasting, and flooding: The attacker 

communicates a command to one or more handlers. Then, the handler 

broadcasts any received commands to hundreds or even thousands of 

zombies that start flooding the network of the target system until the 

attacker sends a stop command. 

In the experiments, we implement DDoS attacks through the LOIC 

library [49]. LOIC is one of the most powerful free DOS and DDOS 

attacking tool, it attempts to open several connections to the same target host 

and continuously floods it with false TCP or UDP packets, or with HTTP 

requests that lead to a service disruption. A DDOS attack runs LOIC through 

multiple zombies. Another library we have used is the CPU Ping Death 

library [50]. It is a DDoS attacking tool that opens multiple floods to a large 

number of hosts and continuously floods them with fake packets and HTTP 

requests to reduce their bandwidth and their performance. 

1.9.3. Current DDoS Detection Techniques in Cloud systems. 

We briefly review some IDSs that have recently been proposed to detect 

DDoS attacks in clouds.  

[52] investigates the effect of DDoS on clouds and proposes an IDS 

based on the behavioral threshold. The IDS assumes that a user is attacking 

the system if the user requests are outside the normal user range. The 

threshold is automatically determined as a dynamic variable according to the 

network position and pressure traffic. To simplify the discovery of legal 

users, several solutions may be integrated with the IDS such as load 

balancing of the network traffic and a honeypot [53]. The latter discovers the 

attacker signatures by analyzing the collected data. The IDS does not 

correlate network events in distinct virtual zones of the cloud. Furthermore, 

no deployment in a real cloud system is described and the accuracy and the 

performance of the IDS are not evaluated.  
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[54] uses an IDS sensor such as the version of Snort [55] installed on 

VMware ESX [56] machine that sniffs both in-bound and out-bound traffic 

to detect DoS attacks. Snort analyzes in-bound packets and looks for several 

intrusion patterns. If at least one matches, it drops all the packets from the 

same IP address. The accuracy and performance of this solution is not 

evaluated. Furthermore, also this solution does not correlate network events 

to discover attacks against several virtual zones.  

[57] proposes a cooperative IDS that reduces the impact of DoS attack in 

each cloud regions. Several IDS components are distributed across these 

regions and a cooperative module receives their alert messages. Then, a 

majority vote determines the trustworthiness of these alerts. This system 

avoids any single point of failure but its accuracy is not satisfactory. 

Furthermore, it has not been evaluated against a DDoS attack. 

The analysis of current solutions confirms that a defense strategy for 

clouds against DDoS attacks introduces some further requirements with 

respect to those for traditional systems. To be adopted in clouds, a solution 

needs to:  

(1) Be distributed and scalable,  

(2) Avoid single points of failure,  

(3) Correlate the user behaviours in distinct environments. 

(4) Integrate different service models.  

1.10 Software Tools Used in the Thesis Work  

In the following, we highlight the software tools to build and deploy the 

proposed framework. 

A. Cloud Management Software 

In our practical deployments, we used Microsoft Private Cloud [13] in 

our CID-VERT framework and VMware system in CIDS framework to 

control the deployment of the VMs and applications and to manage the 

creation of the virtual networks. 
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1) Microsoft Private Cloud  

Microsoft private cloud [13] offers traditional IaaS services, such as VMs 

on demand and supports for deploying multi-tier applications, monitoring 

and updating those applications, and automation services. It relies on several 

different System Center 2012 components and supports multiple type-1 

hypervisors, see Figure 1.12, such as: Microsoft Hyper-V [13], VMware 

ESX/ESXi [56], and Citrix XenServer [58]. It also supports conventional 

compute, storage, and networking hardware along with pre-packaged 

hardware configurations that conform to the Hyper-V Cloud Fast Track 

specification. [59] 

 

 

Figure 1.12: The main components of Microsoft private cloud. [59] 

The components that Microsoft private cloud relies on are [59]:  

 System Center Virtual Machine Manager (VMM) 2012: it provides 

the fundamental services for creating and managing clouds as well 

as to deploy and update VMs and applications.  

 System Center App Controller 2012: it is a self-service portal for 

requests made directly to a private cloud created with VMM 2012. 

 System Center Service Manager 2012: it provides automated IT 

service management and an associated self-service portal.  
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 System Center Orchestrator 2012: it provides a way to automate 

interactions among other management tools such as VMM 2012 

and Service Manager.  

 System Center Operations Manager 2012: it monitors VMs, 

applications, and other aspects of a private cloud. Then, it fires 

actions to fix problems it detects.  

All these technologies depend on Windows Server 2012 and Active 

Directory. 

2) VMware Workstation 

VMware Workstation [60] is a type-2 hypervisor that enables users to set 

up multiple VMs that supports the following functions [60]: 

 Bridging existing host network adapters. 

 Share physical disk drives and USB devices with a virtual machine. 

 Simulate disk drives. 

 Save "snapshots" for the VMs which can later be restored to return 

the virtual machine to the saved state.  

B. Intrusion Detection Software 

In our deployment, we used some open source IDSs and tools to detect 

host, network, and DDoS attacks based on the signature based analysis 

techniques namely, OSSEC, Snort, and OSSIM.  

1) OSSEC 

OSSEC [61] is an Open Source Host-based Intrusion Detection System. 

It performs log analysis, file integrity checking, policy monitoring, rootkit 

detection, real-time alerting and active response. It runs on most OSs and it 

has two types of installation, Local and Agent-Server. In the local 

installation, OSSEC only protect a local machine. Instead, the Agent-Server 

installation protects the machines of the network. The agents are installed in 

several hosts systems to report back to a central OSSEC server to aggregate 

the information from the agents, analyze it and fires alerts. 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

35 

 
Figure 1.13: The Analysis flow chart of OSSEC 

 As shown in Figure 1.13, the analysis processes includes pre-decoding, 

decoding, rule matching, and alerting.  

 The Pre-decoding process extracts the static information such as the 

event message, the location or the program name.  

 The Decoding process extracts non static information such the attributes 

of the regular expression that defines each field.  

 The Rule Matching process applies the Rule Matching Engine to 

determine if the received event matches any stored rules to fire an alert. 

 The Alerting process determines where the rules should be sent. Alerts 

can be emailed to the user or logged into database.  

2) Snort 

Snort [55] is an open source network intrusion detection system that can 

log network packets. It uses a rule-based language that integrates signature, 

protocol, and anomaly inspection methods. Snort consists of five main 

components [55], see Figure 1.14, namely, Packet Decoder, Preprocessors, 

Detection Engine, Logging and Alerting, and the output module. 
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Figure 1.14: Snort Architecture 

The analysis processes of Snort are summarized below:  

(1) It captures packets from network using “LibPCap” component. 

(2) The packet decoder component receives packets from different types of 

network interfaces (Ethernet, SLIP, PPP…), prepares a packet for 

processing and fits it at the data structure.  

(3) The preprocessor component prepares data for the detection engine. It 

also handles defragmentation and TCP streams and detects anomalies 

in packet headers. 

(4) The detection engine, the most important component, detects if any 

intrusion activity exists in a packet by applying a rule-based string 

matching algorithm. The algorithm dissects the packet and applies rules 

on different parts of the packet. If a packet matches any rule, 

appropriate action is taken. Otherwise no action is taken. 

Finally, the Output Module processes alerts and logs and generates the 

final output according to the user policy and the packet content.  

3) OSSIM 

OSSIM [62] provides a common framework for the deployment, 

configuration, and management of security tools including IDS sensors. It 

offers event collection, normalization, correlation and incident response. We 

modified two modules from OSSIM, the normalization and correlation to 

integrate all alerts from different IDSs analyzers in the cloud i.e., OSSEC 

and Snort alerts by applying the IDMEF protocol. We detail the two 

modules in Chapter 8.  
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Chapter 2 

Intrusion Detection and Related Works  

This chapter introduces the intrusion detection systems definition, 

architecture and techniques. Then, it reviews previous works on intrusion 

detection systems and masquerade detection. Finally, it discusses the current 

intrusion detection datasets and their deficiencies for cloud systems. 

2.1 Intrusion Detection Systems  

Intrusion detection [63] is the process of monitoring and analyzing the 

events occurring in an ICT system to detect signs of intrusions. Intrusions are 

defined as attempts to compromise the confidentiality, integrity, availability 

of a system component, or to bypass a security mechanism. They may be 

generated by attackers accessing the systems from the Internet or by 

authorized users who attempt to gain additional privileges or misuse their 

privileges.  

Intrusion Detection Systems (IDSs) are software or hardware 

components that automate the monitoring and the analysis. There are several 

compelling reasons to adopt IDSs [63]: 

 To prevent illegal behaviors by increasing the perceived risk of 

discovery and punishment. 

 To detect attacks and other security violations not prevented by other 

security measures.  

 To detect and deal with the preambles to attacks  

 To document existing threat to an organization.  

 To act as quality control for security design and administration.  

 To provide useful information about intrusions that do take place, 

allowing improved diagnosis, recovery, and correction of root causes. 

2.1.1 Intrusion Detection System Architecture 

At a very macroscopic level, an IDS can be described [64] as a detector 

that processes three kind of information from the system to be protected 

(Figure 2.1):  
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(1) Long-term information depending upon the technique to detect 

intrusions, e.g. a knowledge base of attacks. 

(2) Configuration information about the current system state.  

(3) Audit information describing the system events e.g., C2 audit trail, the 

syslog in the UNIX world, the event log in Windows NT.  

The detector removes unnecessary information from the audit trail and 

presents a synthetic view of security-related user actions. A decision is then 

made according to the probability that these actions are symptoms of an 

intrusion. 

 

Figure 2.1: Simple Intrusion Detection System 

The following three measures of the efficiency of an IDS have been 

highlighted in [68] 

(1) Accuracy. An inaccurate IDS flags as anomalous or intrusive a 

legitimate action in the environment.  

Any IDS has four possible outcomes defined by the IDS reaction 

matrix, see Table 2.1. The outcomes are known as. True negatives 

(TN) as well as true positives (TP) correspond to a correct IDS 

operation when events are successfully labeled as normal and attack, 

respectively. False positives (FP) refer to normal events predicted as 

attacks, while false negatives (FN) are attacks incorrectly predicted as 

normal events. [65, 66] 
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Table.2.1: Possible status for an IDS reaction [65, 66] 

 

The following equations compute the rate of these reactions to quantify the 

IDS performance [67]: 

 
 

(2) Performance. The performance of an IDS is the rate at which it 

processes audit events. A poor performance prevents real-time 

detection. 

(3) Completeness. An incomplete IDS fails to detect an attack. The 

evaluation of this measure is rather complex due to the lack of global 

knowledge of attacks.  

Two further properties are defined in [64]: 

(1) Fault tolerance or resilience. An IDS should resist to attacks, 

particularly to denial of service. This is important because most IDSs 

run on top of commercial OSs or hardware which are vulnerable to 

attacks. 

(2) Timeliness. The performance of an IDS should enable an early reaction 

to prevent the attacker from subverting the audit source or the IDS 

itself. The corresponding performance measure encompasses both the 

native performance of the IDS and the time to propagate the 

information and react to it. 
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2.1.2 Intrusion Detection Methods and Techniques  

There are two distinct approaches to detect an intrusion: 

A. The search for evidence of attacks based on knowledge accumulated 

from known attacks. 

B. The search for deviations from a model of normal behavior based 

upon observations of a system during a known normal state.  

The first approach is referred to as misuse detection or detection by 

appearance. The second trend is referred to as anomaly detection or detection 

by behavior. We denote the first approach as knowledge-based intrusion 

detection because it describes more precisely the adopted technique. The 

second approach is characterized as behavior-based intrusion detection. We 

highlight both approaches in the next sections with their relative techniques 

as in [64] 

A. Knowledge-based intrusion detection 

Knowledge-based intrusion detection techniques exploit the knowledge 

available about specific attacks and system vulnerabilities. The IDS stores 

and manages information about these vulnerabilities and looks for attempts 

to exploit them. When it detects an attempt, it triggers an alarm. In other 

words, any action that is not explicitly recognized as an attack is accepted. 

Therefore, knowledge-based intrusion detection systems may achieve a good 

accuracy. However, they achieve completeness only if their knowledge of 

attacks is updated regularly. 

Knowledge-based approaches have the potential for very low false alarm 

rates, and the IDS may implement a detailed contextual analysis that 

simplifies preventive or corrective actions. 

Drawbacks include the difficulty of gathering information on attacks and 

keeping it abreast with new vulnerabilities. Knowledge-based method uses 

different techniques namely: expert systems, signature analysis, and state 

transition analysis. 

 Expert systems. These IDSs contain set of rules that describe attacks 

[69]. Audit events are translated into facts carrying their semantic 

meaning in the expert system and the inference engine draws 
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conclusions using these rules and facts. This method increases the 

abstraction level of the audit data by attaching a semantic meaning to 

it. Rule-based languages [70] are a natural tool for modeling the 

knowledge about attacks. This approach allows a systematic 

browsing of the audit trail in search for evidence of attempts to 

exploit known vulnerabilities.  

 Signature analysis. Signature analysis follows the same knowledge- 

acquisition approach as expert systems. However, these IDSs exploit 

in a different way the knowledge because the method decreases the 

semantic level of the attack description by transforming it into 

information that can be found in the audit trail. For example, attack 

scenarios might be translated into the sequences of audit events they 

generate, or into patterns of data in the system audit trail. The 

implementation of this technique can be very efficient and it is 

therefore adopted by commercial IDSs. As in any knowledge-based 

approaches the main drawback is the update to keep up with the 

stream of new vulnerabilities and attacks. 

 State-transition analysis. This technique [71] was implemented first 

in UNIX and later in other environments. It is conceptually identical 

to model-based reasoning: it describes attacks as a set of goals and 

transitions, but represents them as state-transition diagrams. 

B.  Behavior-based intrusion detection 

Behavior-based intrusion detection techniques assume that an intrusion 

can be detected by observing a deviation from the normal or expected 

behavior of the system or the users. The model of normal or valid behavior is 

extracted from information collected by various means. Then, the IDS 

compares this model with the current system activity and raises an alarm 

when it observes a deviation In other words, anything that does not 

correspond to a previously learned behavior is considered intrusive. 

Therefore, the intrusion-detection system might be complete, but its accuracy 

poses complex issues. 

Behavior based approaches can detect attempts to exploit new and 

unforeseen vulnerabilities and they can even contribute to the (partially) 

automatic discovery of new attacks. They are less dependent on OS specific 
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mechanisms and can also help to detect "abuse of privileges" attacks that do 

not actually exploit any security vulnerability. A high false alarm rate is 

generally cited as their main drawback because the learning phase may not 

cover any possible behavior. Also, behavior can change over time, 

introducing the need for periodic on-line retraining, resulting either in the 

unavailability of the IDS or in false alarms. If the information system is 

under attack when the IDS is learning what is acceptable behavior, the 

behavior profile may contain intrusive behavior, which is then not detected 

as anomalous. The method uses different techniques namely: statistics, 

expert systems, neural network, and user intention identification. 

 Statistics. Statistics is the most widely used tool to build behavior-

based IDSs [72]. The user or system behavior is measured by a 

number of variables sampled over time. Examples include the login 

and logout time of each session, the resource duration, and the 

amount of processor-memory-disk resources consumed during the 

session. The time sampling period ranges from a few minutes to 

about one month. The original model keeps averages of all these 

variables and detects whether thresholds are exceeded based on 

standard deviations. 

 Expert systems. They are useful for policy-based usage profiles but 

less efficient than the statistical approach to process large amounts of 

audit information. 

 Neural networks. Knowledge-based intrusion detection use neural 

networks to learn attack traces and seek them in the audit stream. 

Currently, a neural network cannot propose an explanation of the 

attack because there is no reliable way to understand what triggered 

the association. Therefore, IDSs use neural networks to learn the 

behavior of actors in the system e.g. users, daemons. Experiments 

that used a neural network to predict user behaviors [73] have shown 

that the behavior of UNIX root users is extremely predictable because 

of the very regular activity generated by automatic system actions or 

daemons. Furthermore, the behavior of most users is also predictable 

but that of a very small fraction of users is unpredictable. 
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 User Intention Identification. User Intention Identification [74] is a 

technique [75] that models the normal behavior of users in terms of 

their high-level tasks. Then, these tasks are refined into actions 

related to the audit events observed on the system. The analyzer pairs 

each user with a set of tasks the user can perform. Whenever a user 

action does not fit the task pattern, an alarm is issued.  

2.1.3 Intrusion Detection Message Exchange Format (IDMEF) 

The Intrusion Detection Message Exchange Format (IDMEF) [76] is a 

XML standard format for messages exchanged among IDSs. This model is 

an object-oriented representation of the alert data that the intrusion detection 

analyzers transmit to the management systems. It provides a standard, 

coherent representation of alerts and it describes the relationship between 

simple and complex alerts.  

As shown in Figure 2.2, IDMEF Message is the top-level class and it has 

two subclasses, Alerts and Heartbeat. A heartbeat message signals the 

current status of the IDS analyzer to the central manager or the other way 

around and they are sent with a predefined frequency. The absence of a 

Heartbeat message denotes a failure of the analyzer or of its network 

connection. The Alert message is a response from an IDS analyzer and its 

information is used to integrate and correlate the alerts from different IDSs. 

The integration is based on the similarity of one or more of the data model 

subclasses as following:  

a) Attack name or signature given by the classification subclass. 

b) Times of creation and of analysis. The two times are based upon the 

characteristics of the firing IDS. Hence, two alerts might be 

considered similar even though their times of creation and of analysis 

differ. 

c) Source and target. The structures of the source and target subclasses 

are similar; they might be described by an IP address or a host or user 

name. 
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Figure 2.2: IDMEF Data model 

2.1.4 Related Work in Intrusion Detection Systems 

IDS technology has been proposed as an efficient security measure and is 

nowadays widely adopted for securing critical IT-Infrastructures. According 

to the protected objectives, IDSs can be categorized to three main categories 

namely [77]: 

(1) Network-based Intrusion Detection Systems (NIDS). 

(2) Host-based Intrusion Detection Systems (HIDS). 

(3) Distributed Intrusion Detection Systems (DIDS). 

The latter contains both types of sensors (i.e., HIDS and NIDS)  

Cloud based IDS is a new trend of researches which extends distributed 

IDSs. A few papers have proposed some IDSs frameworks for cloud 

systems. Some of these frameworks target SaaS service model, the others 

adapt some traditional techniques such as mobile agents. These papers do not 

discuss an implementation of the proposed frameworks or sometimes cover 

only one service model. This section describes all the previously mentioned 

categories of IDSs and reviews previous works on this theme. 
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(1) Network-based Intrusion Detection Systems  

A Network-based IDS (NIDS) detects attacks by capturing and analyzing 

network packets. By listening on a network segment or switch, a NIDS can 

monitor the network traffic among the hosts connected to the segment. 

NIDSs often consist of a set of single-purpose sensors or hosts at various 

points in a network. These components monitor network traffic, implement a 

local traffic analysis and reports attacks to a central management console 

[63].  

The best strategy to secure a large-scale network is to partition it into 

smaller networks using switches. Separate network segment are then 

protected through security technology such as firewalls and IDSs [78]. 

Figure 2.3 gives an example of NIDSs deployment. 

 

Figure 2.3: An example of network-based intrusion detection system 

The advantages of NIDSs are [63]: 

(1) A few well-placed NIDSs can monitor a large network. 

(2) Their deployment has little impact on an existing network.  

(3) They can be made very robust against attack and even made invisible 

to most attackers. 
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The disadvantages [63] are: 

(1) NIDSs cannot analyst all the packets in a large or busy network. 

Hence, they may fail to recognize an attack launched during periods 

of high traffic.  

(2) Several advantages of NIDSs do not apply to switch-based networks. 

While switches subdivide networks into many small segments, 

sometime they do not provide universal monitoring ports where all 

the traffic is mirrored. This limits the monitoring range of a NIDS 

sensor.  

(3) NIDSs cannot analyze encrypted information. This problem is 

increasing as more organizations (and attackers) use virtual private 

networks.  

(4) Most NIDSs can discover that attack is attempted but cannot tell 

whether or not it was successful. Hence, if a NIDS detects an attack, 

administrators have to manually investigate whether it was 

successful.  

(5) Some NIDSs become unstable and may crash if network-based 

attacks involve fragmenting packets. 

(2) Host-based Intrusion Detection Systems  

A Host-based intrusion detection system (HIDS) is installed on a host to 

monitor suspicious events occurring within it. In other words, a HIDS resides 

on network end-points. Unlike NIDSs, HIDSs monitor not only malicious 

network traffic but also events within the protected host.  

An HIDS is rather powerful [78] because it is designed to operate on a 

specific host such as web or a mail server. Hence, it may be integrated with 

the software node and be designed to communicate with other network 

components and OSs.  

Furthermore, HIDSs can complement NIDSs because they can analyze 

packets at the application ends and inspect encrypted traffic [78]. Since an 

HIDS detects attacks inside its local host, it could not detect attacks from 

outside its boundaries. Figure 2.4 gives an example of HDS deployment and 

Table 2.2 summarizes advantages and disadvantages of HIDS and NIDS.  
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Figure 2.4: An example of Host-based intrusion detection system  

Table.2.2: Evaluation of HIDS and NIDS 

NIDS HIDS 

Better for detecting attacks from outside  Better for detecting attacks from inside that 

NIDS cannot analyze 

Examines packet headers & entire packet Does not see packet headers 

Host independent Host dependent 

Bandwidth dependent Bandwidth independent 

Slow down the networks that have IDS 

clients installed 

Slow down the hosts that have IDS clients 

installed 

Detects network attacks, as payload is 

analyzed 

Detects local attacks before they hit the 

network 

Not suitable for encrypted and switches 

network 

Well-suited for encrypted and switches 

network 

Does not perform normally detection of 

complex attacks 

Powerful for analyzing a possible attack 

because of relevant information in database 

High false positive rate Low false positive rate 

Examples: Snort [55], Cisco Guard XT 

[79] 

OSSEC[61], Samhain [80], Osiris[81], and 

eEye Retina [82] 

(3)  Distributed Intrusion Detection Systems  

A distributed IDS (DIDS) consists of multiple IDSs over a large network. 

The IDSs interact in a hierarchical architecture with either several servers or 

a unique central server [DIDS-Symantec]. Figure 2.5 shows the tree structure 

of a hierarchical architecture where circles represent network nodes and 

arrows denote the information flows between different types of nodes. The 

leaf nodes represent network-based or host-based collection points. They 

gather information that is transmitted to internal nodes, which aggregate 

information from multiple nodes. Further aggregation, abstraction and data 

reduction occurs at higher level nodes until reaching the root node. This node 
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is a command and control system that evaluates attack signatures, issues 

responses and reports to an operator console where an administrator can 

manually assess status and issue commands. The hierarchical structures 

make the IDS vulnerable to direct attacks. Several points of failure exist in 

the IDS that have no redundant communication lines or the capability to 

dynamically reconfigure relationships if a key component fails. The IDS may 

also still be vulnerable because current implementations do not apply 

survivability techniques such as redundancy, mobility, or dynamic recovery 

[84, 85]. Some known examples of DIDS are EMERALD [86], INBOUNDS 

[87]. Sometimes, see Figure 2.6, the IDS collector components over a large 

network communicate with a central server to simplify network monitoring, 

incident analysis, and instant attack data. The system works as a centralized 

IDS but with a collection of distributed collector components. 

  

Figure 2.5 Hierarchical DIDS  

  

Figure 2.6 Unique central server 

 The data collection component in Figure 2.6 receives information from 

the audit logs and the host internal interfaces or from the network packets. 

Then, it transmits information to a centralized analysis component in another 

machine (i.e., a server or a dedicated machine) that analyzes it [78]. This 

architecture is effective for small numbers of monitored nodes. The 

centralized analysis limits the system’s scalability: as more collection 

components are added, the processing load on the analysis component 
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increases with the overhead on the machine running this component. Also 

this architecture represents a single point of failure. Some known examples 

of this type of DIDS are NIDES [88], ARMD [89], Stalker [90], and 

UNICORN [91].  

DIDS can be categorized as Mobile Agent Intrusion Detection Systems 

(MAIDS), Grid based Intrusion Detection Systems (GIDS), and Cloud based 

Intrusion Detection Systems. We will review them below. 

(a) Mobile Agent Intrusion Detection Systems (MAIDS) 

The DIDS architecture does not scale well for large networks since any 

new component increases the load on the DIDS director, and the data 

flowing to the director can consume most of network bandwidth. MAIDS 

address these scalability problems by using Mobile Agents (MAs) for 

decentralized data analysis.  

A software agent is a software entity which functions continuously and 

autonomously in a given environment. It can execute activities in a flexible 

and intelligent manner that responds to changes in the environment, learns 

from its experience and cooperates with other agents [92]. MAs are a type of 

software agent with the capability to move from one host to another. For 

mobile agents to be useful for intrusion detection, a MA platform has to be 

installed on most, if not all, hosts and network devices. There are different 

functional and performance requirements [93] to enable the MAs to 

successfully detect intrusions. Figure 2.7 shows the movement of an agent 

among several platforms.  

 

Figure 2.7: An Agent System Model 
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The platform where an agent originates is referred to as the home 

platform. Normally, this is the most trusted environment for an agent. One or 

several hosts may comprise an agent platform that may support multiple 

locations or meeting places where agents can interact. The main advantages 

of mobile agent for IDS are reported in [93]. 

While MAs are a powerful tool, their implementation has been hindered 

by security considerations that are critical for IDSs, with the result that most 

security research in this field has concentrated upon the architecture to 

provide security for mobile agents [93]. The adoption of MAs for IDS poses 

several problems [93]: 

(1) The security issues related to MAs: there are different security threats 

for MAs namely, agent-to-agent, agent-to platform, platform-to-agent, 

and other-to-agent platform. The agent-to-agent category represents the 

set of attacks where agents attack other agents by exploiting their 

security weaknesses. The agent-to-platform category represents the 

attacks the agents launch against a platform. The platform-to-agent 

category represents the attacks where platforms compromise the 

security of agents. The other-to-agent platform category represents the 

set of attacks where external entities, including agent platforms, 

threaten the security of an agent platform.  

(2) The performance issue: MA software will generally hinder rather than 

help an IDS to rapidly process events and detect attacks. MA runtime 

environments implemented in slow interpreted languages may slow 

down MAIDS. 

(3) The code size issue: IDS services require a large amount of code. If 

agents have to implement specific tasks on multiple OSs then the code 

base may become extremely large. The code size may limit the MAID 

functionality because an agent transfer takes a long time and a large 

amount of computing and network resources.  

(4) Lack of a priori knowledge: Large enterprise networks include several 

distinct hardware platforms, running several OSs, each with different 

configurations and applications. It is not trivial for MAs to have a 

priori knowledge about a system and still remain lightweight. Hence, in 

a large enterprise, the required priori knowledge may prohibit a rapid 

agent transfer. 
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(5) Coding and Deployment Difficulties: MAs that are developed in-house 

or purchased from trusted vendors are likely to undergo the same 

software engineering methods as their non-mobile counterparts to 

assure the quality of code. This historically produces code with several 

faults. The capability of MA, such as moving and cloning, increase the 

complexity of design and development. Hence, MAIDS will be even 

more prone to faults than their non-MA counterparts.  

A comparison between previous related works for MAIDS is outlined in 

[94]. 

(b) Grid based Intrusion Detection System (GIDS) 

The heterogeneity of grid systems and their geographical spread over 

boundaries and organizational structures lead to potential security issues. The 

underlying network infrastructure of a grid can be the target of an attack. 

Attacks against any network or host in a grid can also be considered as 

attacks against the grid, because they affect its security aspects. Grid systems 

are susceptible to specific attacks because of their new protocols and 

services. Grid attacks mostly target to [96, 97]:  

 Processes running in kernel space e.g., OS daemons. 

 Processes running outside kernel space e.g. grid middleware, grid 

applications, and any non-grid applications running with either root 

or user privileges. 

 Grid protocols stack and network devices.  

Some works related to GIDS are outlined in the following. [98] describes 

a grid-based IDS architecture where agents located at grid nodes collect and 

transmit host audit data to storage and analysis servers. This centralized 

solution is not scalable. [99] proposes an efficient and scalable solution for 

storing and accessing audit data collected from grid nodes, but it does not 

discuss how to use the data to identify intrusions. [100] proposes a solution 

that integrates the grid system with an IDS to analyze data from the grid 

network. However, these approaches cannot detect grid-specific attacks, 

because they cannot capture high-level data to identify grid users. The Grid 

Intrusion Detection Architecture (GIDA) [101] solves the scalability problem 

by distributing the intrusion detection task among several analysis servers. 
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Both [98] and [101] focus on the detection of anomalies in the interaction of 

grid users with resource but neither architectures provide protection against 

the host and network attacks. [102] proposes a Performance based Grid 

Intrusion Detection System (PGHIDS). This IDS uses the abundant 

resources of a grid to detect intrusion packets, but it does not detect attacks 

to the grid itself and it acts as a NIDS, rather than a Grid-based IDS because 

it only looks for network attacks. GHIDS is an IDS [103] to defend 

computational grids against misusing of shared resource. It integrates a 

HIDS in a grid environment to protect against typical OS attacks, but it does 

not consider middleware vulnerabilities. [104] proposes a high-level Grid-

based IDS built on the functionality of lower-level HIDS and NIDS. 

However, both traditional HIDS and NIDS are not precisely suitable for grid 

specific-attacks. For example, traditional HIDS identifies an intruder not 

with grid user ID but with local user ID. Hence, this IDS cannot identify grid 

intruder precisely and the information without grid user ID is less useful for 

the behavior analysis of a grid user. Furthermore, some characteristic of grid-

specific attacks differ from those of traditional ones. Hence, the adoption of 

standard HIDS to detect grid attacks will results in high missing rate. The 

same authors have proposed another framework [105] for both grid and 

cloud systems. They increase the scalability by balancing among all nodes the 

load to analyze the intrusions and by removing the centralization deficiency 

from the IDS in [104].  

They also enhanced the coverage of attacks by applying both knowledge-

base and behaviour-base techniques, but their solution lacks several features 

related to the cloud system like virtualization, utilization, and deployment of 

cloud environments. Since the solution has been applied to a specific grid 

middleware, the proposed framework is more suitable to grid systems than to 

clouds. In [106] we proposed a new job analyzer component based on stack 

inspection methodology to work inside a GIDS that can be applied to 

different existing grid systems e.g., Condor [107], Globus [108] and our 

HIMAN system [8, 9]. The job analyzer component considers access 

permissions of submitted tasks. Its functionality is shown in Figure 2.8: 
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Figure.2.8: A flowchart for GIDS job analyzer component  

 The scheduler loads the submitted job to the host machine 

 Collects evidence from the assembly by host machine 

 Evaluates and tests evidence against the grid security policy. 

 Uses the output of the previous evaluation step to build the permission 

sets that enable the requests in next step. 

 Checks the requests for permission using the stack inspection 

methodology [109, 106]. 

 If the submitted job and its callers have been granted the requested 

permission then the operation can proceed otherwise, a security 

exception is raised. 

Table 2.3 summarizes previous proposals for GIDS  

Table.2.3: Comparing characteristic of previous related works for GIDS 

IDS 

Reference 

Knowledge-

based 

technique 

Behaviour 

based 

technique 

Data Source 

Host-

based 

IDS 

Network

-based 

IDS 

Valid for 

Grid 

GIDS2003 NO NO N/A No Yes No 

Grid-

wide2005 

Yes No Network No Yes Yes 

GIDA2005 No Yes Grid Network Yes No Yes 

GIDS2005 Yes No Network No Yes Yes 

GHIDS2006 Yes No Host Yes No Yes 

GIDS2008 No Yes Host, Network Yes Yes Yes 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

54 

There are several reasons that make it difficult to apply solutions of grid 

based IDS to Cloud based IDS: 

(1) The different service models (SaaS, PaaS, and IaaS) with different 

types of threats and distinct kinds of users’ requirements.  

(2) The scalability issue, because most current GIDSs exploits either a 

hierarchical or a centralized architectures.  

(3) Most GIDSs do not integrate the knowledge base and the behaviour 

base techniques.  

(4) They use NIDS that cannot deal with the encrypted data while most 

data exchanged among cloud nodes is encrypted. 

(5) They do not correlate alerts from different nodes to analyze distributed 

attacks. 

(c) Cloud based intrusion detection system 

Intrusions in cloud systems are characterized by the potentially higher 

performance, consequences, and damages of cloud based intrusions. The 

deficiencies of current IDSs hinder their application to clouds. Here, we 

highlight the few papers discussing this topic. [94] proposes an IDS based on 

MAs technology to provide intrusion detection for cloud applications 

regardless of their locations and that handles attacks for cloud applications 

from the SaaS point of view. The proposed IDS tries to solve some of the 

security problems for MAs by isolating the agents inside VMs that provide 

secure sandboxes for the MAs. Figure.2.9 shows the proposed architecture.  

The proposed hybrid model introduces four main components, namely 

IDS Control Center (IDS CC), Agency, Application Specific Static Agent 

Detectors, and Specialized Investigative MA. Static Agents (SA) can 

implement packet filtering and look for intrusion signatures in the packets. 

SA generate an alert to IDS Control Center whenever they detect suspicious 

activities. Then, IDS Control Center will send investigative task-specific 

Mobile Agent to every agency that sent similar alerts (VM 1 and VM 2 in 

this example). 
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Figure.2.9: The proposed IDS architecture in a subnet 

As shown in Figure 2.9, MAs will visit and investigate all those VMs, 

collect information, correlate it and finally send or carry back the result to 

IDS Control Center. Consequently, the Alerting Console in IDS Control 

Center will analyze the incoming information to raise the alarm if it detects 

an intrusion. Names and identifications of suspected VMs will be black 

listed and sent to other VMs. This solution is flexible and cost-effective as it 

tries to further reduce network load by making each MA lighter as it is only 

responsible for detecting certain types of intrusions.  

Nevertheless, there are many deficiencies in this architecture: 

(1) The security issues related to MAs mentioned before.  

(2) The proposed IDS isolates the MAs from the host environment but it 

cannot protect them from their generator, i.e. the IDS Control Center 

environment. Obviously, it is impossible to keep agent private from a 

malicious runtime system executing the agent [95]. 

(3) Performance is critical because the MA runtime environments slow 

down MAIDS. The solution [93] uses MAIDS just for some functions 

and it implements core IDS by statically located systems: This 

restricts scalability and opens a single point of failure problem.  

(4) The central IDS control component restricts scalability. 
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(5) It does not correlate the host and network IDSs to handle the 

encrypted packets.  

(6) The proposed IDS does not handle other deficiencies for MA such as 

lack of a priori knowledge and the Coding and Deployment 

Difficulties.  

(7) It is applied to the cloud client only and it handles intrusions related to 

the SaaS service model and not the other service models.  

[77] proposes a theoretical framework targeting all existing service 

model. To simultaneously provide multiple benefits from various IDS 

sensors, they used the Intrusion Detection Message Exchange Format 

(IDMEF) [76] to enable interoperability among different approaches. They 

enable the end users to control and configure resources with distinct types of 

sensors, various configurations of the rule-sets and thresholds to efficiently 

monitor their virtualized components. Figure 2.10 shows the proposed IDS 

architecture 

 

Figure 2.10: The proposed IDS architecture 

The architecture includes several IDS Sensor VMs and an IDS 

Management Unit. An IDS Management Unit consists of four active 

components: Event Gatherer, Event Database, Analysis Component, and IDS 

Remote Controller. The Event Database records information about received 

events. It can be accessed through the Analysis Component. User controls 

the IDS management through direct interaction and configuration of the core 

components. The IDS Sensors on the VMs are connected to the Event 

Gatherer and identify malicious behavior and generates alerts that will be 
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processed by the Event Gatherer. A sensor can be configured through the 

IDS Remote Controller. The Event Gatherer collects events from sensors and 

standardizing the outputs. It also implements the communication between the 

sensor and the management unit. The Analysis Component represents and 

analyzes the gathered events [77]. The main deficiencies of this framework 

are: 

(1) It does not correlate alerts from the detectors. The correlation is 

essential for detecting attacks which leave their trails in distinct cloud 

locations.  

(2) It uses User-Mode-Linux, a type II VMM which only runs on Linux 

based systems.  

(3) The centralized ID unit that manages all other IDSs raises 

performance and scalability problems.  

(4) No component evaluates threats probabilities from the other nodes and 

compares them against a threshold to support the scheduler decision 

on the running tasks and their relevant users.  

The analysis of previous work confirms that, a proper defense strategy for 

clouds needs to:  

(1) Be distributed to avoid any single point of failure and increase 

robustness. 

(2) Protect the intrusion detection components from the intrusions. 

(3) Be scalable to not reduce elasticity. 

(4) Have a flexible architecture to be applied to distinct architectures. 

(5) Increase attack coverage by integrating both behaviour and knowledge 

base techniques.  

(6) Consider the utilization and deployment in cloud computing by 

handling different service models and user requirements. 

This is discussed in the next chapter with reference to the proposed 

framework.  

2.2 Masquerade Attacks and Detection Techniques 

A masquerader is an insider or outside attacker who authenticates as a 

legal user by stealing the user credentials or by attacking the authentication 
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service. To understand the masquerader actions, we consider alternative 

implementations of this attack [110]. Among them, we recall duplication or 

ex-filtration of user password, the installation of backdoors, eavesdropping 

and packet sniffing, spoofing and social engineering attacks. Some of these 

actions may leave some trail in log files that, after the fact, can be linked to 

some user actions. Here a log analysis by a host-based IDS remains the state-

of-the art to detect these actions. Attacks that do not leave an audit trail in the 

target system may be discovered by analyzing the user behaviors through 

masquerade detection. Traditional security technologies such as firewalls, 

IDSs, or authentication protocols are useless because, an attacker can access 

all the user privileges.  

Masquerade detection gathers user information and builds a profile for 

each user through information such as login time, location, session duration, 

and commands issued. Then, user logs are compared against the profiles and 

a mismatching behavior is designated as an attack. The detection of 

masquerade attacks is quite difficult because even the legitimate daily 

activities can easily become malicious according to its context. This 

increases the false positive rate [111]. Masquerade detection is more 

challenging in cloud systems, since they include a massive amount of 

resources and users can have different activities in several VMs. Hence, to 

build a profile, we have to correlate these activities. All the approaches 

reported in Section 2.2.3 analyze user behaviors according to the sequences 

of actions in distinct environments i.e., UNIX, Windows, or Network. 

Possible actions include user command, system calls, a network operation 

and the name of a window or of a file. To evaluate the detection techniques, 

we highlight some concepts such as ROC curve and Maxion Townsend Cost 

[112]. After that, we review current masquerade detection approaches.  

2.2.1. The Receiver Operator Characteristic Curve 

The Receiver Operator Characteristic (ROC) curve [113] graphically 

represents a classification system as its discrimination threshold is varied. 

The ROC is also known as a Relative Operating Characteristic curve, 

because it compares two operating characteristics, True Positive Rate (TPR), 

accuracy or Hit ratio and the False Positive Rate (FPR) as the criterion 

changes. We use this curve to evaluate attack detection accuracy against false 

positive rate. The plot is obtained by varying the detection threshold and 
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other detection parameters. Figure 2.11 shows how the ROC curve measures 

the tradeoff between false positives rates and correct detections. 

 

Figure 2.11: Examples for three ROC curves 

2.2.2. The Maxion Townsend Cost 

Maxion and Townsend [112] created a scoring formulation to rate a 

masquerade detection algorithm. The formula evaluates the cost of the 

detection algorithm in terms of a relation between the false alarms and 

misses, where the miss rate is equals to (100 – Hit Ratio). The overall 

“goodness” of each of several detection methods can be ranked by this 

function. While there is a wide consensus in the literature that a false alarm 

should be more expensive than a miss, it is difficult to determine how much 

more expensive. According to the experiments that the authors did using the 

seven masquerade detection approaches detailed in section 2.2.3, a rigorous 

evaluation requires that the cost of a false alarm to be 6 times that of a miss. 

Hence, the final cost function is given in Equation 2.7: 

Percentage Cost = 6 × False-Positive-Rate + Miss Rate      (2.7)  
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2.2.3. A literature Study for Masquerade Detection  

None of the current proposals to detect masquerade attacks has achieved 

the level of accuracy for a practical deployment. This review highlights 

masquerade detection techniques based on the analysis of user audits. These 

audits have been collected by several profiling methods from different 

environments e.g. UNIX, Windows and/or Network environments. We will 

see later in Chapter 3, how our dataset, CIDD, is collected using different 

profiling methods so that its data can be used with different detection 

techniques. 

1) Masquerade Detection in UNIX Environments 

In UNIX environment, the sources of audit data to build signature 

patterns are user commands, programs, and system calls. In this review, we 

highlight and compare several masquerade detection approaches based on 

UNIX commands in the user dataset called “SEA” described in Section 

2.3.1. The considered approaches are: Uniqueness, Naïve Bayes One-step 

Markov, Hybrid Multi-Step Markov, compression, Incremental Probabilistic 

Action Modeling (IPAM), sequence-match, Support vector machine (SVM), 

Recursive Data Mining with SVM, Naïve Bayes classifier, Episode based 

Naïve Bayes, Naïve Bayes and Weighted Radial Basis Function, Adaptive 

Naïve Bayes and sequence alignment algorithms.  

 Uniqueness: This approach [114] assumes that commands not previously 

seen in the training data may indicate a masquerade. Moreover, the fewer 

users that are known to use that command, the more indicative that 

command is of a masquerade. Uniqueness is a relatively poor performer 

in terms of detection, but it is the only method able to approach the target 

false alarm rate of 1%. 

 Naïve Bayes One-step Markov: This approach [115] builds transition 

matrices from one command to the next for each user’s training and 

testing data. It raises an alarm when there is a considerable difference 

between the training data transition matrix and the testing data one. It 

achieves a good performance in terms of correct detections, but failed to 

get close to the desired false alarm rate. 

 Hybrid Multi-Step Markov: This method [116] is based on Markov 

chains. If the test data contain too many commands that did not appear in 

the training data, a Markov model may be useless and a simple 
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independence model with probabilities estimated from a contingency 

table of users versus commands may be more appropriate. [114] toggled 

between a Markov model and the simple independence one. This method 

has one of the best performances. 

 Compression: the main underlying idea [114] is that new data from a 

user compresses at about the same ratio as old one from the same user. 

Instead, data from a masquerading user will compress at a different ratio. 

This approach is the worst performer.  

 The Incremental Probabilistic Action Modeling (IPAM):It predicts the 

sequence of user commands according to [117] the one-step command 

transition probabilities estimated from the training data. Too many wrong 

predictions signal a masquerade. IPAM’s performance ranks with the 

lowest ones. 

 Sequence-match: It computes a similarity match between the user 

profiles and the corresponding sequence of commands. Any score lower 

than a threshold indicates a masquerader [118]. Its performance on the 

SEA dataset is not very high. 

 Support vector machine (SVM): Support vector machine refers to a 

collection of machine learning algorithms designed for binary 

classification. SVM classifies data by determining a set of support 

vectors, the training inputs that outline a hyper plane in feature space 

[119]. SVM has shown a good performance, it is relatively easy to use 

and is relatively insensitive to the number of data points and can 

potentially learn a large set of patterns. However, it has a high false alarm 

rate and a low detection rate. Furthermore, it has to update user behavior 

model when a user profile changes. 

 Recursive Data Mining with SVM: Szymanski et al [120] proposed a 

recursive mining approach that finds the frequent patterns in the 

sequence of user commands, encodes them with unique symbols and 

rewrites the sequence using the new coding. This approach uses a one-

class SVM classifier for masquerade detection but it has to mix user data 

that may be complex in real-world.  

 Naïve Bayes classifier: Maxion and Townsend [112] applied a Naïve 

Bayes classifier widely used in text classification tasks and that classifies 

sequences of user-command data into either legitimate or masquerader. 
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The method has not yet achieved the level of accuracy required for 

practical deployment.  

 Episode based Naïve Bayes: Dash et al [121] introduced an episode 

based Naïve Bayes technique that extracts meaningful episodes from a 

long sequence of commands. The Naïve Bayes algorithm identifies these 

episodes either as masquerade or normal according to the number of 

commands in masquerade blocks. The proposed technique significantly 

improves the hit ratio but it still has high false positive rates and it does 

not update the user profile.  

 Naïve Bayes and Weighted Radial Basis Function (NB-WRBF): Alok 

et al [122] integrates a Naïve Bayes approach with one based on a 

weighted radial basis function, WRBF, similarity. The Naïve Bayes 

algorithm includes information related to the probabilities of commands 

entered by one user over the other users. Instead, the WRBF similarity 

takes into account the similarity measure based on the frequency of 

commands, f, and the weight associated with the frequency vectors. Here, 

f is a similarity score between an input frequency vector and a frequency 

vector from the training dataset. The experiments confirm that NB-

WRBF significantly improves the hit ratio but, as the previous approach, 

it suffers from the high false positive rates. Furthermore, it computes 

both the Naïve Bayes and the WRBF and integrates their results and this 

increases the overall overhead. Lastly, it does not update the user profile 

and neglects the low level representation of user commands.  

 Adaptive Naïve Bayes: Dash et al [123] introduced an adaptive Naïve 

Bayes approach based on the premise that both the commands of a 

legitimate user and those of an attacker may differ from the trained 

signature but the deviation of the legitimate user is momentary, whereas 

the attacker one persists longer. 

 Sequence alignment: The ability of sequence alignment algorithms to 

find areas of similarity can be used to differentiate legitimate usage from 

masquerade attacks. To do so, a signature of the normal behavior for a 

given user should be aligned with audit data from monitored sessions to 

find areas of similarity. Areas that do not align properly can be assumed 

to be anomalous, and the presence of several anomalous areas is a strong 

indicator of masquerade attacks [124]. Among possible algorithms such 

as global, local and semi-global alignments the most efficient is semi-
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global alignment. The proposed approaches has several shortcomings and 

to address them. [125] modifies the Smith-Waterman alignment 

algorithm [133] to a semi-global alignment algorithm (SGA), along with 

a new scoring systems and signature updating scheme. SGA offers 

several advantages such as:  

1) Better accurate and efficiency than current approaches. It achieves 

a low false positive rates and high hit ratio.  

2) It can work with different kinds of audit data. This simplifies its 

adoption in heterogeneous environments such as grids and clouds.  

3) The detection performance reduces the survival of the 

masquerader inside the system.  

4) It can tolerate the few deviations in the legitimate user behaviors.  

Figure 2.12 compares all the previous mentioned techniques against the 

SGA algorithm detailed in Section 2.2.4 in terms of the ROC curves based 

on SEA dataset. The SGA algorithm with its update scheme achieves a 

higher hit ratio with a corresponding lower false positive rate.  

 

Figure 2.12: ROC curves for some detection techniques [124]. 
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2) Masquerade detection in Windows Environments 

In general, Windows security log files contain records of login/logout 

activity and/or other security-related events as specified by the system audit 

policy. As mentioned in Section 1.5, there are three log sources in Windows 

system namely: system, application and security. System and application log 

are used, respectively, by the operating system and by the applications. Only 

the Local Security Authority Subsystem Service (lsass.exe) can directly write 

to the Security log. Several categories of the events that can be logged [33]. 

Less research work has considered the Windows environments than the 

UNIX one.  

[126] introduced a new framework to create a unique feature set for user 

behavior on GUI based systems. They collected real user behavior data from 

live systems and extracted parameters to construct feature vectors. These 

vectors contain information such as mouse speed, distance, angles and 

amount of clicks during a user session. They modeled their technique of user 

identification and masquerade detection as a binary classification problem 

and used a Support Vector Machine (SVM) to learn and classify the feature 

vectors.  

[127] considers the interaction of the current user with the graphical user 

interface. Rather than mouse movements or keystroke dynamics, it profiles 

how the user manipulates windows, icons, menus, and pointers. The method 

shows potential for use in real-time systems, because it requires less data 

than other GUI interaction-based masquerade detection techniques while 

using a much simpler classification engine. Another user profiling method 

monitors system calls by analyzing the audit logs and program execution 

traces [128, 129]. 

3) Masquerade detection in Network Environments 

The previous host profiling methods handle only user audits inside a host 

machine. Other approaches detect masquerade attacks through the user 

network behavior.  

[130] uses basic network statistics. It does not consider host audits at all, 

because sometimes this data is not accessible or legal/ethical restrictions 

apply. The approach tags network events in the server log with the associated 

user and build user network profiles through anonymized summary data. 
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This limits the privacy impact and avoids the data accessibility issues of 

host-based approaches.  

[131] adopts the well-known Interval Algebra network [132]. The 

underlying idea is that the signature captures detectable patterns in a user 

command sequence. A user is modeled as a binary constraint network where 

each node represents an episode of commands. A binary relationship between 

a pair of episodes is encoded as the disjunction of the Allens interval 

relations [132]. Any new subsequence of commands should be consistent 

with at least one user network. 

2.2.4. Masquerade detection using SGA and Enhanced-SGA 

The SGA [124] is more accurate and efficient than current approaches. It 

has low false positive and missing alarm rates and high hit ratio. It can be 

adopted in heterogeneous environment with distinct operating system 

because it can be applied to distinct audit data such as command line entries, 

mouse movements, system calls, registry events, file and folder names, 

sequence of opened windows titles and network access audit data. SGA 

aligns large sequence areas as in global alignments, while preserving the 

nature of local alignments. It can ignore both prefixes and suffixes and it 

only aligns the conserved area with the maximal similarity. Figure 2 shows 

an application of SGA and the influential parameters of an alignment 

namely: match score, mismatch score, test_gap penalty, signature_gap 

penalty, and detection threshold. 

 

Figure 2.13: An alignment example using SGA algorithm 

To discover the optimal alignment, SGA exploits dynamic programming. 

To this purpose, it initializes an m+1 by n+1 score matrix, M, and then 

determines the value of each position of M by one of three transitions, see 

Figure 2.14: 
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1. Diagonal transition: it aligns the i−1 symbol in the signature 

sequence with the j−1 symbol in the test sequence. The alignment 

score depends upon the lexical match of the symbols being aligned 

and it is added to M(i−1, j−1).  

2. Vertical transition: A gap is inserted into the signature sequence and 

it is aligned with the j−1 symbol in the test sequence. The gap penalty 

is added to M(i, j−1).  

3. Horizontal transition: A gap is inserted into the test sequence and 

aligned with the i−1 symbol in the signature sequence. The gap 

penalty is added to M(i−1, j).  

 

Figure 2.14: The three transitions to fill each cell in the transition-matrix 

The SGA scoring system determines the gap penalties in transitions 2 and 

3. The actual alignment depends upon the maximum value of the three 

transitions and its value is assigned to M(i, j). M(i, j) is the score of the 

optimal alignment of all symbols up to location i−1 in the signature sequence 

and j−1 in the test one. Hence, M(m, n) gives the score of the optimal 

alignment of the two sequences returned by the scoring system. We can 

rebuild this alignment by tracing back the transitions that have produced the 

score. The final score at M(m, n) measures the similarity of the two 

sequences according to the scoring system used and it is an indicator of 

masquerade attacks. The SGA algorithm is shown below [125]: 
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Algorithm 2.1: The SGA algorithm 

 

The Enhanced-SGA: 

Coull et al [125] modified the SGA algorithm to handle the problems of 

the traditional Smith-Waterman alignment algorithm from two perspectives. 

The first one considers that the usage patterns of legal users may change due 

to changes in their role or to new software. A static user signature is therefore 

prone to label as attacks some variations of legal users. To avoid these false 

positives, the signature is updated as new behaviour is encountered by 

exploiting the ability of SGA of discovering areas of similarity. Furthermore, 

as outlined in Section 5.2.3, they defined two scoring systems, the command 

grouping and binary scoring systems, to set the alignment scores and the gap 

insertion penalties.  

Align (test_subseq of length n, sig_subseq of length m, match_score, mismatch_score, 

sig_gap_penalty, tes_gap_penalty) 

01: Begin  

02: for i=0 to m step 1 do 

03:   for j=0 to n step 1 do 

04:     if (i=0 or j=0) then 

05:    M(i, j)=0 

06:     else 

07:    if ( i=m or j=n ) then 

08:      top = M(i, j-1) 

09:      left = M(i-1, j) 

10:    else 

11:      top = max (0, M(i, j-1) – sig_gap_penalty)  

12:      left = max (0, M(i-1, j) – test_gap_penalty) 

13:    end if 

14:    if (sig_subseq(i-1) = test_subseq(j-1) ) then 

15:      diagonal = M(i-1, j-1) + match_score 

16:    else 

17:       diagonal = M(i-1, j-1) + mismatch_score  

18:    end if 

19:    M(i, j)= max(top, left, diagonal) 

20:     end if 

21:   end for 

22: end for 

23: return (M(m, n)) 

24: End 
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The problem with Enhanced-SGA algorithm lies in determining the best 

scoring system. Till now, the penalties for gap insertion to the signature and 

test sequences (-3 and -2 respectively) are fixed and equal for all the users. 

Since distinct users behave in a different way, this reduces the efficiency of 

detection, because the alignment cannot tolerate slight changes in the user 

behaviour over time. Distinct scoring parameters improve the Enhanced-

SGA algorithm and strongly reduce the number of false negatives and false 

positives. Instead of forcing the same scoring parameters for all users, Data 

Driven Semi-Global Alignment approach (DDSGA) [DDSGA], see Chapter 

5, computes the best scoring parameters for each user separately based on 

user data and improves the computational performance and the security 

efficiency of the Enhanced-SGA algorithm. 

The signature update scheme is applied with the binary scoring, their most 

efficient system. This scheme augments both the current signature sequence 

with information on the new behaviours and the user lexicon with the new 

commands the user invokes. The scheme also introduces a threshold for each 

user profile to ensure that both the signature sequence and user lexicon 

remain free of tainted commands from masquerade attacks. The threshold is 

used in both detection and update processes, and it is built through a 

snapshot of the user signatures.  

The other perspective considers that the Smith-Waterman algorithm is 

computationally expensive and impractical to detect masquerade attacks on 

multi-user systems. By selectively aligning only the portions of the user 

signature with the highest success probability, the Heuristic Aligning 

approach [125] can significantly reduce the computational overhead with 

almost no loss of accuracy in detection. These modifications have been 

tested on the SEA dataset to simplify the comparison with other approaches.  

2.3 Intrusion Detection Dataset 

A dataset is a profile of training and testing signature patterns to train and 

evaluate a behaviour based IDS. In the following, we highlight the current 

masquerade datasets and the deficiencies arising when adopting them to 

evaluate cloud IDSs.  
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2.3.1 Existing Masquerade Datasets and Their Deficiencies 

We briefly describe [134, 135] the four datasets that are currently used to 

evaluate masquerade detection techniques namely, SEA [136] Greenberg 

[137], Purdue [138], and RUU [139].  

1) SEA dataset 

Most papers about masquerader detection use the SEA dataset [136] with 

its associated configurations, SEA-I and 1v49. This dataset consists of 

commands collected from UNIX acct audit data. Only the username and the 

command were taken among all the fields of audit data. The data describe 50 

users each issuing 15000 commands. The first 5000 commands are 

considered genuine. The remaining 10000 commands of each user are 

partitioned into 100 blocks of 100 commands each. These blocks are seeded 

with masquerade users, i.e. with data of further users. A block is a 

masquerader with a probability of 1%. If a block is a masquerader, then there 

is an 80% probability that the following one is a masquerader too. As a 

result, about 5% of the test data contain masquerades. One of most critical 

defects of this dataset is that commands have neither arguments nor any 

parameters. Due to the way acct collects audit data, it is impossible to tell 

commands typed by human users from those run from shell scripts. This can 

lead to pair some users with a very regular pattern of few commands. 

1v49 Configuration: [112] propose an alternative configuration to the SEA 

dataset to address some methodological shortcomings in the original 

configuration. As an example, different masqueraders were injected into 

different users and some users did not even get any masquerader. This 

increases the complexity of evaluation and error analysis. In 1v49 

configuration, for each user, the first 5000 commands of the other 49 users 

are used as masquerader data for testing purposes. Despite its 

methodological advantages, this configuration has not been widely used as it 

does not simulate masqueraders that are expected in real world. 

SEA-I: It is a variation on the original SEA dataset. It was proposed in 

[140], where the masquerader blocks are replaced by synthetic blocks 

created according to the command frequency of each user. This is an attempt 

to model the behavior of an intruder who tries to act like the legitimate user. 

As a result, more complex techniques are required to detect masqueraders. 
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2) Greenberg dataset 

This dataset [137] contains data from 168 UNIX users using csh (C shell) 

as command line shell. Users are classified into four groups: novice 

programmers, experienced programmers, computer scientists and non-

programmers. Collected data is stored in plain text files that record : session 

start time, session end time, the command line entered by the user, the 

current working directory, the alias expansion of the previous command, an 

indication whether the line entered has a history expansion or not, and any 

error detected in the command line. This dataset was first used for 

masquerader detection purposes in [141]. In contrast with SEA, its main 

advantage is the availability of additional information for each command 

which may help to improve detection effectiveness. 

3) Purdue University dataset 

Purdue, or PU dataset [138] consists of the UNIX shell command 

histories of 4 users of the Purdue Millennium Lab, collected in a four month 

period. The number of collected commands per user goes from 7769 to 

22530, with an average of about 16500 commands. Command names, 

arguments and options are preserved but filenames are omitted. This is due to 

the intuition that the behavior of a user is more significant than content for 

profiling. The very low number of works that use this dataset is probably due 

to the low number of users. 

4) RUU dataset: 

This dataset was collected by Columbia IDS group [139] from Windows 

environments. To this purpose, they built a Windows host sensor to audit 

process registry behavior and user window touches. Three types of records 

were created by the audit program: registry actions, process execution, and 

window touches. The registry actions that are recorded are open, close and 

update of specific registry keys by running programs. The records specifying 

user window touches include the actions of clicking on a window, of 

switching between two or more windows, and of updating the title of a 

window. The group has built and published only a Windows dataset even if 

they have also built a Linux sensor to collect information about the name of 

the process, path, command line parameters, and system level calls.  

The dataset was collected from 34 normal volunteer users and 14 

masquerade users who were paid to conduct a red team exercise. On average, 
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each normal user generated about 1 million records over about 4.5 days of 

computer use of Windows systems. They model how normal users typically 

search their computer file system and these models can be used to detect 

unusual searches that may be a warning of an illegal use of the machine. The 

masquerader data contains records from about 15 minutes of computer use 

by each masquerader. The red team users were asked to perform a specific 

task to find any data that could be used for financial gain on a target file 

system they had no prior access to. 

2.3.2 Deficiencies of Using Current Datasets for Cloud Systems 

The datasets previously described suffer partially or fully from several 

deficiencies which prevent their adoption to evaluate cloud IDSs. Their most 

significant weakness is the lack of real masquerade and attack data. No 

command sequences were issued by attackers, only the RUU dataset includes 

real masquerades but in a predefined scenario where masquerader users were 

asked to find any data useful for financial gain. Also the SEA dataset 

simulates masquerade attacks by randomly inserting excerpts of command 

sequence from one user into the command sequences issued by another user. 

Some other problems of the datasets are:  

(1) They neglect the heterogeneity of clouds systems where user audits 

may be distributed among different VMs running distinct OSs. 

Furthermore, cloud users normally use a larger set of applications than 

those considered by the datasets. The existing masquerade datasets are 

based on host-based user profiling parameters, and lack important 

network parameters.  

(2) The absence of command arguments and/or other useful audit details 

such as the time when the user commands were issued and the duration 

of each user's session.  

(3) Their size is very small. 

(4) They lack signature details. An efficient cloud dataset should include 

both behavior based and knowledge based audit data for better training 

and coverage for attacks in all cloud service models. 
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Chapter 3 

CIDS and CIDS-VERT Frameworks and Their 

Correlation Models 

This chapter introduces two frameworks for a Cloud based Intrusion 

Detection System, CIDS [142], and CIDS-VERT [143], its specialization 

version. The two frameworks deal with attacks like: masquerade, DDoS, 

host-based, and network-based attacks. This chapter details the architecture, 

testbed of both CIDS and CIDS-VERT frameworks. Furthermore, it 

describes some essential features of these frameworks to support the 

selection of the proper one for the cloud system of interest. Finally, it details 

the three correlation models, Audit Exchange, Independent, and Centralized-

Backup.  

3.1 CIDS Framework 

CIDS is a framework for intrusion detection that provides a defense 

strategy that deals with attacks against the most widely used cloud services: 

SaaS, PaaS and IaaS. It is an active IDS that stops the malicious action and 

raises an alarm.  

CIDS has a P2P architecture without a central coordinator to avoid a 

single point of failure. The architecture distributes the processing load at 

several cloud locations and executes the user tasks in a monitored VM to 

isolate them from the cloud. This helps in protecting CIDS components from 

threats that can control a task in the VM and that can modify CIDS 

components. To increase attack coverage, CIDS integrates knowledge 

techniques and behavior based ones. Furthermore, it collects events and 

audits from VMs to analyze them in the detector and correlator components. 

Each node also includes an audit system that monitors messages among 

nodes and the middleware logging system, and collects events and logs from 

the VMs.  

By sharing both the knowledge and behavior databases in each node 

among the audit components, CIDS can detect the masqueraders that access 

from several nodes and both host-based and network-based attacks. 

Furthermore, to take into account the large volume of data in a cloud that 
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prevents administrators from observing any action, a further CIDS 

component parses and summarizes a large number of alerts from a NIDS 

component in a physical or virtual switch in the cloud virtual network. A 

report for the administrators collects alert messages from all the IDS 

detectors in the cloud system. CIDS resides inside the cloud middleware 

which provides a homogeneous environment for accessing all nodes. The 

middleware sets the access control policies and supports a service-oriented 

environment. Since the middleware can be install inside distinct grid and 

cloud systems, CIDS can be applied to several Grid and cloud systems. 

3.1.1 CIDS Architecture 

In the proposed architecture, each node runs two IDSs detectors, CIDS 

and HIDS and it cooperates to intrusion detection by identifying the local 

events that could represent security violations and by exchanging its audit 

data with other nodes. Figure 3.1 shows the sharing of information among 

the following CIDS components: 

Cloud node: It is one cloud blade that hosts users VMs and resources 

homogeneously accessed through the cloud middleware.  

Guest task: it is a sequence of actions and commands submitted by a user to 

an instance of VM.  

Logs & audit collector: it acts as a sensor for both CIDS and HIDS 

detectors and collects logs, audit data, and sequence of user actions and 

commands. 

VM: it encapsulates the system to be monitored. The detection mechanisms 

are implemented outside the VM, i.e. out of reach of intruders. A single 

instance of a VM monitors can observe several VMs. 

Type II Virtual Machine Monitor (VMM): CIDS uses type II VMM 

implemented as a process of the OS of the host machine. Some properties of 

a VMM are useful in system security, among them: Isolation, Inspection, and 

Interposition as detailed in Section 1.3. VMM stores in the audit system the 

data collected by the logs and audit collector component and forwards them 

to both the CIDS and HIDS correlator components.  

The audit system: this component implements three main functions. First of 

all, it monitors message exchanges among nodes and deduces the behavior of 

the cloud user. Then, it monitors the middleware logging system in the node 
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itself. CIDS can collect all audit data and middleware events such as user 

login or logout from the cloud system or tasks submissions. The third 

function collects and stores events and logs from the VM system. A log entry 

is created for each node action with the action type, (e.g. error, alert, or 

warning), the event that generated it, and the message.  

CIDS correlator and detector: it correlates sequence of commands or 

actions, collected from several sources and analyzes them through our new 

Data Driven Semi-Global Alignment approach (DDSGA) detailed in Chapter 

5. 

HIDS correlator and detector: it correlates user logs and signatures 

collected from several sources. Then, it analyses them to detect known trails 

left by attacks or predefined sequences of user actions that might represent 

an attack. It is implemented by the OSSEC IDS tool detailed in Section 1.10 

that receives user logs and signatures and determines whether a rule in the 

knowledge based database is being broken. After that, it computes the 

probability that a user action represents an attack, and it communicates this 

to the alert system that alerts the other nodes if the probability is sufficiently 

high. 

Behavior-based database: it is a profile history database for the behavior of 

cloud users. It is important that all nodes share the same behaviour database 

of the same user because this helps in correlating the normal behaviors of a 

user to detect a suspected behavior distributed among user VMs in several 

nodes. Since a behavior deviation in one VM can be normal in another one, 

correlation reduces the false alarms rate and it is more suitable for the 

deployment and utilization of the cloud system, as a user task can be 

executed in several VMs. Access to all databases, including events collected 

by the VMM from the VMs, can be easily implemented by the middleware 

that transparently creates a virtual homogeneous environment and 

synchronizes the nodes. As an example, consider that the audit system can 

create a log entry such as: “User Roy only logs in for 2 to 3 hours and uses a 

specific sequence of UNIX commands”, only if the nodes know the behavior 

of the user in all VMs in these nodes.  

Knowledge-based database: it stores a set of rules and signatures for 

known attacks. It describes a malicious behavior with a rule to be matched 
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against those in the database. Like the behavior-based database, all nodes 

should share the same knowledge base. 

Alert System: it uses the middleware’s communication mechanisms to alert 

other nodes if the CIDS or HIDS correlator and detector components signal 

an attack. It also communicates its alerts to the report producer.  

Parser and summarizer: it parses and summarizes the alerts fired by a 

component in the cloud virtual network. We will briefly explain later the 

adopted algorithm.  

Report producer: it collects alerts from any IDS in the system and sends a 

report to the cloud scheduler. It helps service providers to discover if their 

infrastructure is exploited to penetrate other victims. 

 
Yellow components are CIDS components, Green ones are cloud system 

components, and Pink ones are NIDS components 

Figure 3.1: CIDS Architecture 
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3.1.2 CIDS-Testbed:  

The testbed consists of 3 nodes connected by a Gigabit Ethernet. Each 

node is a quad core clocked at 2.8 GHz with 16 GB RAM and a 80 GB Hard 

drive. To provide a full heterogeneous testbed, each node hosts 3 VMs with a 

distinct OS, namely: Windows XP Professional SP3, UNIX (Solaris) and 

Linux (Centos)). Each VM is assigned one core of the physical node and 3 

GB of RAM. Each node runs the VMware system that manages the 

communications among the VMs, and one 24 port Procurve Switch 

(10/100/1000 ports) for data networks and another 24 port Procurve Switch 

(10/100 ports) for console management.  

3.1.3 CIDS Parser and Summarizer Approach  

A clear, summarized, and readable alarm report is fundamental for the 

cloud administration. Since the high scalability of a cloud implies that a 

NIDS component produces an intensive number of alerts, this component 

reduces the number of alerts. Among the approaches to summarize and 

integrate NIDS alerts, we recall, [144, 145]. A more suitable and clear 

approach to store NIDS alerts is given in [146] that is based upon the alert 

parameters shown in Table 3.1.  

Table.3.1: An example for the alert description table. 

 

To summarize the alerts, CIDS exploits the idea that one alert suffices if 

several hosts are attacking the same machine using the same attack signature. 
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For this purpose, it merges all the alerts with the same combination 

(destination IP, attack signature) into one alert. Our implementation uses 

SNORT with MySQL. The summarization approach neglects the source IP 

address because it can be spoofed. However, the final summarized table 

would contain all information that describes the attack including the source 

IP address. Table 3.2 shows the final alerts produced by our summarization 

approach. 

Table.3.2: The final alerts summarization table. 

 

We note that alerts A1, A4, and A6 are summarized by S1 because they 

refer to the same signature, their attacks target the same machine and the 

attacker uses the same method three times. The alerts A2, A3, and A8 have 

the same signature but with different signature details. The attackers fired 

these attacks from two different host machines. These alerts are summarized 

to alert S2 in Table 3.2. Finally, the attacks related to the alerts A5 and A7 

have not been summarized because they target the same machine but their 

signatures differ. Algorithm 3.1 shows the parsing and summarization 

processes. 

Algorithm 3.1: The parsing and summarization processes 

 

01: Begin  

02: Build Table T with rows= n  //This table is similar to table 3.1.  

03: Define: 

 dest-ip=1, sig-id=2,  

 i=1,  // Index for rows of table T 

alert-dscrp-strct = T(1)(signature-name, signature-class-id, signature-priority, score-ip, 

ip-protocol, source-port, destination-port) // Is a structure contains one record of table T 

with 7 columns of alert description (from 4 to 10 of Table 3.1),  

summarized-T: // This table is similar to table 3.2.  
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3.2 CIDS-VERT, the Full Virtualization Framework of CIDS 

To define a defense strategy for several cloud deployment models i.e., 

private, public, and hybrid clouds, we have specialized the original 

framework. This results in two frameworks: the original CIDS and CIDS-

VERT, its specialization. CIDS-VERT has been defined to improve the 

scalability of CIDS because the experiments reported in Chapters 6 and 7 

show that the P2P architecture of CIDS may hinder both scalability and 

elasticity. Furthermore, while CIDS isolates task execution from the host OS, 

most of its components are exposed to attacks because they run in the host 

operating system. CIDS-VERT avoids all these shortcomings and achieves a 

reasonable performance even in large clouds. This may promote the adoption 

of CIDS in large systems such as hybrid or public clouds. 

3.2.1 CIDS-VERT Architecture 

While most CIDS-VERT components are similar to those of CIDS, See 

Figure 3.2, its architecture is centralized with full virtualization, backup, and 

04: While ( Length(T) >1  and   i < Length(T) ) 

05:     For j=i+1  to  Length(T) do        

06:       If (( T(i, dest-ip) = T(j, dest-ip)) And (T(i, sig-id) =T(j, sig-id))    

                And (T(i, alert-descrp-strct) = T(j, alert-descrp-strct)))Then 

07:            Add       the i
th

 record to table summarized-T 

08:            Delete   the i
th

 and the j
th

 records from table T,  set i=1 

09:       Else  

10:          If ((T(i, dest-ip)=T(j, dest-ip)) And (T(i, sig-id)=T(j, sig-id))   

                 And (T(i, alert-descrp-strct)!=T(j, alert-descrp-strct))) Then 

11: Merge  the i
th

 and the j
th

 records of table T and add the resultant   

merged record to table summarized-T 

12:   Delete  the i
th

 and the j
th

 records from table T,  set i=1 

13:          End If 

14:       End If 

15:    End For              

16:    i=i+1 

17: End While 

18: If (T is not Empty)  

19: Add   table T to table summarized-T        

20: End IF  

21: Return (summarized-T)              

22: End 
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task scheduling facilities. We now briefly describe the main components and 

facilities of the framework.  

 

Figure.3.2: CIDS-VERT Architecture 

Event collector: it collects logs, audit data, and sequence of user actions and 

commands from both HIDS sensor and the guest operating system. It also 

selects the most suitable management VM to analyze these audits and events. 

Event Correlator: it correlates the user logs and signatures collected from 

several sources according to the start and end time of the session and the 

source IP address of the user. Then, it sends a final list of network and VMs 

environments events to the event DB. This helps in detecting a suspected 

behavior of a user that is distributed among several VMs. Since a behavior 

deviation in one VM can be normal in another one, this also reduces the false 

alarms rate. 
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Behavior-based database: it is a profile history database for the behavior of 

cloud users. It enables both CIDS and HIDS analyzers to compare the user 

behaviour in the current session against the stored profile.  

Knowledge-based database: it stores a set of rules and signatures that 

describes known attacks. It describes a malicious behavior with a rule to be 

matched against those in the database. 

DDSGA Analyzer: it analyzes the user behaviors, e.g. sequence of 

commands or actions, collected from several sources by applying the 

DDSGA approach. Whenever it detects a masquerade attack, it alerts the 

summarizer and reporter component.  

HIDS Analyzer: it detects known trails left by attacks or predefined 

sequences of actions that might represent an attack in the user behavior. It is 

implemented by the OSSEC IDS tool that receives the user logs and 

signatures from all VMs in the cloud and determines whether a rule in the 

knowledge base is being broken. After that, it computes the probability that a 

user action represents an attack, and communicates it to the summarizer and 

reporter component. 

NIDS Analyzer: it implemented by the SNORT IDS tool that analyses the 

VM network traffic to detect known trails that might represent an attack. The 

IDS can detect both network and DDoS attacks among Cloud zones and it 

receives the network traffic among the cloud VMs by mirroring it from the 

virtual switch. At first, SNORT determines whether a rule in the signature 

database is being broken. Then, it communicates to the summarizer and 

reporter component the probability that a user action represents an attack. 

Summarizer & Reported component: It parses and summarizes the alerts 

fired by the HIDS and NIDS analyzers and correlates them. We use the 

IDMEF as a standard data format to summarize, integrate, and report the 

alerts about suspicious events. The most obvious solution is that the data 

channel from the intrusion detection analyzer to the manager that receives 

the alarms uses IDMEF. Chapter 8 details our integration and correlation 

approaches to integrate and summarize the alerts. 

Management VMs: These VMs are reserved for all the components 

previously described and only be accessed by the cloud administrators that 

can manage all these components from one place. This also help to isolate 

and protect the components provided that the management VMs themselves 
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are protected. To improve scalability and avoid a single point of failure, the 

cloud runs several management VMs with distinct OS. These VMs are fully 

interconnected to provide backup sources and to mutually exchange the 

detection task to avoid overloading the active one, see Figure 3.3. 

 
Figure.3.3: Data exchange among the management VMs. 

 

The solid arrows in Figure 3.3 represent the audits sent to the 

management VMs and the heartbeat message with two fields. The first one 

defines the status of the active management VM to determine whether or not 

it is live. If the event collector does not receive the heartbeat message from 

the active management VM, it assumes that this VM is failed or is 

overloaded and switches to another management VM. The second field 

describes available resources in the active management VM e.g. processor 

speed, cache, and main memory, to enable the event collector to choose a 

management VM with proper resources to run the detection task. The dot 

lines in Figure 3.3 represent the interactions that occur if the active 

management VM fails or it is highly overloaded. All the idle management 

VMs are frequently updated with the user audits from the active management 

VM.  

Hypervisor Layer: It manages the creation of virtual VMs, virtual 

networks, and virtual SAN driver. Furthermore, it provides system security 
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functions such as Isolation, Inspection, and Interposition. CIDS-VERT can 

work with different cloud environments, such as VMware cloud [56], 

Microsoft private cloud [13], Open Stack [147], Eucalyptus [12]. In CIDS-

VERT deployment, we use the Microsoft windows server 2012 with its 

Hypervisor and the Microsoft Private Cloud system.  

3.2.2 CIDS-VERT-Testbed:  

The testbed consists of HP c3000 Cloud blade with six nodes. The first 

node is the head node that works as a front side interface for the cloud blade 

and has a Quad core 2.3 GHz CPUs, 4 GB RAM, 80 GB Hard drive, and a 

SmartArray P400 Controller for Storage Connect. The other five computing 

nodes are configured as the CIDS-Testbed nodes and their VMs are 

configured as those in the CIDS-Testbed. The only difference is that all 

nodes run a Microsoft core windows server 2012 instead than a VMware 

system. The head node runs a Microsoft GUI windows server 2012 with 

Microsoft cloud services and Microsoft Hypervisor manager 2012. The 

testbed also includes one 24 port Procurve Switch (10/100/1000 ports) for 

data networks and another 24 port Procurve Switch (10/100 ports) for 

console management. 

3.3 Choosing the Proper Framework: 

The size and the deployment model of the cloud system are the important 

issues that help us to select the proper intrusion detection framework. 

The original CIDS framework is the ideal solution for a small cloud or 

private cloud behind the enterprise network firewall. Here, the management 

and deployment are taken care by the enterprise. The security of data in a 

private cloud is preserved by internal processes and data exchanged among 

the cloud nodes can be protected without violating the user security policies 

[148, 2]. This is actually what the CIDS framework needs. Private Cloud and 

the other deployment models use a distinct mechanism for data availability 

and service access. Most cloud deployment models leverage multiple copies 

of files on multiple nodes and consider each node as a failure domain so that 

server malfunctions do not crash the whole cloud nor result in data loss [148, 

2]. The architecture of CIDS allows for backing up the data to avoid a single 

point of failure and to match the cloud robustness requirements. 
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The CIDS-VERT framework offers a security solution for large cloud 

systems e.g., public and hybrid clouds because its scalability is much better 

than that of CIDS. Furthermore, CIDS–VERT can be configured and 

managed in a simpler way than CIDS, because the administrators can access 

a central system backed up to other servers. This is important in public and 

hybrid cloud where the providers need to deploy and monitor the security 

solutions in a flexible way due to the large number of users. Even if CIDS-

VERT works with any deployment model because of its scalability and 

controllability, it targets public and hybrid clouds while we use the original 

CIDS in private clouds. This strategy can achieve the performance and low 

network overhead of the Independent model that works with the original 

CIDS but not with CIDS-VERT that is centralized. Furthermore, CIDS-

VERT may not be acceptable in a small or private cloud because it does not 

optimize resource utilization due to the adoption of several management 

VMs. 

3.4 Attacks and Cloud Service Models Covered by CIDS 

CIDS and CIDS-VERT satisfy the cloud IDS requirements mentioned in 

Section 2.1.4 and deal with attacks against SaaS, PaaS and IaaS clouds.  

 

Figure.3.4: Attacks and cloud service models covered by CIDS. 

As shown in Figure 3.4, the proposed frameworks can deal with the 

following attacks: 

(1) Masquerading attacks: 

This is a PaaS attack that impersonates a legitimate user to use service 

resources maliciously. This is by far the most critical attack as its 

exploitation is rather easy. CIDS and CIDS-VERT detect it through 

DDSGA.  

(2) Host-based attacks: 
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Host based attacks may be a consequence of a masquerading attack. CIDS 

and CIDS-VERT detect several host based attacks using the current HIDS 

tools.  

(3) Network-based attacks:  

CIDS and CIDS-VERT detect network attacks by analyzing network packets 

using NIDS tools. 

(4) DDoS attacks:  

We have built two deployments for CIDS-VERT, the Centralized and 

Distributed, to detect the DDoS attacks. Chapter 8 describes the two 

deployments and their experimental results. 

3.5 The Correlation Models 

In the following, we describe the three alternative correlation models to 

correlate and exchange the audit and alerts between the IDS components in 

the cloud system. These models are [142, 143]:  

(A) Audit exchange. 

(B) Independent. 

(C) The Centralized-Backup. 

 The first two models work with CIDS framework, while the third one with 

CIDS-VERT. 

(A) Audit exchange model 

 In this model, nodes exchange their audit data so that each one has any 

audit data for its current users. The detection phase depends on two 

parameters:  

(1) The alignment score computed in the CIDS detector component,  

(2) Alerts fired by the HIDS component.  

In this way, the detection overhead is balanced among nodes with no 

single point of failure. The detection efficiency is high because the user audit 

is concentrated in one place and the masquerader surviving is very short. As 

a counterpart, this model introduces some overhead in the cloud network due 

to the periodic exchange of audit data. The processing steps are:  
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(B) The Independent Model  

 Each cloud node evaluates its own user audits without interacting with 

other nodes. The detection phase depends upon the same two parameters of 

model A. Login usage patterns for a user are evaluated using both CIDS and 

HIDS detectors inside a cloud node CN and by using the behavior-based and 

signature-based of CN only. If the HIDS detector of CN fires an alert, the 

algorithm will behave according to step 2 of model A for each user HIDS 

instance firing. If the CIDS detector of CN fires an alert, the algorithm 

checks the current login usage patterns against the audit data of the current 

user in the other nodes. The user is marked as a masquerader unless one node 

accepts the current pattern. Then, this model will behave according to step 2 

of model A for each user CIDS instance firing. Algorithm 3.2 shows the 

steps of model B.  

The model advantages are: 

 A very low overhead for the cloud network, as there is a data 

exchange only if the score iDS is less than the previous define 

threshold DSθ . The nodes exchange the test audit data (test_d) 

produced by the user during the login session.  

 A lower processing overhead for each cloud node than models A and 

C, because each node executes the DDSGA alignment of the current 

login session, only if iDS  is less than
DSθ .  

If   user HIDS or CIDS instance fired   Then // If this condition is satisfied, this 

denotes that an attack has been detected (Host-based or masquerade attack). 

 Alert all nodes that have VM instance(s) for that user to stop exchanging his 

audit data. 

 Send alerts to the scheduler node to do the following tasks: 

a) Stop the current tasks related to this user from all his VMs. If the alert is 

coming from HIDS detector then, stop only this malicious VM.  

b) Prepare a summarized report to the cloud administrator contains some 

information about the masqueraded user, the malicious VMs, and the 

detected attack.  

c) Apply the administrator action against this user by re-initializing his 

malicious VM(s) or by Blocking or suspending his account. 

 End if   
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The disadvantages are:  

(1) A longer masquerader surviving than both models A and C because 

the analysis requires a long time to check the audit data (test_d) in all 

nodes.  

(2) A lower hit rate and a higher false alarm rate than model C. Instead, 

its hit and false alarm rates are similar to those of model A. 

Algorithm 3.2: The analysis algorithm for the Independent model 

 

(C) The Centralized-Backup Correlation Model  

This model works with the CIDS-VERT framework where, users VMs 

send their audit data to a reserved management VM that has a complete view 

of audit data for all users to analyze and report the final alerts. The 

management VM is backed up to some other VMs as explained in Section 

3.2.1 to balance the detection overhead among the management VMs with no 

single point of failure. This model achieves the best detection efficiency 

because the user audit is concentrated in one place and there is not loss of the 

audit data. The masquerader surviving is shorter than that in both model A 

and B. The detection time is inversely proportional to the number of 

01: Begin 

02: Inputs: test audit data (test_d) produced by user (i) during the current login 

session, behavior-base(behavr_d) stored for user (i) during the training phase 

inside the current login cloud node, iDS  is the DDSGA alignment Score for user i, 

DSθ  is the alignment threshold defined for user i, Not-Masq-flag = False. 

 

03: Use DDSGA to compute iDS  by aligning (test_d) against (behavr_d). 

04:   If iDS  < DSθ  Then 

05:       For each cloud node (CN) contains (behavr_d) of user i, do: 

06:                Use DDSGA to compute iDS  for the i
th
 user in CN 

07:                If    i DSDS     Then 

08:          Not-Masq-flag = True 

09:               Exit the loop; 

10:               End if   

11:       End for 

12:   End If 

13:   If  Not-Masq-flag = false  or  HIDS instance is fired  Then 

14:          Run step 2 of model A for each user i IDS instance firing. 

15:   End If 

16: End 
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management VMs because it reduces the processing overhead in the active 

management VM. This speeds up the detection phase and protects the IDS 

components from tampering by any attackers. On the other hand, the 

network overhead increases with the number of management VMs. 

Furthermore, the model requires several resources as it reserves some 

management VMs for detection.  

The experimental evaluation of the two frameworks and their 

corresponding correlation models are detailed in Chapters 6 and 7. 
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Chapter 4 

Cloud Intrusion Detection Dataset (CIDD) 

This chapter introduces the Cloud Intrusion Detection Dataset, CIDD 

[149], the dataset we have defined to test and train an IDS and that will be 

used in the thesis. The chapter discusses the major challenges to build a 

cloud intrusion dataset. Furthermore, it introduces the Log Analyzer and 

Correlator System (LACS) that has supported the building of CIDD by 

parsing and analyzing user’s binary log files and correlating user audits data. 

Finally, the chapter describes the distribution of attacks and masquerades in 

CIDD and compares CIDD against other publicly available datasets. 

4.1. Challenges to build a cloud dataset 

We have detailed in Chapter 2, the deficiencies of current publically 

available datasets which hinder their adoption to evaluate cloud IDSs. 

Building a real intrusion dataset for the cloud systems is a complex task, 

because it takes a long time to collect the training audits and to prepare the 

scenarios for both training and testing phases. Furthermore, data collection 

requires special tools to access and monitor the cloud infrastructure and 

system that require proper authorization to preserve privacy and 

confidentiality. These are major challenges in cloud systems for several 

reasons: 

(1) Lack of real data to study available solutions and models. Data are out 

of reach and controlled under the rules of evidence, rather than being a 

source of valuable information for research purposes. Most cloud 

systems are commercial and the control of their infrastructures is very 

difficult if it is not impossible. Private cloud systems cannot be 

accessed by external users and this hinders the building and the 

analysis of complete attack scenarios.  

(2) It is difficult to collect real data about a malicious or a legal user if 

audits are distributed across different environments. The heterogeneity 

of the audit parameters increases the complexity of audit correlation. 

The complexity is even larger for low level formats. It is also difficult 
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to build a summarized statistical profile for each user, because 

categorizing a set of UNIX commands differs from categorizing 

Windows events and applications. 

(3) The huge size of the audit data for cloud systems (more than 20GB for 

CIDD dataset) and the high number of users require huge computing 

resources. 

4.2 Cloud Intrusion Detection Dataset (CIDD) 

To overcome the problems previously outlined, we have developed a Log 

Analyzer and Correlator System (LACS) to parse and correlate user audits 

from low level log files. We have applied LACS to logs from the DARPA 

Intrusion Detection Evaluation Group of MIT Lincoln Laboratory [150]. The 

logs and the TCP dump data are from the Eyrie Air Force Base network that 

consists of two segments, representing the inside and outside of a 

government installation. The outside segment consists of 10 machines 

running Solaris, Linux, and SunOS, 1 SNMP monitor, 1 gateway, and 1 web 

server. The inside segment consists of 35 machines with Windows NT, 

Solaris, Linux, and SunOS, 1 inside gateway, and 1 inside sniffer. The 

network has also 2 routers and 2 hubs. The log files focus mainly on the 

network audit data. However, we have extracted the host and network audits 

by parsing the log files collected from, respectively, one Windows NT 

machine, one Unix Solaris machine, and the raw packet data collected 

through TCP-dump so that CIDD considers both network and host audit 

data. These data are correlated according to user IP address and audit times. 

The following section describes the architecture of LACS.  

4.2.1 LACS System 

LACS parses the binary log files collected by Unix Basic Security 

Module (BSM), the security, application and service log files of the 

Windows event log system, and data in raw packets. In the following, we 

briefly describe the component of LACS in Figure 4.1:  
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Figure 4.1: The architecture of LACS system 

A. Parsers components: LACS has 3 parser components for each 

independent environment:  

1- Solaris parser: The Solaris C2 audit daemon, e.g. the auditing capability 

of BSM, writes binary event data to the local file system. Our parser converts 

the audit events of this file into a readable text format and stores its output in 

a local file while preserving the ordering of events. This file can be analyzed 

by the log analyzer and correlator component. The parser extracts the 

parameters shown in Figure 4.2: user id, user name, day, time, system calls, 

path (for processes or files), login source (IP address or URL), session id, 

login period, audit part, VM name, and return value (success or fail). 

 
Figure 4.2: An example of CIDD Solaris auditing data 
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2- Windows parser: It converts into a human readable format the primary 

binary/encoded Windows security event, the application, and the service log 

files. It stores its output in a local file to be analyzed by the log analyzer and 

correlator component. The parser extracts from the security event log files 

the parameters in Figure 4.3: type (audit success or fail), date, time, event id, 

source (security log in this case), audit category (e.g., system event, object 

access, detailed tracking, privilege use, logon/logoff, account management), 

user id, user name, VM name, audit action, and audit parameters (e.g., object 

name, handle id, privileges). The parser extracts form the application and 

service log files the information in Figure 4.4: source machine (IP address or 

URL), user name, date, time, service or application name, source and 

destination port, target.  

 
Figure 4.3: An example of CIDD Windows auditing data 

 

Figure 4.4: Examples of training data (sequences of mails and web services) 

3- Network parser: It extracts user audits from the raw packets data files 

collected by TCP-dump that contains information on the activities of the user 

source machine. The parser extracts from the TCP-dump files the values in 

Figure 4.5: date, time, duration, service/protocol name, source port, 

destination port, source IP, destination IP. If the packet is contaminated by 

an attack, then also the attack name is extracted.  
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Figure 4.5: A snapshot of TCPdump data with labeled attacks 

B. Log analyzer and correlator component: This is the core component 

and its analysis includes the following steps : 

(1) It correlates the user audits in host and network environments using user 

IP and audit time. Then it links each audit to the corresponding user.  

(2) It pairs user audits with a set of VMs according to their login sessions 

time and the characteristic of the user task. During audit collection, each 

user logs into the network in one or two different time shifts, one in the 

morning and the other in afternoon or evening and sometimes both. It 

also assigns user morning sessions to one VM and the other sessions to 

another VM. Section.4.2.2 describes the distribution of users to the VMs. 

(3) It marks malicious audit records according to attacks and masquerades 

tables given by MIT group [150]. The marking is done according to 

attack time, date, destination IP/URL and the name of victim user. It also 

marks some audit records in a session with different time and/or different 

source IP than the training audit data stored for the user.  

(4) It produces the final tables with the marked audits for each individual 

user with its assigned VMs. This step produces three tables namely, 

Solaris, Windows, and network audit tables. Both the Solaris table and 

the Windows one contain a sequence of user actions. The Network table 

records the sequence of machines, network services and protocols 

accessed by the user, and normal times and dates of accesses. These 

tables enable any IDS to deduce the sequence of user audits in different 

environments. Equation 4.1 correlates the audits of the three tables:  
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        (4.1) 

 

Where:  

 PCmasq(Ui): Probability that Ui is a masquerader according to Ui 

 behaviors in any cloud node. It considers the probability that 

 the masquerader can be detected by the login IP(s). 

 P(Ui): Probability that Ui is a masquerader according to Ui behaviors  in 

any cloud node. It does not include user IP behaviors. 

 m: Number of IP(s) that Ui uses to login to the cloud. 

 n: Number of cloud users who share the same IPj of Ui 

 P(IPj): Probability that IPj reveals to be a masquerader. 

Consider, as an example, a simple case where U1, U2 and U3 share IPs, IP1 

and IP2. Also suppose that the probabilities that IP1, and IP2 could be used by 

a masquerader are: P(IP1) = 0.4, and P(IP2) = 0.5, and U1, U2, and U3 reveal 

to be masqueraders according to their behaviors in all the cloud nodes with 

the following probabilities: P(U1)=0.4, P(U2)=0.3, and P(U3)= 0.6, and the 

detection threshold θ =0.75. We apply the previous equation for each Ui. We 

have that only U3 is a masquerader because: 

PCmasq(U1)= 0.6769 < θ  (not masquerader) 

PCmasq(U2)= 0.5076 < θ  (not masquerader) 

PCmasq(U3)= 1.0153 > θ  (masquerader) 

C. The statistical component: It uses the previous tables to build host and 

network based statistics. Host based statistics include: number of login 

failures, logging times (morning, afternoon, evening, and nights), logging 

source address(es), a list with:  

(a) common commands and system calls used by the user (in case of 

Unix Solaris system),  

(b) a list of common services, applications, and security actions(in case 

of Windows NT),  

(c) VMs names used by each user.  

1
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Network based statistics are based on the IP address and include: 

network services and protocols used, machines accessed, hours and days 

when the IP becomes active, and list of failures. 

4.2.2 CIDD Architecture  

CIDD audit data consists of two parts. The first one is a collection of 

Unix Solaris audits and their corresponding TCP dump data. The second part 

includes Windows NT audits and their corresponding TCP dump data. As 

any intrusion dataset, CIDD includes training and testing data for both parts 

1 and 2. In training data of part 1, CIDD has 7 weeks (35 days) of Unix 

Solaris audits and TCP dump data with labeled attacks which can be used to 

train any IDS with a set of attack signatures. Figure 4.6 shows the 

distribution of these labeled attacks. The UNIX audits of week 6 contains 21 

real masquerade attacks that can be used to test any anomaly detection based 

IDS. Figure 4.7 shows the distribution of these masquerade attacks in week 6 

data.  

 
Figure.4.6: Attacks distribution in the training data (Solaris BSM, Windows 

Audits and TCP-dump data) 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

95 

 

Figure 4.7: Masquerade attacks in week 6 of Part1 and the two testing weeks 

of part2 

Most of audits of CIDD users are distributed across several VMs. Users 

with less than 5 login sessions have been deleted. CIDD has 84 Solaris users 

distributed into 4 VMs. Users are categorized according to the applications 

of their host machines, see Figure 4.8, into:  

 2 programmers sharing VM1 and VM2, 

 1 secretary using VM3 and VM4, 

 1 system administrator using VM3 and VM4, 

 56 normal users using VM3 and VM4 to issue UNIX commands, 

exchange mails, and internet navigation,  

 22 advanced users that access VM1 and VM2 to run advanced 

applications for some special tasks.  

 

The testing data of part 1 includes 2 weeks (10 days) of Unix Solaris 

audits and their corresponding TCP dump data for testing purpose. The data 
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include more than one hundred instances of attacks that are classified into 

distinct categories such as Denial of Service (DoS), User to Root (U2R), 

remote to user, surveillance probing and anomaly attacks, see Figure 4.9. 

Figure 4.10 shows the distribution of these attacks in part1 testing data. 

 

Figure 4.8: Users distribution in CIDD training part 

 

Figure 4.9: Attacks distribution in CIDD testing part 
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Figure 4.10: Attacks distribution in testing data of part1 (Solaris BSM and 

TCP-dump data) 

The training data of part 2 includes 3 weeks (15 days) of Windows NT 

audits and their corresponding TCP dump data with labeled attacks only in 

the second week. Figure 4.6 shows the distribution of these labeled attacks.  

CIDD describes 44 Windows NT users with a complete windows audit 

data. Some of these users exist in part1 audits with the same names. Users 

are distributed among VMs as in Figure 4.8: 5 in VM1, 32 in VM2, and 7 

that share both VM1 and VM2. 
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The testing data of part 2, describes 2 weeks (10 days) of Windows NT 

audits and their corresponding TCP dump data for testing purpose. Part 2 

testing data contains 38 real masquerade attacks in Windows NT audits. 

Some of these attacks result from one or several U2R attacks, while others 

are implemented through human masquerader action, see Figure 4.9. One 

user of the inside network segment implements masquerade attacks, while 

“outsider” are due to either users of the outside network or outside the 

network that is considered. Figure 4.7 shows the distribution of these 

masquerade attacks. Part 2 testing data has the same attack categories of part 

1 and a further category, data attacks. Figure 4.11 shows the distribution of 

these attacks in part2 testing data. 

 

Figure 4.11: Attacks distribution in testing data of part2 (Windows audits 

and TCP-dump data) 
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The CIDD webpage [149] describes further details such as user statistic 

tables, masquerade distributions, the simulated network of the auditing 

experiments, attacks database and their categories, and snapshots for both 

training and testing data. Table 4.1 compares CIDD against publicly 

available datasets. 

Table 4.1: Comparison of publicly available datasets 
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Chapter 5 

Data-Driven Semi Global Alignment (DDSGA) 

A masquerade attacker authenticates as a legal user after stealing or 

cracking the user credentials or attacking the authentication service. Even it 

does not leave trails in the target system, this attack may be discovered 

through a masquerade detection process that matches the user active session 

against a profile of the previous behaviour of the same user and that signals 

any mismatching as an attack. Current profiling methods consider several 

features such as command line commands, system calls, security events, 

mouse movements, opened files names, opened windows title, and network 

actions. As mentioned in Chapter 2, masquerade detection has not yet 

achieved the level of accuracy and performance for practical deployment. 

Accuracy may be even lower in systems with a massive amount of resources, 

like grids and cloud systems, where a profile can be built only by correlating 

several user activities in distinct VMs. 

This chapter introduces the Data-Driven Semi Global Alignment, 

DDSGA, the approach we adopt to efficiently detect masquerade attacks and 

anomalous actions. It also describes the three main phases of DDSGA 

namely, configuration, detection, and update. Then, it explains the 

implementation and the experimental results of each phase. Lastly, it 

compares DDSGA against other approaches, and highlights its 

computational performance and detection accuracy. 

5.1 DDSGA Approach Overview 

DDSGA is a masquerade detection approach based upon the Enhanced-

SGA algorithm [125] described in Section 2.2.4. It aligns the user active 

session sequence to the previous ones of the same user and it labels the 

misalignment areas as anomalous. A masquerade attack is signaled if the 

percentage of anomalous areas is larger than a dynamic, user dependent 

threshold. DDSGA can tolerate small mutations in the user sequences with 

small changes in the low level representation of user commands and it is 

decomposed into a configuration phase, a detection phase and an update one. 

The configuration phase, computes, for each user, the alignment parameters 
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to be used by both the detection and update phases. The detection phase 

aligns the user current session to the signature sequence. The computational 

performance of this phase is improved by two approaches namely the Top-

Matching Based Overlapping (TMBO) and the parallelized approach. In the 

update phase, DDSGA extends both the user signatures and user lexicon list 

with the new patterns to reconfigure the system parameters. Figure 5.1 shows 

these phases and the modules that implement them that we discuss in the 

following. 

 

Figure 5.1: DDSGA Phases and modules 

DDSGA Main Features and Improvements: 

DDSGA improves both the computational and the security efficiency of 

the Enhanced-SGA.  

From a computational perspective, DDSGA improves the performance of 

both the detection and the update through a parallel multithreading scheme 

and a new Top-Matching Based Overlapping (TMBO) approach that 

improves the Heuristic Aligning and saves computational resources. While 

the Heuristic Aligning splits the signature sequence into a fixed overlapped 

subsequences of size 2n, where n is the size of the test sequence, TMBO 

simplifies the alignment through shorter overlapped subsequences. Besides 

saving computational resources, this speeds up the detection and update 

phases and consequently reduces the masquerader live time inside the 

system.  
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With respect to the accuracy of masquerade detection, DDSA introduces 

distinct scoring parameters for each user, namely the gap penalties and the 

overlapping length. The adoption of distinct scoring parameters for each user 

improves the detection accuracy, the false positive and false negative rates 

and increase the detection hit ratio with respect to the traditional and 

enhanced SGA that use the same parameters for any user. This neglects 

differences among the behaviours of distinct users and reduces the accuracy 

of detection, because the alignment cannot tolerate even slight changes in the 

user behaviour over time. Starting from the data of each user, the 

configuration phase of DDSGA computes the scoring parameters that result 

in the maximum alignment score for the considered user.  

Furthermore, to improve the accuracy of the alignment, DDSGA 

integrates binary and command group, two scoring systems suggested by 

Coull et al., into two other scoring systems, restricted and free permutation. 

The resulting systems tolerate permutations of previously observed patterns 

with a low reduction of the score. To tolerate changes in the low-level 

representation of commands with the same functionality, the scoring systems 

classify user commands into several groups and align two commands in the 

same group without reducing the alignment score. The DDSGA 

configuration phase also creates a dynamic threshold for each user to be used 

by both the detection phase and the update one. While Enhanced-SGA builds 

this threshold through a snapshot of a user profile, DDSGA builds a more 

sensitive and dynamic threshold by considering any data in the profile.  

Furthermore, DDSGA runs two update modules: the inline and long term 

modules. The inline module updates the user signature patterns, the user 

lexicon list, and their corresponding command categories in a 

reconfiguration phase. The long-term module updates the system with the 

latest changes in the alignment parameters. It also updates the dynamic 

threshold values, scoring parameters, and the overlapping length i.e., the 

length of the overlapped signature subsequence according to maximum 

number of inserted test gaps. The dynamic threshold, the scoring systems, 

and the two update modules enable DDSGA to tolerate slight changes in the 

user behaviour overtime. Table 5.1 briefly compares DDSGA and Enhanced-

SGA.  
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Table 5.1: A comparison between DDSGA and Enhanced-SGA 

 Enhanced-SGA DDSGA 

Accuracy 1. Command grouping 

and binary scoring 

systems 

2. Fixed and equal gab 

insertion penalties for 

all the users. 

3. Compute the 

threshold for each 

user using snapshots 

of user date. 

4. Signature Update. 

1. Free and restricted 

permutation scoring 

systems. 

2. Define gab insertion 

penalties for each user 

independently, based on 

user previous data. 

3. Compute an optimal 

threshold for each user. 

4. Signature Update (inline 

and long term). 

Computational 

Performance 

Heuristic Aligning. 1. TMBO Approach. 

2. Parallel computation. 

In the following sections we detail the current implementation of DDSGA. 

5.2 The Configuration Phase:  

We briefly define the parameters that this phase computes for each user 

and that are used by the following phases. The detailed calculation of each 

parameter is described in the remainder of this section. 

 Optimal gap penalties: 

The optimal test gap penalty and the optimal signature gap penalty are paid 

when inserting a gap into the test sequence and the signature one 

respectively. While in Enhanced-SGA all the users share the same fixed 

penalties, DDSGA computes two distinct penalties for each user according to 

distinct user behaviours. In this way, DDSGA determines the smallest 

penalties corresponding to the maximum alignment score. 

 Mismatch Score: 

DDSGA evaluates the mismatch score through the restricted permutation 

scoring system and the free permutation one. These systems integrate the 

command grouping and binary scoring systems defined in [125]. 

 Average optimal threshold : 

DDSGA computes a distinct threshold value for each user according to the 
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changes in the user behavior. The threshold is used in both the detection and 

update phases and its sensitivity affects the accuracy of both phases, as 

discussed in the average threshold module. 

 Maximum factor of test gaps (mftg): 

This parameter relates the largest number of gaps inserted into the user test 

sequences to the length of these sequences. DDSGA computes a distinct 

parameter for each user and updates it in the update phase. The detection 

phase uses the parameter to evaluate the maximum length of the overlapped 

signature subsequences in the TMBO. 

The configuration phase is implemented using the following five modules: 

5.2.1 DDSGA Initialization Module: 

To provide an independent set of test and signature sequences for the 

configuration phase of each user, we split the user signatures into nt non-

overlapped-blocks each of length n and use them as test sequences to the 

user. These sequences represent all given combinations of users signature 

sequences and all the modules in the configuration phase use them to 

compute the user alignment parameters. To define the signature sequences, 

we divide the user signature sequence into a set of overlapped groups of 

length m = 2n. In this way, the last n symbols of a block also appear as the 

first n of the next one. ns, the number of signature subsequences is equal to 

nt-1 groups to consider all possible adjacent pairs of the signature sequences 

of size n. We have chosen a length 2n to overlap the signature sequence 

because any particular alignment uses subsequences with a length that is, at 

most, 2n. Any longer subsequence necessary scores poorly, because of the 

number of gaps to be inserted. In fact, since the scoring alignment depends 

upon the match between the test and the signature subsequences, the former 

should be shorter than the latter. As a consequence, the signature sequence 

for this phase consists of 2n command produced by overlapping the signature 

sequence. Hence, there are nt-1 groups that are created as in Figure 5.2.  

In the case of SEA, ns = 49 subsequences and a tested block consists of 

100 commands because SEA marks each 100 command block as an intrusion 

or a non-intrusion. Since SEA does not supply any information on which 

commands in a block correspond to the intrusion, the correctness of larger or 

smaller blocks cannot be checked. The dynamic average threshold for both 

the detection and update phases is the average score of all the alignments 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

105 

between each test sequence of length 100-command and the 49 overlapped 

2n signature subsequences. A test sequence is not aligned with the signature 

subsequence that contains the test sequence itself because this returns a 

100% alignment score. We will detail this step in the average threshold 

module.  

 
Figure 5.2: The non-overlapped test sequences and the overlapped signature 

subsequences 

5.2.2 User’s Lexicon Categorization Module: 

This module builds a lexicon for each user, i.e. list of lexical patterns 

classified according to their functionality and that is used to tolerate changes 

in the low level representation of a pattern. In the SEA dataset, these patterns 

are UNIX commands. This module combines the user lexicon list and 

command grouping approach introduced in [125].  

Table 5.2: User 1 Lexicon List 
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Table 5.2 shows an example of a classification of user commands into 

several categories according to their functionalities e.g., since a user can use 

either cat or vi to write a file, the two commands can be aligned because both 

belong to the same group, “Text processing". In the same way, grep can be 

aligned with find because they both belong to "searching". 

5.2.3 Scoring parameters module. 

Starting from the test and signature subsequences of each user, this 

module returns three parameters: optimal test gap penalty, optimal signature 

gap penalty, and mismatch score. At first, the module inserts into the list 

top_match_list all the test sequences with the top match score. This list 

enables DDSGA to align the top match test sequences only rather than all the 

nt sequences. To build the top_match_list, we select the highest match scores 

for all the nt sequences. The match score MS of a test sequence is computed 

as in Equation 5.1. Then, the top_match_list sequences are aligned to the ns 

overlapped signature subsequences using any possible gap penalty, i.e. the 

test gap penalty ranges from 1 to n, while the signature gap penalty ranges 

from 1 to n. The mismatch score is 0 and the match score is +2.  

11

ntn
MS Min( Noccur _ Itself ( p ),Noccur _ Seq ( p ))

i k i
ki

 
         

(5.1) 

Where: 

 n is the length of the test sequence.  

 nt is number of test sequences. 

 Noccur_Itself( i
p ) is number of occurrence of pattern i in the current 

evaluated sequence. 

 Noccur_Seq k ( i
p

) is number of occurrence of pattern i in test sequence k. 
 

By computing each alignment separately, we produce several alignment 

scores for each combination of the scoring parameters and select as the 

optimal parameters those resulting in the maximum score. If several 

alignments result in this score, we select the one with the smallest penalties 

of inserting a gap into the signature subsequence and test one, respectively. 

To justify this solution, consider that the highest alignment score denotes a 

high level of alignment between the test and the signature subsequences and 
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SGA normally subtracts these penalties from the score. We have applied the 

previous steps to each user in SEA dataset to define the corresponding 

optimal penalties. Figure 5.3 and Table 5.3 show the penalties for user 1. 

 

Figure 5.3: The best alignment score that corresponds to the optimal 

combinations of gap penalties for user 1 in SEA Dataset 

Table 5.3: Example of the Top Match Scores of User 1 

The Mismatch-Score Evaluation Algorithm: 

This algorithm computes the mismatch score parameter using the 

restricted and the free permutation scoring systems as shown in Figures 5.4 

and 5.5. Both systems integrate command grouping and binary scoring [125] 

and are based on distinct assumption about mutations in the audit data. 

Command grouping assumes that sequences of audit data mutate by 

replacing some original symbols with functionally similar ones. Command 

grouping assigns a static reward of +2 to exact matches and scores a 

Max 
alignment 

score 

Test sequence 
index (i) 

Signature gap  

penalty 

Test gap  

penalty 

Optimal 
combination 

154 2 99 95 - 

154 5 100 95 - 

154 8 97 100 - 

154 13 97 99 ok 
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mismatch through the functional groups of the two commands. If a command 

in the signature aligns with a mismatched command in the test sequence but 

that belongs to the same group, the mismatch score is set to +1 rather than to 

-1. The assumption on mutation of the binary scoring system follows the 

results in [151] where mutation does not replace base symbols in the user 

lexicon. In fact, these symbols are a strong indicator of a legal use, but the 

original base symbols can be permuted in some fashion [125]. The binary 

scoring system rewards exact matches by adding +2 to the alignment score. 

A mismatch is scored to +1 if the mismatched command has previously 

occurred in the user lexicon and to -1 otherwise. Both scoring systems 

penalize the insertion of a gap into the signature sequence and into the test 

one by, respectively, -3 and -2.  

 (A) Restricted Permutation Scoring System:  

It rewards a mismatched command in the test sequence if the two 

commands belong to the same group. These groups are manually created 

from a set of common UNIX commands in the signature sequences. 

Furthermore, the mismatched command of the test sequence should have 

previously occurred in the user lexicon. This tolerates various permutations 

of previously observed patterns without reducing the score significantly.  

 

Figure 5.4: The restricted permutation scoring system. 
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(B) Free Permutation Scoring System: 

This system is more tolerant than the previous one because it does not 

require that the mismatched commands belong to the same group and it even 

rewards a mismatched command provided that it belongs to the user lexicon. 

This tolerates a larger number of permutations of the signature patterns 

without reducing the score significantly.  

 
Figure 5.5: The Free Permutation Scoring System. 

5.2.4 Average Threshold Module. 

This module computes a dynamic average threshold for each user to be 

used in the detection phase and that may be updated in the update phase. In 

the detection phase, if the alignment score is lower than the threshold, then 

the behavior is classified as a masquerade attack. With respect to Enhanced-

SGA, this module considers all the user data to improve the sensitivity of the 

threshold that, in turns, determines the one of the detection. The module uses 

the same test and signature subsequences of the initialization module and it 

can works with a test sequence of any length because, in practical 

deployment user test session can be of any length.  

At first, the module builds a trace-matrix, to record all alignment details 

of the current user. We align each test sequence to all ns overlapped 

signature subsequences and run the module twice, one for each scoring 

systems to select the one to be used. The detection phase uses the output of 
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this module to compare the two scoring systems. These alignments use the 

optimal scoring parameters for the current user. The module applies 

Equation 5.2 to compute the average alignment of test sequence i, 

avg_align_i, and the sub_average score for all previous alignment scores, 

score_align_i, of test sequence i. In the equation, max_score_align_i is the 

largest alignment score resulting from the alignment of sequence i to all ns 

signature subsequences. Then, the module applies Equation 5.3 to compute 

the detection_update_threshold, the overall average of the nt sub average 

scores.  

100

1

ns
avg _align_i (( score_ align_i / ns ) / max_score_align_i )*

j
j

 


   (5.2)  

1

nt
detection_update_threshold ( avg _ align _ i ) / nt

k
k

 


             (5.3) 

To compute the optimal alignment path and number of test gaps (ntg) to 

be inserted into test sequence i, we apply the trace backward algorithm 

(TBA) to trace back the transitions to derive each optimal score. An example 

is shown in Table 5.4.  

Table 5.4: An Example for the Trace-Matrix 

Test  

Seq. ID 

Length of Test 
Seq. (lts) 

Signature 
Subseq. ID 

Optimal 
alignment 

Number of 
Test Gaps 

(ntg) 

Avg-align of 
test Seq. i 

(%) 
1 100 1 27 65  
1 100 2 33 60  
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

1 100 49 77 22 70.31 
2 100 1 37 57  
2 100 2 53 43  
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

2 100 49 67 31 69.72 
. 
. 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
50 100 1 122 9  
50 100 2 134 7  
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

50 100 49 102 11 73.75 
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The Trace Backward Algorithm (TBA): 

Any dynamic programming algorithm can select the optimal alignment 

path by tracing back through the optimal scores computed by SGA. We 

implemented the TBA to build the backward-transition-matrix, see Figure 

5.6, in a way that helps in filling the trace-matrix in Table 5.4 as previously 

discussed. The alignment process also applies the TBA to extract the final 

alignment path. The TBA traces back the transition-matrix according to the 

labels that the alignment has inserted into this matrix. One of four labels may 

be inserted: "M" if a match has occurred, "!M" if a mismatch has occurred, 

"GS" or “GT” if a gap has been inserted into a signature subsequence or into 

the test one. Figure 5.6 outlines the TBA and shows the transition-matrix and 

the corresponding backward-transition-matrix to align the test sequence 

"AWGHE" to the signature sequence "PAWHE". 

 Test sequence:           A W G H E 

Signature sequence:   A W  -  H E 

 

 

Figure 5.6: The Transition and Backward-Transition matrices respectively 

The thick arrows show the optimal path that leads to the maximum alignment score, the 

thin ones show other proper paths that do not lead to the maximum alignment score. 

5.2.5 Maximum Test Gap Module 

We recall that the Enhanced-SGA Heuristic Aligning decomposes the 

signature subsequence into 2n overlapped subsequences because if 

subsequences of length n are aligned, the maximum number of gaps that can 

be inserted into the test sequence is n for all users. By tracing the SGA 
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algorithm, we have noticed that the maximum number of gaps is much lower 

than n, the length of the test sequence, and it differs for each user according 

to the level of similarity among the subsequences in the user signature and to 

the length of the test sequence. Even if the test sequence is long enough, the 

number of gaps is at most half of the sequence length. This means that by 

partitioning the signature sequence into 2n overlapped subsequences, the 

Maximum Test Gap module can divide it as in Equation 5.4 to compute mftg, 

the largest number of test gaps inserted into the user test sequences by the 

average threshold module.  

The Computational Enhancement (CE) for the session alignment of a 

user can be computed according to Equation 5.5. We refer to the detection 

phase for an example that explains this section.  

 

5.3 The Detection Phase 

We have run a complete alignment experiment based upon the test and 

signature blocks of the SEA dataset to evaluate the alignment parameters and 

the two scoring systems. The test blocks are the actual SEA testing data and 

they differ from those described in the initialization module. To simplify a 

nt
ntg

kL n Max *n
lts

kk

  
   
      

     

                             (5.4) 

Where: 

 ntg is number of test gaps inserted to each test sequence,  

 lts is the length of the test sequence,  

 nt is number of the test sequences of the user, fifty in case of SEA, 

CE =    - * 100/(2* ) %n mftg n                                                (5.5)       

Where, Maximum Factor of Test Gaps inserted into all user test sequences  

(mftg) =

nt
ntg

kMax
lts

kk
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comparison with other approaches, we use the ROC curve and the Maxion-

Townsend cost function [112] defined in Section 2.2.2.  

Our experimentation focuses on the effects of the alignment parameters 

on the false positive and false negative rates and on the hit ratio. This 

experiment did not apply the maximum test gap module. False positives, 

false negatives and hits are computed for each user, transformed into the 

corresponding rates that are then summed and averaged over all 50 users. 

Equations 5.6, 5.7, and 5.8 show the DDSGA metrics.  

100

1

/ / *
nu

TotalFalsePositive fp n nu
k k

k

  
   
    

           
(5.6) 

Where: 

 fp = No. of false positive alarms,  

 n = No. of non-intrusion command sequence blocks,  

 nu = No. of users (50 in our case) 

100

1

/ / *
nui

TotalFalseNegative fn ni nui
k k

k

  
   
    

         
 (5.7) 

Where: 

 fn = No. of false negatives,  

 ni = No. of intrusion command sequence blocks,  

 nui = No. of users who have at least one intrusion block  

100TotalHitRatio TotalFalseNegative               (5.8) 

To plot the ROC curve, the experiment with the traditional SGA 

algorithm have used distinct values of the alignment parameters to obtain 

different false positive rates in the x-axis and the corresponding hit ratios in 

y-axis. We also repeat the experiment with distinct values of some alignment 

parameters such as reward for matches and rewards or penalties for 

mismatches computed by the two scoring systems. Figure 5.7 shows the 

ROC curve for the two scoring systems, the Enhanced-SGA scoring systems, 

and other detection approaches, based upon the previous metrics.  
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     Figure 5.7: ROC curve for our two scoring systems, SGA ones, and other 

detection approaches 

According to this figure, the restricted permutation system results in 

higher hit ratio with corresponding low false positive rates. As the false 

positives rate increases, the free permutation system achieves a higher hit 

ratio than the restricted one because it can tolerate a large number of 

mutations and deviations in user behaviours. According to this experiment, 

we have adopted the restricted permutation system as a suitable scoring 

system for all the phases of DDSGA.  

Table 5.5 compares DDSGA using the restricted and the free permutation 

scoring systems against the current masquerade detection approaches sorted 

by Maxion-Townsend cost. The results for the various detection approaches, 

including all ROC curve values, are published in the references shown in 

Table 5.5 and are sorted by “Maxion Townsend cost” that is used to simplify 

the comparison by considering both the false positive and hit ratio. We re-

implemented all Coull et all works in [124, 125] to compare it against 

DDSGA.  
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Table 5.5: A Comparison between Our Two Scoring Systems and the 

Current Detection Approaches 

Approach Name 
Hit Ratio 

% 

False 

Positive % 

Maxion 

T. Cost 

DDSGA (Restricted Permutation) 83.3 3.4 37.1 

DDSGA (Free Permutation) 80.5 3.8 42.3 

SGA (Signature updating) [125] 68.6 1.9 42.8 

SGA (Signature updating + Heuristic 

Aligning) [125] 

66.5 1.8 44.3 

Naïve Bayes (With Update) [112] 61.5 1.3 46.3 

SGA (Binary Scoring)[ 125] 60.3 2.9 57.1 

Adaptive Naïve Bayes [123] 87.8 7.7   58.4 

Recursive Data Mining [120] 62.3 3.7 59.9 

Naïve Bayes (No Update) [112] 66.2 4.6 61.4 

WRBF-NB [122] 83.1   7.7         63.1 

Episode based Naïve Bayes [121] 77.6 7.7     68.6 

Uniqueness [138] 39.4 1.4 69.0 

Hybrid Markov [116] 49.3 3.2 69.9 

SGA (Previous Scoring) [124] 75.8 7.7 70.4 

Bayes 1-Step Markov [115] 69.3 6.7 70.9 

IPAM [117] 41.1 2.7 75.1 

SGA (Command Grouping) [125] 42.2 3.5 78.8 

Sequence Matching [118] 36.8 3.7 85.4 

Compression [114] 34.2 5.0 95.8 

The Computational Enhancement Modules:  

The computational complexity of SGA is rather large. As an example, it 

requires about 500,000 operations to test one user session for masquerade 

attacks in the SEA dataset, because the length of the signature sequence is 

5000 while that of the test sequence is 100. The resulting overhead is 

unacceptable in multiuser environments like cloud systems or in 

computationally limited devices like wireless systems. To reduce this 

overhead, we introduce two computational enhancements that concern, 

respectively, the Top-Matching Based Overlapping (TMBO) module and the 
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parallelized detection module that are executed in each alignment session.  In 

the following, we outline in details these two modules. 

5.3.1 The Top-Matching Based Overlapping Module 

To align the session patterns to a set of overlapped subsequences of the 

user signatures, this module uses the restricted permutation scoring system, 

Maximum Factor of Test Gaps (mftg) in Equation 5.9, and the scoring 

parameters of each user. As explained in Section 5.1, the TMBO improves 

the Heuristic Aligning of the Enhanced-SGA. After splitting the signature 

sequence into a set of overlapped blocks of length L, see Equation 5.4, it 

chooses the subsequence with the highest match to be used in the alignment 

process. In the worst case, all overlapped subsequences should be aligned as 

they have the same highest match value. We have verified that on average, 

the number of alignments is rather smaller because of the variation between 

the overlapped signature subsequences. The evaluation of the proposed 

TMBO approach mainly depends upon two parameters: (a) Number of 

average alignments for the detection process, (b) The effect of the TMBO on 

false alarm rates and hit ratio.  

To evaluate our approach with respect to (a) we show through an 

example how it reduces the alignment computations. As far as concerns (b), 

we use the ROC curve and Maxion-Townsend. To evaluate TMBO, Figure 

5.8 shows the user session patterns to be aligned to the signature patterns. 

The configuration phase returns these values: signature_gap_penalty = 9, 

test_gap_penalty = 5, optimal_score_sys = “Restricted Permutation”, 

detection_update_threshold = 82.2%, and mftg (maximum factor of 

test_gaps) = 33%.  

The first step of TMBO computes the following length of the overlapped 

subsequences according to Equation 5.9: 

   * 10 33 /100 * 10 10 3.3 10 4 14L n mftg  n                           (5.9) 

With respect to the one in the initialization module, the current 

overlapping runs with length L rather than 2n. Figure 5.8 shows the resulting 

overlapped signature subsequences of size L = 14. The last subsequence, i.e. 

subsequence 15, may be shorter than L, but it is still longer than the test 

sequence.  
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The second step computes the match corresponding to each subsequence 

as shown in the front of each subsequence in Figure 5.8. We only consider 

the matching of subsequence 1 because those for other subsequences are 

similar. If we denote by Match(X, s), the minimum between the occurrences 

of X in, respectively, a user session and in a subsequence, then Match 

(subseq.1) = 

(X in {A, B, C, D, E, F} (Match(X, subseq.1)) = (Min(3,1), Min(2,2), Min(1,2), 

Min(1,2), Min(2,2), Min(1,2))= (1,2,1,1,2,1)=8 

 

Figure 5.8: Overlapped Signature Subsequences of Size 14 

The third step chooses the top match subsequences, e.g. subsequences 2 

and 15 in the example, as the best signature subsequences to be aligned 
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against the test session patterns of the user. To evaluate the reduction of the 

workload due to TMBO, consider the Number of Asymptotic Computations 

(NAC) computed by Equation 5.10. In the previous example, TMBO reduces 

the number of alignments from 3000 to 280 with a saving of 90.66%. 

NAC =  Avg_n_align  *  Sig_len  *  Test_len              (5.10) 

Where:  

 Avg_n_align is the average number of alignments required for one 

detection session over all existing users.  

 Sig_len is the length of the overlapped signature subsequence.  

 Test_len is the length of the test sequence). 

To determine if the session patterns of the current user contain a 

masquerader, the final step compares the highest scores of the previous two 

alignments against a detection_update_threshold. As explained in the update 

phase, if at least one of the previous eight alignments has a score larger than 

or equal to the detection_update_threshold, then an inline update process 

should be executed for the signature subsequence and the user lexicon. 

The evaluation using the SEA dataset shows that TMBO reduces the 

maximum number of alignments from 49 to an average of 5.13 alignments 

per detection, a substantial improvement in detection scenarios. Table 5.6 

shows the asymptotic computations for three detection approaches. The first 

is our TMBO without the inline update module. The second one is the 

Heuristic Aligning with signature update [125]. Finally, the third one is the 

traditional SGA algorithm without the Heuristic Aligning or update feature. 

The NAC per one detection session can be computed as in Equation 5.10. If 

we considered that each of the fifty users in SEA dataset has one active 

session in a multi users system, then Total_NAC = NAC * 50. 

Table 5.6: TMBO approach in three detection approaches 

Approach Name  Avg-n-align NAC per 1 user  NAC per 50 
user  

DDSGA with L = 145.73 
5. 13 

5. 13 * 145.73 * 
100 = 74759.49  

74759.49 * 50 
= 3737974.5  

SGA with Signature 
length = 200 

4.5 
4.5 * 200 * 100 = 
90000  

90000 * 50 = 
4500000  

Traditional SGA with 
Signature length = 200 

49 
49 * 200 * 100 = 
980000  

980000 * 50 = 
49000000  
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To evaluate false alarm rates and hit ratios, we have tested TMBO using 

the ROC curve and Maxion-Townsend score. Figure 5.9 and Table 5.7 show 

that TMBO has a lower impact on the overall accuracy than other 

approaches. 

 

Figure 5.9: The impact of our TMBO approach on the system accuracy 

Table 5.7: The Masquerade Detection Approaches against DDSGA with its 
Two Scoring Systems 

Approach Name Hit 

Ratio % 

False 

Positive % 

Maxion-T 

Cost 

DDSGA (Restricted Permutation, 

Without Updating) 83.3 3.4 37.1 

DDSGA (Restricted Permutation, 

Without Updating) + TMBO 81.5 3.3 38.3 

DDSGA (Free Permutation) 80.5 3.8 42.3 

SGA (Signature updating) 68.6 1.9 42.8 

SGA (Signature updating) + Heuristic 66.5 1.8 44.3 

Naïve Bayes (With Updating) 61.5 1.3 46.3 

SGA (Binary Scoring, No Updating) 60.3 2.9 57.1 
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5.3.2 The parallelized Detection Module 

Since TMBO partitions the user signature into a set of overlapped 

subsequences, we can parallelize the detection algorithm because it can align 

the commands in the user test session to each top match signature 

subsequence separately. In the example of Section 5.3.1, we can run in 

parallel the threads to align subsequences 2 and 15. If a thread returns a 

computed alignment score at least equal to detection_update_threshold, then 

it sends a "No Masquerader" message and then runs an inline update of both 

its signature subsequence and the lexicon of the current user. Instead, if the 

alignment score is lower than the detection_update_threshold, the thread 

raises a "Masquerader Detected" alert. Figure 5.10 shows the parallelized 

detection module processes. 

 

Figure 5.10: The processes of the parallelized detection module 
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We have run several experiments using the SEA dataset to evaluate how 

the parallel version of the module influences the overall performance of 

detection. The experiments have used an Intel Core 2 Duo Processor E4500 

(2M Cache, 2.20 GHz) with 4 GB of memory and running Windows 7 SP1, 

Machine “A”. Machine “B” is Intel Core i3-2330M (3M Cache, 2.30 GHz) 

with 6 GB of memory and running Windows 7 SP1.  

The results show that there are two operational modes of the module: 

Full Parallelization Mode (FPM) and Semi Parallelization (SPM) one. The 

module selects the most appropriate one according to the capabilities of the 

underlying machine and to n_aligns, the number of alignments per detection. 

It selects the FPM mode if the machine capabilities match n_aligns so that 

the module achieves the best performance. This is the most common mode in 

our experiments. An example is the detection sessions of user 7 where 

n_aligns = 5, Figure 5.11 shows that if five thread are used then each thread 

runs a distinct alignment and this minimizes the detection time.  

The SPM mode is selected if the machine capabilities do not match the 

required n_aligns. This results in a small performance degradation due to 

inactive threads. The SPM mode is rarely selected in our experiments 

because the fifty users of the SEA dataset results in a value of Avg_n_align, 

equals to 5.13. Hence, on average, the parallelized detection module uses 6 

threads to run a detection session. A SPM mode example is the detection 

sessions of user 23 where n_aligns =9. Figure 5.12 shows that the shortest 

detection time is reached when running 6 threads in machine “A” and 8 

threads in machine “B”. In this case, 3 threads are idle in machine “A” and 1 

in machine “B”.  

5.4 The Update Phase 

The update of the user signature patterns is critical because any IDS 

should be automatically updated to the new legal behaviours of a user. This 

update is implemented by two modules: the inline update module and the 

long term update one.  
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Figure 5.11: FPM and SPM modes for user 7 in Machines “A” and “B” 

 

Figure 5.12: FPM and SPM modes for user 23 in Machines “A” and “B” 

5.4.1 The inline update module  

This module has two main tasks:  

1) Finding areas in user signature subsequences to be updated and 

augmented with the new user behavior patterns. 

2) Update the user lexicon by inserting new commands. 

In the detection phase, after each alignment, each parallel thread may 

update both the user signature subsequences and the user lexicon. Three 

cases are possible in the TBA, see Figure 5.13:  

a) The test sequence pattern matches the corresponding signature 

subsequence pattern, 
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b) A gap is inserted into either or both sequences  

c) There is at least a mismatch between the patterns in the two sequences.  

In case (a), no update is required because the alignment has properly 

used the symbol in the proper subsequence to find the optimal alignment. 

Also case (b) does not require an update because symbols that are aligned 

with gaps are not similar and should be neglected. In case (c), we consider all 

the mismatches within the current test sequence. Then, both the signature 

subsequence and the user lexicon are updated under two conditions.  

The first one states that we can insert into the user signatures only those 

patterns that are free of masquerading records. This happens anytime the 

overall_alignment_score for the current test sequence is larger than or equal 

to the detection_update_threshold.  

The second condition states that the current test pattern should have 

previously appeared in the user lexicon or belongs to the same functional 

group of the corresponding signature pattern.  

The two conditions imply that the inline module updates the user lexicon 

with the new pattern if it does not belong to the lexicon. It also extends the 

pattern with the current signature subsequence and adds the resulting 

subsequence to the user signatures without changing the original one. In 

other words, if a pattern in the user lexicon or in the same functional group 

of its corresponding signature pattern has participated in a conserved 

alignment, then a new permutation of the behavior of the user has been 

created. For instance, if the alignment score of the test sequence in Figure 

5.13 is larger than or equal to the detection_update_threshold, then the 

pattern 'E' at the end of this test sequence has a mismatch with 'A' at the end 

of the signature subsequence. If ‘E’ exists in the user lexicon or belongs to 

the same functional group of 'A', the signature subsequence is augmented so 

that the position with 'A' matches with both 'A' or 'E'. If ’E’ does not belong 

to the lexicon, it is also inserted into it. This simply embeds observed 

variations in the signature sequence without destroying any information it 

encodes. In this case, a new augmented subsequence (HEE) is inserted into 

the user signature subsequences. If only the first condition is satisfied, only 

the user lexicon is updated so that the following checks use the new pattern. 

In fact, it is highly likely that a pattern that has appeared within a conserved, 

high scoring alignment has been created by the legitimate user.  
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Figure 5.13: The inline update steps 

Besides improving the computational performance of system update, the 

module also improves the signature update scheme of the Enhanced-SGA 

[125] as following: 

1) It uses the parameters, the threshold, and the scoring system returned 

by the configuration phase.  

2) It runs in parallel with the detection phase and starts as soon as the 

alignment score is computed. Instead, the signature update scheme 

runs independently after each detection process and it repeats the 

backward tracing step. 

3) It improves flexibility in the signature update by considering any 

occurrence of commands permutations or functionality matching.  

To evaluate how the inline update module reduces the false alarm rates 

and improves the hit ratio, we have used the ROC curve and the Maxion-

Townsend score after applying the inline update module. Figure 5.14 and 

Table 5.8 show that the inline update module reduces the false alarm rates 

and increases the hit ratio. Therefore, it significantly improves the accuracy 

with respect to other approaches. 
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Figure 5.14: The impact of the inline update on the system accuracy 

Table 5.8: Masquerade Detection Approaches against DDSGA with Its 
Inline Update Module. 

Approach Name Hit 

Ratio % 

False 

Positive % 

Maxion-

T Cost 

DDSGA (Inline Update + TMBO 

+ Restricted Permutation) 88.4 1.7 21.8 

DDSGA (Restricted Permutation, 

Without Updating)  83.3 3.4 37.1 

DDSGA (Restricted Permutation, 

Without Updating) + TMBO 81.5 3.3 38.3 

DDSGA (Free Permutation) 80.5 3.8 42.3 

SGA (Signature updating) 68.6 1.9 42.8 

SGA (Signature updating) + 

Heuristic 

66.5 1.8 44.3 

Naïve Bayes (With Updating) 61.5 1.3 46.3 

SGA (Binary Scoring, No Updating) 60.3 2.9 57.1 

 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

126 

5.4.2 The long term update module 

This module reconfigures the system parameters through the outputs of 

the inline update module. There are three strategies to run the module: 

periodic, idle time, and threshold. The proper one is selected according to the 

characteristic and requirements of the monitored system.  

The periodic strategy runs the reconfiguration step with a fixed 

frequency, i.e. 3 days or 1 week. To reduce the overhead, the idle time 

strategy runs the reconfiguration step anytime the system is idle. This 

solution is appropriate in highly overloaded systems that require an efficient 

use of the network and computational resources. The threshold strategy runs 

the reconfiguration step as soon as the number of test patterns inserted into 

the signature sequences reaches a threshold that is distinct for each user and 

frequently updated. This approach is highly efficient because it runs the 

module only if the signature sequence is changed. 

The DDSGA webpage [152] describes further details on, among others, 

analysis results for each user in SEA dataset, output charts, and pseudo 

algorithms. Chapter 6 and 7 describe an implementation of DDSGA to detect 

masquerade attacks in the cloud systems using different auditing profiles. 
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Chapter 6 

Detecting Masqueraders through System Calls and 

NetFlow Data 

Masquerade attacks become a big challenge in cloud systems because, the 

massive amount of system resources, alternative deployment models, and the 

distribution of user audits and activities across several VMs with distinct 

environments, strongly increase the complexity of their detection. Most of 

the current approaches to detect these attacks suffer from severe limitations 

when applied to cloud systems. As an example, they analyze user behaviors 

just in one environment without correlating all activities of the same user in 

host and network environments. Furthermore, they are not applicable to 

alternative deployment models such as private, hybrid, and public clouds. 

This chapter discusses three detection strategies [143]. The first strategy 

analyzes sequences of correlated system calls audits from the operating 

systems of the VMs, the second considers data from the network 

environment and the last one integrates the first two strategies. To simplify 

the testing and the evaluation of the three strategies, we used our CIDD 

dataset introduced in Chapter 4 as a source for cloud audits data. Finally, the 

chapter details our experiments to determine the optimal parameters for the 

various strategies and describe the experiments we have implemented to 

evaluate the computational performance and the detection accuracy of these 

strategies. 

6.1 Overview 

All the three detection methods described in the following analyze the 

audit data through DDSGA. The first method applies DDSGA to sequences 

of user system calls from the host environment. The second one uses 

NetFlow audits collected from the network environment. The third method 

integrates the outputs of the first two methods through a neural network and 

uses statistical information associated with active session e.g., the login 

period, user’s source IP address, and login failure actions. To tune and 

evaluate the three methods we have used the system calls and NetFlow data 

in the CIDD dataset. DDSGA is applied to the user audits in CIDD in a fully 

functional cloud system according to the distributed architecture of CIDD.  
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Any approach that analyses the system calls result in a high degree of 

information assurance because these calls reflect all system activities and 

their monitoring is tightly integrated with the OS. This makes the monitoring 

process more tamper-resistant to malicious updates of the information of 

interest. As a counterpart, an analysis that considers all the system call 

categories may result in a slow detection process and a high false alarm rates 

with a low hit ratio. This is the reason why our analysis extracts specific 

features from the system calls through our “Behaviours Triangle Model” that 

is focused on calls related to file access and to process activities because they 

are essential and unavoidable for any user. This simplifies the labeling of 

abnormal behavior because these calls reflect any regularity of the user 

behaviour in audit data more than other calls.  

In the network environment, a NetFlow profile is built not for each user 

but for each source IP address. This profile is based upon sequences of 

network actions captured by sniffing tools. For each action, we record the 

sequence of destination IPs that have been accessed successfully together 

with the protocols used.  

The three alternative implementation models described in Chapter 3, 

Audit Exchange, Independent, and Centralized-Backup, are evaluated using 

their corresponding CIDS and CIDS-VERT frameworks. These models help 

in analyzing the behavior of the same user in distinct cloud nodes. 

Furthermore, they improve the functionality of their frameworks to 

efficiently cover attacks in distinct cloud deployment models. 

6.2. Detecting Masquerades in Host Environment 

This section describes masquerade detection based on the anomalous 

analysis of system calls sequences and evaluates this strategy through the 

UNIX audits of the CIDD dataset.  

6.2.1 System Calls Feature Extraction 

Several monitoring and audit strategies of OS activities are focused on 

system calls. These calls can be roughly grouped into five major categories: 

process control, file management, device management, information 

maintenance, and communication [153]. 

While current IDSs analyze calls in all categories, our solution only 

monitors two categories: file access and process activities. To explain this 
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decision, we briefly discuss the disadvantage of considering all categories of 

system calls. First, an analysis that considers any call with its full parameters 

and features often results in a slow detection process that produces very high 

false alarm rates with low hit ratio. This is due to the large number of system 

calls parameters and the large number of possible permutations of the calls. 

Another problem is that the training patterns for most calls are specific to the 

program versions so that the accuracy of detection changes anytime the 

version changes. Another important reason is that the basic premise for 

anomaly detection is the intrinsic regularity in the audit data that is 

consistent with the normal behavior and distinct from the abnormal one. In 

other words, the more regular the data, the better the performance of 

anomaly detection [154]. We have focused on file access and process 

execution because they are essential and unavoidable for any user and can 

strongly reflect the user behaviour with more intrinsic regularity than other 

activities. To analyze file access and process execution, our Behaviours 

Triangle Model, builds a profile of system activity of each user and reflects 

user behaviors in terms of three relationships, see Figure 6.1:  

(a) User access a file,  

(b) Process accesses a file, 

(c) User invokes a process. 

 

Figure 6.1: The Behaviours Triangle Model 

The Behaviours Triangle Model classifies users into human and system 

users. In turns, it partitions human users into local and server users according 

to their nature. Local user activities are more complex and dynamic than 
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those of server users and include database administration, word processing, 

web browsing, and miscellaneous activities such as command-prompt and 

window manager interaction. The activities of server users are more related 

to email services, file transfer, and web browsing. Unlike human users, 

system users are dedicated to a few tasks and have specific privileges and are 

likely to behave statically. These limited activities and privileges simplify the 

detection of attempts to masquerade as a system user. DDSGA detects these 

attempts through a lexical list with common files and processes accessed or 

invoked by system users. Any pattern outside this list is a strong indication 

of a masquerader. We separate human user activities from system user 

processes and then check each user separately.  

In multi user systems like cloud systems, activities of distinct users are 

recognized in traces through the user ID paired with each system call. Using 

these IDs, we can easily define the activities of each human user. Instead, 

system users activities may interact with local and server users, but they 

usually do not refer to a specific user. Hence, we can detect a masquerader 

that is misusing the system user but without any information about the legal 

user that originated the misuse. To this purpose a further detection process 

should be run for all human users.  

Figure 6.1 shows three training sessions for the three kinds of users, 

according to the features extracted from the CIDD dataset. The uucp system 

user can access to the /uccp directory, whereas the root user can access the 

/ufs and /etc files. As soon as a masquerader compromises them, the program 

tries to access files in other system directories such as /lib or /user. By 

exploiting the interactions between system users and human processes, a 

masquerader can escalate his/her access privileges to acquire some human 

user privileges. Both users uccp and root execute the last two masquerades in 

the sessions in Figure 6.2 but it is not known if they affected one or more of 

the human users, e.g., users 2060 or 2140. DDSGA detects these 

masquerades by checking the system users’ profiles. If the detection rate is 

smaller than the detection threshold, DDSGA checks all the human users to 

discover if any of them were impersonated by that masquerader to use the 

privileges of the system users. The next section details how DDSGA detects 

masquerade attacks in UNIX system call traces.  
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Figure 6.2: Three training sessions with the extracted features for three 

types of users 

Figures 6.1 and 6.2 show that we build a user profile based on the 

sequence of patterns of the files the user has accessed and of the process 

being invoked. The arcs of the triangle define three relationships:  

(a) A user accesses a file: it includes the file access patterns that 

correspond to a given task. These access patterns represent a profile of 

the normal user behavior. Therefore, any deviation in the current 

pattern with respect to this profile will be considered as an anomalous.  

(b) A process accesses a file: this relationship defines how the process 

accesses a file, a masquerader may use the user process privileges to 

access important files. The analysis of the sequences of the files that 

the process accesses may result in a highly accurate detection with 

respect to the files the user accesses, because this relationship involves 

a fixed and well defined list of the files each process can access.  

(c) A user invokes a process: while the previous analyses of system calls 

[sys-call-model, Behav-Monitor, and Detect-Buffer] consider the list 

of all the processes that each program forks or executes, our analysis 

focuses on the sequence of processes the user has invoked and the 

Local User 
= = = = = = 

Session Head: Session-ID, User-ID, SourceIP, Period, LoginFailure?, Real-Masquerade? 
368-VM2 , 2140, 194.007.248.153, Evening, 0, 1 
Session Contents: (Path, Return-Value) 
 (/export/home/janes/.hushlogin, 0), (/opt/local/bin/tcsh, 0), (/usr/lib/fs/ufs/quota, 0), 
(/usr/bin/cat, 0), (/usr/bin/rm, 1), (/usr/bin/vi, 0), (/usr/bin/su, 1), (/usr/ucb/whoami, 0), 
(/usr/bin/hostname, 0), (/opt/local/lib/solaris/specs, 1) …... 

 

Server user 
= = = = = = 

102-VM4, 2060, 172.016.112.207, Afternoon, 0, 0   
(/opt/local/bin/tcsh, 0), (/usr/lib/fs/ufs/quota, 0), (/usr/bin/cat, 0, 0), (/var/mail/lucyj, 0), 
(/usr/bin/ftp, 0), (/usr/bin/lynx, 0), (/usr/lib/sendmail, 0) …..… 

 

System Users 
= = = = = = = = 

68-VM1, uucp, 127.0.0.1, Afternoon, 0, 1   
(/usr/bin/sh, 0), (/usr/bin/date, 0), (/usr/lib/uucp/uusched, 0), (/usr/lib/uuxqt, 1), (/usr/ 
bin/touch, 1), (/usr/bin/date, 0), (/usr/lib/uucp/uusched, 0), (/usr/lib/uucp/uuxqt, 0) ……  

 

73-VM1, root, 127.0.0.1, Morning, 0, 1   
(/usr/lib/fs/ufs/ufsdump, 0), (/etc/dumpdates, 0), (/usr/ucb/whoami, 1)........ 
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programs being executed. The main idea is that each user has a 

characteristic working set of accessed files and a list of favorite 

programs. We record the sequences of these programs and consider as 

anomalous the case where either the process does not follow the 

normal sequence or a test process or program does not appear in these 

sequences. The analysis neglects forked processes, because they are 

highly predictable and the HIDS component can easily detect a 

process that should not have been forked. 
  

Figures 6.3, 6.4, and 6.5 show, respectively, the distributions of the 

access patterns and of the executed programs for the three user categories. 

 
Figure 6.3: The Local User with ID “2140” in CIDD. 

 
Figure 6.4: The Server User with ID “2060” in CIDD. 
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Figure 6.5: The System User with ID “UUCP” in CIDD. 

The previous figures show that both the behaviours of server and system 

users are highly predictable. Hence, any deviation in these behaviours may 

be more accurately detected than those for local users. We also notice that 

the programs that are executed can be more reliably predicted and the 

corresponding access patterns improve the detection process.  

6.2.2 Applying DDSGA to Correlated System Calls 

DDSGA [DDSGA] can work efficiently with any sequence of patterns 

regardless of the running environment. To detect masquerades in UNIX 

audits, DDSGA computes the best alignment score by aligning the active 

session sequence e.g., the access patterns and executed processes as in Figure 

6.2, to the previous sequences of the same user. The implementation of 

DDSGA is updated because originally it was applied to the simulated SEA 

dataset [136] with overlapped sessions of fixed length. Instead, the CIDD 

dataset is distributed among the cloud VMs and has non-overlapped non-

fixed length real time sessions. To this purpose, we have to discover the best 

Sliding Window Size (SWS) for each test session and to build a reasonable 

scoring system according to the extracted features of UNIX audits. Both the 

detection and update phases of DDSGA do not change if CIDD is 

considered, because they use the new parameters returned by the 

configuration phase. In the detection phase, we test three correlation models, 
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Independent, Audit Exchange and Centralized-Backup to correlate the 

behaviour of the same user in distinct cloud nodes. We detail these issues and 

discuss the effect of correlation in the following subsections.  

6.2.2.1 Choosing the Best Sliding Window Size (SWS) 

The dynamic or Sliding Window Size (SWS) determines the length of the 

test sequence in the active session or, in other words, it determines when the 

detection phase should start the detection process. The SWS affects this 

process and helps in improving the system call modeling methods. Previous 

work [154] has chosen the optimal size with reference to an information 

theoretic framework that applies one of two approaches based on the training 

data. The first one uses entropy modeling and it considers data regularity. 

The second approach fully exploits the context dependency of the optimal 

size and estimates it according to the specific system calls in the training 

subsequences. The latter approach models the complete set of system call 

traces and it is not suitable in our framework that is focused on a subset of 

call traces (access patterns and the invoked processes). Furthermore, it uses 

the sparse Markov transducers [155] while DDSGA uses a more flexible 

alignment technique. We have estimated the SWS factor using four 

approaches:  

(a) Minimum Conditional Entropy (MCE),  

(b) Test Session Length (TSL),  

(c) Test Session Length with Sensitive Action (TSLSA), 

(d) Average Signature Session Length (ASSL).  

 

We have evaluated each approach through two main measures, the 

detection accuracy using the Receiver Operator Characteristic (ROC) curves 

[113] described in Chapter 2 and the masquerader live time length. After 

highlighting the four approaches, we detail their evaluation. 

(a) The Minimum Conditional Entropy (MCE):  

Conditional entropy, see Equation 6.1, measures the regularity of the 

training data for each user using alternative SWS values and choose the one 

with the lowest entropy that also corresponds to the most regular data. The 

definition of conditional entropy is recalled in Equation 6.1. 
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Where P(x, y) is the joint probability of x and y, and P(x|y) is the conditional 

probability of x given y.  

To apply the entropy to our model, we introduce the following definitions: 

 X= S: the set of system call patterns (access patterns and invoked 

processes). 

 Y= S SWS−1 : the set of system calls patterns sequences of length SWS-1. 

 S SWS : A sequence of length SWS. 

 A: the set of all sequences in the training data. 

 N (S SWS) : The number of times the sequence S SWS appears in A.  

 N(A): The total number of sequences in the training data. 

If we define the joint probability P(x,y) as following:  

  
The conditional entropy in Equation 6.1 for a window size SWS is: 

 

The conditional probability P(x|y) is the prediction of this entropy model 

and it means that the probability of system call ‘x’ at a position (SWS) in the 

training sequences is estimated from y, the previous (SWS-1) system calls. To 

compute the prediction for each user training data, we consider each (SWS-1) 

sequence of system call patterns in the training data of user U and keep 

counts of the following system calls.  

Then, P(x|y) the prediction for system call ‘x’ given a sequence ‘y’ that 

includes the (SWS-1) preceding system calls is simply p/t where, ‘p’ is the 

count of system call ‘x’ in the sequences such as ’y’ and t is the total count of 

system call ‘x’ in the sequences that consider even the calls after the SWS-1 

position.  

If a sequence S SWS  does not occur in the system call patterns sequences, 

P (SSWS)=0 . Therefore, we can set as in Equation 6.3 the conditional 

entropy of Equation 6.2 for a window size SWS to denote that at least 

one S SWS  sequence occurs in ‘A’, the set of all sequences in the training data. 
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Equation 6.3 computes the conditional entropy H SWS (x|y) for the system 

call patterns sequences of each user using a window size SWS. The most 

suitable windows size for each user is the one that corresponds to the 

minimum entropy and the more regular data.  

To compute the conditional entropy for each user data, we use the cross 

validation in [154] for the training sequences of each user extracted from the 

CIDD dataset. We train the prediction models with one part of the training 

data and apply Equation 6.3 to compute the entropy over the second part of 

this data. Then, we repeat the computation after swapping the two parts. The 

total entropy is the sum of both entropies. Figure 6.6 shows the conditional 

entropy for three users, each of a distinct kind.  

 

 
Figure 6.6: The conditional entropy under different SWS values for local user 

“2140”, server user “2060”, and system user “UUCP”. 

 

Notice that the curves for server and system users do not have a specific 

minimum due to the high data regularity for these users. We have noticed 

that the lower the entropy, the more regular the data and the better the 

performance of detection. The accuracy and masquerader live time resulting 

when adopting the conditional entropy model are acceptable for server and 

system users because of their highly regular data. This solution does not 

achieve the same performance for local users whose data are less regular. 
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(b) Test Session Length (TSL): 

It sets SWS to the length of the active test session. This approach achieves 

the best accuracy among all the approaches because the resulting size makes 

it possible to compare the active test session against the previous training 

sequences. However, the masquerader live time is longer than in the other 

approaches. 

(c) Test Session Length with Sensitive Action (TSLSA): 

The SWS is set to the length of the active test session but the detection 

process can start at any time a sensitive action occurs. Sensitive actions are a 

set of sensitive file access patterns or of invocation to programs predefined in 

the DDSGA database. An attacker exploits these patterns or these 

invocations to misuse cloud resources. Table 6.1 shows some sensitive files 

and programs in the DDSGA database. The approach achieves suitable 

detection accuracy and a shortest masquerader live time for all user 

categories except the system users. This may due to the fact that usually 

these users access sensitive files and execute sensitive commands to support 

operating system functionalities. As an example, when a user logs in, the 

operating system checks the /etc/passwd file.  

Table 6.1: Examples for sensitive files and programs 

File/Program Pattern Pattern task 

File /etc/passwd Records users encrypted password 

File /usr/adm/saveacct Records accounting information 

File /usr/adm/wtmp Records all logins and logouts 

File /etc/hosts List of IP hosts and host names 

Program /bin/passwd Changes user password 

Program /bin/yppasswd Changes NIS password 

Program /etc/ttymon Monitors terminal ports 

Program /sbin/fdisk Formats hard disk 

Program /bin/chmod Changes file permissions 

(d) Average Signature Session Length (ASSL):  

The SWS is set to the average length of training sessions or to the length 

of the current session if it is shorter than the average one. ASSL increases 

both the accuracy and the masquerader live time for users with close training 

session lengths. 
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We evaluate and compare the detection accuracy of each of the four 

approaches for local, server, and system users through the ROC curves in 

Figures 6.7, 6.8, and 6.9 respectively. Each curve graphs the false positive 

rate versus the detection rate. We have also built the chart of the masquerader 

live time that shows some masqueraded sessions from the training data for 

the three users. To get distinct false positive rates in the ROC curve, we have 

changed some of the DDSGA parameters such as the detection threshold and 

the scoring parameters.  

 
Figure 6.7: The ROC for the three sliding window selection methods for 

local user "2140" in CIDD. 

 
Figure 6.8: The ROC for the three sliding window selection methods for 

server user "2060" in CIDD. 
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Figure 6.9: The ROC curve for the three SWS approaches for system user 

"UUCP" in CIDD. 

We have applied DDSGA using the Centralized-Backup model with the 

lexical and return checks as detailed in the next section. Other correlation 

models result in the same conclusions. In the ROC curves, the best detection 

achieves the highest detection rate, minimum false positive rate, and smallest 

Maxion-Townsend cost [112]. Table 6.2 summarizes the comparison. 

Table 6.2: A comparison between the best detection outputs for the previous 

four SWS approaches sorted by user category and Maxion-Townsend cost 

SWS 

Approach 

User 

Category 

False 

Positive % 

Hit % Maxion-

Town Cost 

TSL Local 2.2 92.24 20.96 

TSLSA Local 3.1 90.49 28.11 

ASSL Local 3.2 84.01 35.19 

MCE Local 3.4 80.83 39.57 

TSL Server 2.2 95.74 17.46 

MCE Server 2.6 94.61 20.99 

TSLSA Server 2.73 90.71 25.67 

ASSL Server 2.8 88.98 27.82 

TSL System 0.6 98.94 4.66 

MCE System 0.8 97.31 7.49 

ASSL System 0.8 96.27 8.53 

TSLSA System 1.05 91.62 14.68 
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As shown in Figure 6.10 shows that both the SWS and the characteristic 

of the user activities affect the masquerader live time. As an example, system 

user sessions are the longest one, because they reflect some operating system 

activities. Instead, server user sessions are among the shortest ones, because 

each reflects a small set of activities e.g., sending an email or transferring a 

file. The length of a local user session changes according to the user 

behaviour. 

 
Figure 6.10: The masquerader live time in seconds for local, server, and 

system users in some attached sessions 

 

 According to the output of our comparison, we use TSLSA for local 

users, because of the low regularity of their data and MCE for both server 

and system users that have highly regular data. 
 

6.2.2.2 Scoring System 

The input of the DDSGA is a tuple with n+1 fields where “n” is the 

length of the session 

{X (U, S, P, F, M, T), y1(r1), y2(r2 )... yn(rn)}  

Where,  

 yi is the input parameter, a file or process name.  

 ri: the return parameter of the executed pattern, is zero if the 

pattern was successfully and one otherwise 
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 X is the session ID followed by its input parameters,  

 U: the current user id.  

 S: the login source IP address.  

 P: the login period,  

 F: a Boolean value to define whether there is a login failure in 

the session. 

 M: a Boolean value to define if the session has a masquerade 

or not.  

 T: the detection threshold for the session user.  

S, P, and F are the input of the neural network described in Section 6.4 

 

For example, a valid tuple is:  

{713-VM1 (2143, 135.013.216.191,”Afternoon”, 0, 0, 0.72), 

/usr/lib/fs/ufs/(0), /usr/ucb/whoami(1), …..}.  

  

DDSGA computes the detection score for the session and compares it 

against the threshold to determine whether the session is a masquerade. 

Then, it compares this score against “M” to compute the false alarms and hit 

ratio.  

We have modified the DDSGA scoring system to work with the extracted 

features of the “Behaviours Triangle Model”, see Figure 6.11. The system 

rewards a mismatched pattern in the test sequence in two cases: If the test 

pattern has previously appeared in the user lexicon or if the access or 

executed pattern was successful.  

The first case tolerates various permutations of previously observed 

patterns without reducing the detection score significantly. In the second case 

the scoring system rewards successful action and penalizes failed one, 

because we noticed that most of masqueraded patterns include failure 

attempts since a masquerader usually lacks some knowledge of the victim 

file system. The next section highlights the evaluation of the scoring system 

in terms of security and complexity for the three correlation models. 
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Figure 6.11: A flowchart for the modified DDSGA scoring system. 

6.2.3 The Independent, Audit Exchange, and Centralized-Backup 

Models 

We have developed three correlation models of a user behavior for 

different deployment models namely, Audit Exchange, Independent, and 

Centralized-Backup. The first two models work with the original CIDS 

framework and both are detailed in [142]. The third one works with the 

improved framework, CIDS-VERT. Section 6.2.4 discusses the experimental 

results of the first two models using the CIDS-Testbed and of the third model 

using the CIDS-VERT-Testbed. In the following, we outline the three models 

and refer to [142] for further details. 

(A) Audit Exchange Model 

Here nodes exchange their audit data so that each one stores any audit 

data for any of its current users. Nodes also exchange:  

(1) The alignment score computed by the CIDS detector component.  

(2) The alerts fired by the HIDS component.  

This balances the detection overhead among nodes with no single point 

of failure. The detection efficiency is high because the user audit is 
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concentrated in one node and the masquerader surviving is much shorter than 

in model B, see Figures 6.13 and 6.14. As a counterpart, the model needs a 

fast periodic update and the exchange of the audit data that increases the 

cloud network overhead and hinders scalability. Furthermore, in highly 

overloaded networks some audit data may be lost in the exchange see Figure 

6.15.  

(B) The Independent Model: The detection phase of this model uses the 

same two parameters of model A. A cloud node CN evaluates login usage 

patterns of a user U using both CIDS and HIDS detectors and by using the 

behavior-based and signature-based of CN without interacting with other 

nodes. If the CIDS detector of CN fires an alert, the current login usage 

patterns are checked against the audit data of U in the other nodes until one 

of them accepts the current pattern. If no node related to U accepts the 

pattern, the current login session is marked as a masquerade attack. The 

model advantages are:  

(1) It does not require a periodic update of user audit data in each node. 

The regular periodic backup for VMs data is similar to that of other 

models, 

(2) A very low overhead for the cloud network, as data is exchanged only 

if the detection score is less than the threshold. In this case, nodes 

exchange the test audit data of the login session, see Figure 6.15,  

(3) High detection efficiency in terms of hit and the false alarm rates 

close to that of model A, see Figure 6.13. 

(4) A lower processing overhead than the other models, because each 

node executes the DDSGA alignment only if the detection score is 

less than the threshold. The detection time is directly proportional to 

NN, the number of nodes that have audits for user U. See Figure 6.16.  

As a counterpart, the surviving of a masquerader is longer than in models 

A and C because as CN increases it also increases the time to analyze the 

audit data in all nodes, see Figure 6.14. Hence, this model does not scale to 

large clouds.  

(C) The Centralized-Backup Correlation Model  

In this model, users VMs send their audit data to a reserved management 

VM that has a complete view of any user audit data to analyze and report the 

final alerts. The management VM is backed up to some other VMs as 

explained in Section 3.2.1 to balance the detection overhead among the 
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management VMs with no single point of failure. This model achieves the 

best detection efficiency because the user audit is concentrated in one place 

and no audit data may be lost. The masquerader surviving is very short 

comparing to model A and B, see Figures 6.13 and 6.14 with low network 

overhead. The detection time is inversely proportional to the number of 

management VMs that reduce the processing overhead in the active 

management VM. This speeds up the detection phase and protects the IDS 

components from tampering by any attacker. On the other hand, the network 

overhead increases with the number of management VMs, see Figures 6.15 

and 6.16. Furthermore, the model requires several resources as it reserves 

some management VMs for detection.  

6.2.4 A Comparison of the Three Models  

We have applied DDSGA to all users in the CIDD dataset and focused 

our evaluation on local users with a large deviation in their behaviours. The 

experiments compare the three models in terms of four values:  

A. Accuracy and efficiency using both the ROC curve and Maxion-

Townsend cost.  

B. Average masquerader live time per session,  

C. Average transmitted data per session during the detection time, 

D. Average detection time per session. 

(A) The accuracy and efficiency 

To evaluate the accuracy and efficiency of the models, we focus on the 

effects of the two DDSGA alignment parameters computed for each user i.e., 

the detection threshold and the scoring system rewards and penalties, on the 

detection accuracy. The false positives, false negatives and hit ratios are 

computed for each user and then transformed into the corresponding rates 

that are summed and averaged over all users. Equations 6.4, 6.5, and 6.6 

show the metrics used by DDSGA.  

                   (6.4) 

Where: 

 fp = No. of false positive alarms,  

 n = No. of non-intrusion sessions, 

 nu = No. of users in CIDD dataset (84 in our case) 
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               (6.5) 

Where: 

 fn = No. of false negatives,  

 ni = No. of intrusion command sequence blocks, 

 nui = No. of users who have at least one intrusion block  
 

                    (6.6)
  

Figure 6.12 shows the masquerades distribution in the test sessions for 

some CIDD users and the detection threshold that DDSGA computes for 

each user in the training phase. 

 

Figure 6.12: DDSGA threshold and masquerades distribution in test sessions 

of CIDD users 2139 and 2142  

To plot the ROC curve, we use distinct values of the alignment 

parameters that result in false positive rates in the x-axis and the 

corresponding hit ratios in y-axis. Figure 6.13 shows the ROC curves for 

each model with the scoring system, the Centralized-Backup model without 

the scoring system, and the No-Correlation model with the scoring system. 
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Figure 6.13: The ROC curve for the three correlation models with and 

without the scoring system. 

Table 6.3: The best accuracy of the three Correlation Models sorted by 

Maxion-Townsend cost 

Correlation Model False Positive 

% 

Hit % Maxion-Town 

Cost 

Centralized-Backup model with return 

and Lexical Check 

2.32 94.24 19.68 

Independent model with return and 

lexical check 2.42 92.44 22.08 

Audit Exchange model with return and 

lexical check 

2.49 92.09 22.85 

Centralized-Backup model without the 

scoring system (without check) 2.61 88.99 26.67 

No Correlation Centralized-Backup 

model with return and lexical check 2.92 74. 60 42.92 

Figure 6.13 and Table 6.3 show that the Centralized-Backup model with 

the scoring system results in the highest hit ratio with the corresponding 

lowest false positive rates. The ability of the scoring system in tolerating a 

large number of mutations and deviations in user behaviours increases the hit 
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ratio by about 5.25% and reduces Maxion-Townsend cost by 6.99. The 

correlation of the user audits in all the cloud VMs is mandatory to build a 

consistent profile and it improves the hit ratio by about 19.64% and reduces 

Maxion-Townsend cost by 23.24%. 

(B) Average Masquerader live Time  

We compute the average masquerader live time over all sessions for the 

three correlation models. In the Centralized-Backup model, a larger number 

of management VMs reduces the computational overhead and, consequently 

the live time as well. As a counterpart, it increases the cloud network 

overhead. Therefore, we experimentally determined the optimal number of 

management VMs. Figure 6.14 shows that the shortest live time is achieved 

if two management VMs are used. 

 

Figure 6.14: Average Masquerader live Time per session in the three 

correlation models 

(C) Average Network Overload per session. 

We compute the overhead on the cloud network in terms of the average 

amount of data that each model transmits in a session. According to the 

considered model, the VM(s) that runs the detection task can send user audits 

or current active session to the other VMs. Figure 6.15 confirms that the 

Independent model is the most lightweight one and that the network 

overhead of the Centralized-Backup model is directly proportional to the 

number of management VMs.  
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Figure 6.15: Average transmitted data per session in bytes in the three 

implementation models 

(D) Average detection time per session 

The average detection time is affected by the machine capabilities and 

available processing resources. The size of the test session, the 

corresponding training sessions, and number of user VMs in the cloud 

system are further important factors. Figure 6.16 shows that the detection 

time of the Independent model for a user who has audits distributed among 

three VMs depends upon NN, the number of cloud nodes running these VMs. 

In this way, the Independent model distributes the training audits among the 

cloud nodes and each node independently runs the detection process using 

some training records. The shortest detection time is achieved if the detection 

score in the first node is larger than the detection threshold, and this time 

increases as NN increases. The 3VMs audits label of the independent model 

in Figure 6.16 means that user audits are distributed across three nodes, each 

with one VM for that user. By comparing the 3-VM columns against the 

other models, we notice that the improvement due to the Independent 

decreases as NN increases. If NN is equal to 3, this model results in the worst 

detection time. Therefore, this model is ideal with a small number of users 

and VMs and it cannot be adopted in large cloud such as public or hybrid 

ones. On the other hand, the Centralized-Backup model has a reasonable 

detection time that may be reduced by increasing the number of management 

VMs. Hence, the model is more elastic and scalable and it may be adopted in 

large clouds.  
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Figure 6.16: Average detection time per session in milliseconds in the 

three models 

The previous experiments show that in the CIDS framework, the 

Independent model outperforms the Audit Exchange. The performance and 

the accuracy of the Independent model are acceptable in small and private 

cloud networks. Instead, the Centralized-Backup model works efficiently 

with CIDS-VERT in large clouds such as public and hybrid ones.  

6.3. Detecting Masquerade in Network Environment Based on 

NetFlow Data Analysis 

 While current detection strategies directly monitor the hosts and IDS 

components to gather and process host data, a cloud system being massively 

distributed and interconnected requires a network centric approach to 

masquerade detection [130]. This approach preserves the privacy as it only 

needs statistical information on the network traffic and it can replace user 

identifiers, source and destination IP addresses with encrypted or anonymous 

values. A NetFlow analysis, e.g., an analysis of the network activities of a 

user, can generate a unique and useful user network profile to detect potential 

masqueraders whenever the host data is not accessible or legal/ethical 

restrictions related to the user privacy apply [130, 35]. Furthermore, while 

some organizations do not routinely collect host audits on all users, by 
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default any organization collects statistical information on network traffic for 

network administration, monitoring and troubleshooting. As a counterpart, a 

NetFlow analysis classifies network activities through their source IP 

address. Therefore, if several users share the same address e.g., users log to 

the same VM or remotely access their cloud VMs through the same server, 

the network activity profile will reflect the activity of the server or of the VM 

connected to this source IP address rather than the activity of a single user. 

This is the reason why our analysis detects the masquerade IP source 

address.  

We propose three approaches to capture the NetFlow data namely, the log 

server, the inside-outside workstations, and the physical\virtual switch 

monitoring. The data of the log server approach consist of mail or FTP server 

logs. The log server pairs the source IP address with its NetFlow traffic 

captured by the sniffer tool and it determines the start and end of user 

sessions. The inside-outside workstations approach considers two nodes 

located, respectively, on the inside and on the outside of a router and uses a 

sniffer tool to capture data that crosses the router through any TCP/IP 

connection between the two nodes. In the physical\virtual switch monitoring, 

a network IDS sensor like Snort is installed in one physical node or in a VM 

that is connected to a physical switch port or to a promiscuous port on a 

virtual switch where all traffic is mirrored. In our CID-VERT framework, 

virtual network traffic is forwarded to a management VM(s) where Snort 

analyzes it and gets the required NetFlow data. In the CIDS framework, 

network traffic is forwarded to one physical host that runs SNORT and it is 

attached to the auditor system to capture the network audits for user sessions 

as in Chapter 3.  

6.3.1 Feature Extraction from NetFlow data in the cloud Network. 

Our goal is to use sequences of the destination IP addresses of the 

machines a user accesses and the name of the corresponding protocol in the 

same way host-based masquerade detection uses system call access patterns. 

The correlator component of both CIDS and CIDS-VERT frameworks 

defines the start and the end of user sessions as in the log server approach. 

After that, the auditor system in CIDS or the event correlator in CIDS-VERT 

filters the NetFlow data of the user host session according to the user source 

IP address. The NetFlow session length is equal to the host session length 
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computed by one of the four SWS approaches in Section 6.2.2.1. Figures 

6.17 and 6.18 show the distribution of the destination IP addresses in the 

network activity profiles of two source IP addresses that correspond to local 

and server user sessions, respectively. In general, system users do not use the 

network environment because their activities are more related to some 

operating system tasks. These two figures show that server user sessions are 

more regular than local users ones because their destination IP addresses are 

more specific and consistent than the corresponding ones in local user 

sessions. In addition, server users implement their tasks through just a few 

protocols e.g., “FTP” to transfer files and “SMTP” to send emails, while the 

network activities of local users use a larger number of protocols. We also 

notice that NetFlow data is less regular than system call patterns because the 

consistency of user network activities is lower than that of host activities. In 

addition, a network activity profile reflects the behaviour of a source IP 

address that may be shared among several users. This may reduce both the 

regularity and the consistency of data in the network activity profile that in 

turn, reduces the accuracy of detection. Therefore, we modify the DDSGA 

scoring system, see Section 6.3.2, to be more flexible and take into account 

these features of NetFlow data.  

 
Figure 6.17: The distribution of NetFlow destination IP addresses in local 

user sessions (user ID 2143 in CIDD) 
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Figure 6.18: The distribution of NetFlow destination IP addresses in server 

user sessions (user ID 2059 in CIDD) 

DDSGA is applied to NetFlow data that are tuples of the form:  

{X (U, S, DT, M, T), y1(p1,d1), y2(p2,d2)... yn(pn, dn)}.  

Where “n” is number of content patterns in the session and X is the session 

ID with the following input parameters:  

 U: the current user id.  

 S: the user source IP address.  

 DT: the date and time of the session in the form (Week Day Time).  

 M: a Boolean that defines if the session has a masquerade or not.  

 T: the detection threshold for the session user.  

 yi: a session content pattern where pn is the protocol name and di the 

destination address. 

For example, a valid tuple is:  

{3112-VM3 (2143, 135.013.216.191, W4, D3, 8:56:47, 0, 0.64), (telnet, 

172.016.112.050), (domain/u, 172.016.112.020)}.  

Again, DDSGA computes the detection score and determines whether the 

session has a masquerade patterns. Then, it checks “M” to compute the false 

alarms and hit ratio. Figure 6.19 shows two training sessions with the 

extracted NetFlow features for a local user and a server one. 
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Figure 6.19: Two training sessions with the extracted NetFlow features 

for local user 2143 and server user 2059 

6.3.2 The NetFlow Scoring System 

 The scoring system for NetFlow data, see Figure 6.20, has been defined 

by modifying the DDSGA scoring system.  

 
Figure 6.20: A flowchart for the modified NetFlow scoring system. 

Local User 
= = = = = =  
Session Head:  
SessionID, UserID, SourceIP, Week, Day, Time, Real-Masquerade? 
3112-VM3, 2143, 135.013.216.191, W4, D3, 08:46:27, 0 
Session Contents: (Protocol Name, Destination IP)  
(telnet,172.016.112.050),(domain/u,172.016.112.020),(smtp,172.016.113.105), 
(smtp,172.016.112.194),(domain/u,172.016.112.020),(ftp,172.016.114.148), 
(smtp,172.016.113.084),(finger,172.016.114.168),(http,172.016.112.050),.......... 

 

Server user 
= = = = = =  
Session Head:  
SessionID, UserID, SourceIP, Week, Day, Time, Real-Masquerade? 
2702-VM3, 2059, 172.016.114.169, W5, D2, 11:37:22, 0 
Session Contents: (Protocol Name, Destination IP)  
(telnet, 195.073.151.050),(smtp, 196.227.033.189),(smtp, 208.225.121.198), 
(ftp, 187.187.187.187),(ftp, 209.001.120.050) ,(http, 198.068.020.079),............... 
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The system rewards a mismatched destination IP pattern in the test 

sequence in two cases: the protocol name has previously appeared in the 

protocol list of the source IP in the test sequence or the destination IP has 

previously appeared in destination-IP list of the source IP. The first case 

tolerates permutations of observed patterns of the combination (destination 

IP and protocol name) without reducing the detection score significantly. In 

fact, the destination IP and protocol name may be unrelated, because a user 

may access the same destination with distinct protocols for distinct tasks. 

Also the second case tolerates various permutations of previously observed 

patterns because a user may access a set of destinations in distinct orders. We 

have applied DDSGA to the NetFlow data for each source IP sessions in 

CIDD as described in Section 6.2.2 using the Centralized-Backup model of 

CIDS-VERT. Figure 6.21 and Table 6.4 show the detection accuracy of 

DDSGA in terms of both the ROC curve and Maxion-Townsend cost 

respectively.  

 
Figure 6.21: The ROC curve for the DDSGA approach on the NetFlow 

audits with and without the scoring system 

Table 6.4: The best accuracy of the DDSGA approach on the NetFlow audits 

with and without the scoring system sorted by Maxion-Townsend cost 

Approach False 

Positive % 

Hit % Maxion-

Town Cost 

DDSGA with NetFlow scoring system 6.05 83.05 53.253 

DDSGA without NetFlow scoring system 6.39 72.89 65.487 
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Figure 6.21 and Table 6.4 show that the NetFlow scoring system results 

in the highest hit ratio with corresponding lowest false positive rates. The 

scoring system increases the hit ratio by about 10.16% and reduces Maxion-

Townsend cost by 12.234. 

6.4. A Neural Network Model to Integrate the Host and 

Network Detection Outputs 

The integration of host and NetFlow detections through a Threshold 

Logic Unit (TLU) [42], see Figure 6.22, improves the accuracy and the 

efficiency of the detection. The TLU works for each user independently to be 

adapted to the consistency of the user behaviour. A Group of TLUs consist of 

a complete neural network model for all users in the CIDD dataset. The TLU 

has 3 layers: one input layer of dimension n= 4 inputs, an hidden layer with 1 

summing junction neuron, and an output layer with 1 neuron connected to an 

activation function that depends upon the TLU operational mode. The 

detection mode uses a threshold function which returns 0 if the sum of the 

input is less than a threshold (tj), i.e., if there is a masquerade attack in 

session s. Otherwise, the function returns 1. In learning mode, the neural 

network uses the sigmoid function to range the outputs between 0 and 1 to 

adapt with the training phase and the weight adjustments, see Section 6.4.2 

 

Figure 6.22: The neural network model in the training mode for one user 

6.4.1 The Detection Mode of the TLU. 

The mathematical model for the TLU output for a session s of user j is Y sj as 

defined in Equation 6.7: 
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Y sj=F (X sj) , X sj={DDSGANetScore , S , P , E }   (6.7) 

where F is a non-linear activation function implemented by the TLU. This 

function is denoted by φ(.) and it acts as a squashing function, such that the 

output of a TLU belongs to a given range. In detection mode, the neural 

network uses the Threshold Function as a transformation function. X sj is the 

TLU input parameters of session s of user j. The input parameters are: 

 DDSGANetScore : the overall detection score for the active user session 

according to user audits in both host and NetFlow data, 

 S: The login source IP address,  

 P: The login period,  

 E: A Boolean value to signal any login error/failure in the active 

session.  

The last three parameters are collect from the host audits as in Section 

6.2.2.2. An example of a valid input record is:  

{0.31, 172.016.114.169, Morning, 0}.  

 

We use Equations 6.8 and 6.9 to compute the DDSGANetScore  parameter. 

              (6.8) 

 =              (6.9) 

Where:  

 PCmasq(Uj): the probability that the current active session of Uj has a 

masquerade patterns according to Uj behaviors in all cloud VMs. It 

includes the probability that the masquerader can be detected by the 

behaviour of its login IP(s).  

 P(Uj): the probability that the current active host session of Uj has a 

masquerade behaviour according to Uj behaviors in all cloud VMs as 

computed as in Section 6.2.2. This probability does not include user 

IP behaviors.  

 m: the number of IP(s) that Uj uses to login to the cloud. 

 n: the number of cloud users who share the same IPa of Uj  

 k: an index for the current user who shares the same IP of Uj. 

 a: an index for the current IP address of Uj.  

 P(IPa): the probability that IPa reveals to be a masquerader as 

computed in Section 6.3. 
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Consider the case where U1, U2 and U3 share IP1 and IP2 and the 

probabilities that IP1 and IP2 could be used by a masquerader are: P(IP1) = 

0.4, and P(IP2) = 0.5. The probabilities that U1, U2, and U3 reveal to be 

masqueraders according to their behaviors in all the cloud VMs are: 

P(U1)=0.4, P(U2)=0.3, and P(U3)= 0.6, and the detection threshold θj = 0.75. 

We apply the previous equations to compute PCmasq(Uj) for each Uj to 

determine which one is a real masquerader according to both the 

corresponding host and network audits. 

= ((0.4*0.4) / (0.4+0.3+0.6) + (0.4*0.5) / (0.4+0.3+0.6)) + 0.4 = 

0.6769 < θj (not masquerader) 

= 0.75 - 0.6769 = 0.0731.  

= ((0.3*0.4) / (0.4+0.3+0.6) + (0.3*0.5) / (0.4+0.3+0.6)) + 0.3 = 

0.5076 < θj (not masquerader) 

= 0.75 - 0.5076= 0.2424.  

= ((0.6*0.4) / (0.4+0.3+0.6) + (0.6*0.5) / (0.4+0.3+0.6)) + 0.6 = 

1.0153 > θj (masquerader) 

= 0.75 - 1.0153 = - 0.2653.  

6.4.2 The Training Mode of the TLU. 

While DDSGA uses unsupervised learning, all TLUs are trained using a 

supervised learning algorithm. Since the TLU contains only one hidden layer 

with one neuron, a simple algorithm such as the Generalized Delta Procedure 

(GDP) [42], simplifies the learning process that occurs off-line during the 

training phase to compute the input weights for each user independently. 

The GDP computes the error i.e., the distance between the desired 

response and the actual one, and backward propagates a fraction of it through 

the network. Each neuron uses this fraction to tune its weights and threshold 

values to reduce the network error for the same input. This procedure is 

repeated until the individual or total errors in the responses become smaller 

than a specified value. At this point, the learning ends and we can use the 

neural network to produce responses to new input data. 

To find the weight change rule, we exploit that the sigmoid function is 

differentiable. If there is an error for the given input, the weights are adjusted 

according to Equation 6.10: 
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Wij ← Wij + C * ej * f(1-f) * Xij           (6.10) 

Where, 

 Wij: The weight of input i to the hidden neuron j. 

 C: A constant of learning. We take C to be universally 1. 

 ej: The error distance. ej = dj - f, dj is the desired result from the 

training set (0 or 1). 

 f: The actual result from the TLU with the sigmoid function, and 

f(input) = 1 / (1+e
-input

), f (1– f ) → 0, where f → 0 or f → 1. This 

means that the weight change can occur only within ‘fuzzy’ region 

surrounding the hyper plane near the point f = 0.5. 

 Xij: The input i to the hidden neuron j. 

The training also tunes the threshold parameter tj. By applying the 

concept of Augmented Vectors [156], we add a new input to the TLU, Tn+1, 

and a corresponding weight, Wn+1. Tn+1 always takes on a value 1 and Wn+1 is 

adjusted as the other weights. The threshold value tj is fixed at 0. After the 

training, we remove Tn+1 and set tj to the value of Wn+1.  

The weights and threshold values in the TLU are randomly initialized but 

the weight of DDSGANetScore is always the largest one because it mostly 

affects the TLU. The initial weight vector is: {0.85, 0.05, 0.05, 0.05}. Figure 

6.23 shows how the learning iterations affects the error distance for local 

user 2143 using 48 samples of training sessions. 

 

Figure 6.23: The effect of learning iterations on the error distance  
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6.4.3 Performance Evaluation of the Integrated Approach. 

We compare the accuracy and the average detection time per session for 

the three detection approaches: neural network, network, and host based 

using the Centralized-Backup model with two management VMs. Figure 

6.24 confirms that the neural network model results in the longest average 

detection time per session because, it integrates the outputs of other 

detections. However, it results in a better accuracy than the other models as 

shown in Figure 6.25 and Table 6.5.  

 
Figure 6.24: Average detection time per session in milliseconds in host, 

network, and the neural network models. 

 

 
Figure 6.25: The ROC curve for the DDSGA approach using network, host, 

and neural network approaches 
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Table 6.5: The best accuracy of the three detection approaches sorted by 

Maxion-Townsend cost 

Approach False Positive % Hit % Maxion-Town Cost 

Neural Network Model 1.59 98.07 11.49 

DDSGA within Host system 2.32 94.24 19.68 

DDSGA using NetFlow 6.05 83.04 53.25 
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Chapter 7 

Detecting Masqueraders through Security Events and 

NetFlow Data 

This chapter applies the detection strategies of Chapter 6 to different 

audit data and distinct operating system [157]. The experiments results that 

this chapter presents confirm those of Chapter 6. The chapter ends with a 

comparison between its strategies and the ones introduced in Chapter 6. 

7.1 Overview  

The modeling of user audits is a big challenge in clouds because they 

support distinct guest operating systems each with its own logging facilities 

that result in alternative users audits. As possible examples, we recall the 

Unix Syslog [158] process, the Windows System, Security, or Application 

event logs [33] and the open source OpenBSM [159] library in both 

FreeBSD and Mac OS X. Our solution focuses on those audits that almost 

any operating system produces, namely system calls and security events. 

While Chapter 6 has experimentally proved that DDSGA can achieve a high 

performance and accurate detection if applied to sequence of system call 

audits integrated with audits of a user network activity, this chapter evaluates 

the performance of strategies that apply DDSGA to sequence of security 

events audits from the host environment integrated with the NetFlow audits 

from the network environment based on CIDD dataset. We use the 

“Behaviours Triangle Model” introduced in Chapter 6 to model a consistent 

user profile in the host environment based on features extracted from the 

security events. Then, we build a NetFlow profile for each source IP address 

in terms of sequences of network actions captured by sniffing network 

communications as in Chapter 6. DDSGA computes two detection outputs by 

comparing the active log sessions in the host and the network environments 

against the corresponding profile. A neural network produces the final output 

as in Chapter 6. We also have considered the two intrusion detection 

frameworks, CIDS and CIDS-VERT. We evaluate the efficiency and the 

computational performance of the host based and of the network based 

detection in isolation and then the one of their integration.  



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

162 

7.2 Detecting Masquerades Based on Security Events Analysis 

This section considers the detection in the host environment based on the 

security events of the host OS.  

7.2.1 Feature Extraction from Security Events in Cloud VMs. 

The guest operating systems of the VMs offer an efficient and highly 

configurable auditing system. An analysis of the corresponding audit data 

can simplify the detection of several threats against clouds. Here we consider 

the Windows Event Log Service that records events with information about 

hardware, software and system components in three logs: application, system 

and security [33]. Events in the application log are logged by programs and 

selected by the developers of these programs. The system log contains events 

logged by Windows system components, e.g. by drivers. The security log 

records events on valid and invalid logon attempts and on resource usage, 

such as file operation and process invocation. This log stores most of the 

information that defines the user behaviours. We extract from the security 

log six types of audits namely, Privilege Use, Account Management, System 

Event, Logon/Logoff, Detailed Track, and Object Access. Each of these 

audits has a group of audit actions. Among them, we focus on the sequence 

of user actions; i.e., accessed objects and invoked processes.  

 

 
Figure 7.1: Extracted feature from security events 
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As shown in Figure 7.1, we extract:  

(1) The sequence of files or directories opened by the user from the 

“Object Accessed” audit category. 

(2) The sequence of process created or invoked by the user from the 

“Detailed Track” audit category. 

(3) The name of the trusted login processes registered by the system from 

the “System Event” audit category. 
 

We record the beginning and the end of each user session using the time 

of each successful logon event as defined through both the “Logon/Logoff” 

and the “System Event” categories. The Logon/Logoff audit category helps 

in defining valid and invalid logon attempts to define masquerade attacks. As 

described in Section 7.2.2.1, the actions extracted from the “Privilege Use” 

and “Account Management” categories are sensitive actions and their 

execution fires the detection process.  

The feature extraction process is applied to the windows audits of CIDD, 

which is distributed among the operating systems of distinct cloud VMs. By 

extracting specific features rather than considering all those of security 

events, we achieve two advantages. First of all, this reduces the false alarm 

rates and improves the hit ratio because it reduces the number of log events 

and it focuses on those that characterize user behaviours. The reduced 

number of events and of their corresponding arguments also simplifies the 

DDSGA alignment as it reduces the permutations of these events. 

Furthermore, this solution speeds up the detection process and reduces the 

computational overhead by comparing the active session patterns to a few 

events. This is important in highly overloaded, multi user systems such as 

clouds. The regularity of the features extracted from the user audits and the 

consistency of the user normal behaviors help to distinguish normal 

behaviors from abnormal ones. Chapter 6 has introduced a “Behaviours 

Triangle Model” to build a distinct activity profile for each cloud user based 

on sequences of system calls for file\directory accesses and process 

execution activities. Using the same idea, we build a user profile in terms of 

three relationships based upon security events:  

 User accesses a file\directory. This relation includes the file\directory 

access patterns.  

 Process accesses a file\directory. This relation defines how process 

accesses a file\directory.  
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 User invokes a process. This relation defines the sequence of 

processes the user invokes. As in Chapter 6, we neglect forked 

processes.  
 

As in Chapter 6, we distinguish human users CIDD data from system 

users data. In turn, human users are categorized into local and server users. 

We separate human user activities from system users ones through the user 

ID and then we check each user separately. Figure 7.2 shows an example of 

the features extracted from the Windows security events in CIDD. 
 

 
Figure 7.2: A user session and its extracted features from Windows security 

events  

DDSGA detects if any legal user was impersonated by a masquerader as 

in Chapter 6. Section 7.2.2 details how DDSGA detects masquerade attacks 

through sequences of features extracted from the Windows security events. 

As shown in Figures 7.1 and 7.4, we build the user profile in terms of the 

sequence of files the user accesses and of invoked processes. Figures 7.3, 7.4 

and 7.5 show the distribution and regularity of the access patterns and of the 

invoked processes for, respectively, local, server, and system users. 
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Figure 7.3: The distribution of objects (files and directories) in local user 

with ID 500 in CIDD. 
 

 
Figure 7.4: The distribution of objects (files and directories) in server user 

with ID 1031 in CIDD. 
 

 
Figure 7.5: The distribution of objects (files and directories) in system user 

with ID “SYSTEM” in CIDD. 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

166 

Figures 7.3 - 7.5 show that the behavior of server and system users are 

highly predictable. As a consequence, deviations in the behaviours of these 

users will be detected in a more accurate way than for local users. Since the 

invoked processes are more consistent and predictable than the access 

patterns, their integration with these patterns can improve detection. 

7.2.2 Detecting Masquerade in Windows VMs  

To adapt the three phases of DDSGA to Windows security audits in 

CIDD, Chapter 6 has defined three parameters, namely: the Sliding Window 

Size (SWS), the scoring system, and the correlation model. The detection 

phase applies either the Independent or the Centralized-Backup one, 

according to the characteristics of the cloud system.  

7.2.2.1 Choosing the Best Sliding Window Size  

In Chapter 6, we have estimated the SWS factor through four 

approaches. Among them, the most efficient ones are the MCE and the 

TSLSA. We apply MCE to compute the regularity of the training data using 

an entropy model described in Chapter 6. We adapt this approach for both 

server and system users because their training data are much regular than 

those of local users, while we use the TSLSA approach to adapt the dynamic 

activities of the local user. The two approaches are evaluated through the 

detection accuracy using the Receiver Operator Characteristic (ROC) curves 

[113] and the masquerader live time. We highlight the two approaches in the 

following. 

(a) The Minimum Conditional Entropy (MCE):  

This approach is based upon conditional entropy [39] and it measures the 

regularity of the training data for each user using different SWS values to 

choose the one that results in more regular data with corresponding lower 

entropy. Figure 7.6 shows the conditional entropy, see Chapter 6, for three 

kinds of users in the CIDD dataset, i.e., local, server, and system users 

respectively. The server and system user curves in Figure 7.6 have more than 

one minimum due to the high data regularity for these users. A lower entropy 

indicates more regular data and a better detection performance. 
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Figure 7.6: Conditional entropy under different SWS for a local user, a server 

user and a system one. 

The results in Figures 7.7 and 7.8 confirm those of Chapter 6 where the 

accuracy and masquerader live time of the conditional entropy model are 

acceptable for server and system users due to their highly regular data. 

Instead, the performance of this model is not satisfactory for local users that 

have a much lower regularity. 

(b) Test Session Length with Sensitive Action (TSLSA): 

The TSLSA approach sets the SWS to the length of the active test session 

but detection can start anytime the user executes a sensitive action. These 

actions depend upon the OS and type of audits and include the privileged use 

of system resources and changes to the user account. We consider them 

because an attacker always tries to exploit critical resources to misuse system 

resources or to steal some details of a user account. Table 7.1 shows some 

examples of sensitive actions in Windows audits of CIDD.  
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Table 7.1: Examples of sensitive actions 

 

TSLSA achieves an acceptable accuracy and a shorter masquerade live 

time than MCE for all categories but for system users that usually trigger 

sensitive actions to carry out some operating system functions. We evaluate 

the performance of MCE and TSLSA for the three user categories through 

the ROC curve in Figure 7.7. We apply the DDSGA approach in the case of 

the Centralized-Backup model with the lexical and return checks of the 

scoring system detailed in Sections 7.2.2.2 and 7.2.2.3. However, the 

adoption of the Independent model results in the same conclusion.  

 
Figure 7.7: The ROC for the three sliding window selection methods for a 

local, a server, and a system user in CIDD. 
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The best detection results are those with the highest hit ratio, minimum 

false positive rate in the ROC curve and the smallest Maxion-Townsend cost 

[Maxion-Cost]. Table 7.2 summarizes the results. 

Table 7.2: A comparison of the two SWS approaches for local, server and 

system users 

SWS 

Approach 

User 

Category 

False 

Positive % 

Hit % Maxion-

Town Cost 

TSLSA Local 4.44 91.24 35.43 

MCE Local 5.14 86.04 44.83 

MCE Server 3.91 94.91 28.54 

TSLSA Server 4.13 92.42 32.36 

MCE System 3.19 96.54 22.60 

TSLSA System 3.97 91.24 32.58 

To evaluate the live time of a masquerader in the two approaches, can be 

evaluated through the chart in Figure 7.8 that show the time for some 

masquerade sessions in the training data of users in the three categories.  

 

Figure 7.8: Masquerader live times for local, server, and system users 

Figure 7.8 shows that the live time of a masquerader is related to both the 

approach to determine the SWS and the characteristic of the user activities; 

e.g., sessions of system users are longer than those of other users as they 

represent some operating system activities. The frequent sensitive actions 

triggered by system users reduce the accuracy of TSLSA. MCE reduces the 
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masquerade live time because of the highly predictable and regular data of 

system user sessions. Server users rarely trigger sensitive actions and their 

sessions are among the shortest ones. In this way, TSLSA results in a shorter 

live time of a masquerader than MCE. The length of a local user session 

changes according to the user behaviours and the regularity of these sessions 

is very low. This reduces the accuracy of MCE with respect to TSLSA. 

7.2.2.2 Scoring System 

The input record of DDSGA is similar to the one in Chapter 6: 

{X (U, S, P, F, M, T), y1(r1), y2(r2 )... yn(rn)}  

Where,  

 X: the session ID followed by its input parameters,  

 U: the current user id.  

 S: the login source IP address.  

 P: the login period,  

 F: a Boolean value to define whether there is a login  

 failure in the session. 

 M: a Boolean value to define if the session has a   

 masquerade or not.  

 T: the detection threshold for the session user.  

 yi: the input parameter i.e., a file or process name.  

 ri: the return parameter of the executed pattern, is zero if the 

pattern was successfully and one otherwise. 

 n: the number of patterns in the session. 

S, P, and F are the input of the neural network described in Section 7.4 

 

As an example, a valid record is:  

{253-VM1 (500, 172.16.12.1, ”Morning”, 0,0,0.62), \KnownDlls\user32.dll 

(0), \KnownDlls\ole32.dll (0), systray.exe(0), …..}.  

 

DDSGA computes the detection score for each session and compares it 

against “T” to determine whether it has a masquerade patterns. Then, it 

compares this decision against “M” to compute the false alarms and hit ratio. 

Figure 7.9 shows how the scoring system in Chapter 6 is modified according 

to the extracted features. 
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Figure 7.9: A flowchart for the modified DDSGA scoring system. 

As in Chapter 6, the scoring system may reward a mismatched pattern in 

the test sequence to tolerate some permutations of previously observed 

patterns without reducing the detection score significantly. The next section 

highlights the security and the computational evaluation of the scoring 

system in the two correlation models. 

7.2.2.3 The Independent and Centralized-Backup Models 

With reference to distinct cloud deployment models, Chapter 6 has 

defined and evaluated three correlation models namely, Audit Exchange, 

Independent, and Centralized-Backup. In [142, 143] we have proved 

experimentally that the last two models are the most efficient ones. The first 

two models work with the original CIDS framework while the third one 

works with CIDS-VERT. This section evaluates the Independent and 

Centralized-Backup models using the testbeds described in Chapter 3. 
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In the Independent model, detection achieves a satisfactory efficiency 

and both the processing and network overheads are lower than those in the 

Centralized Backup model. This results in a lower detection time, see 

Figures 7.10, 7.12, and 7.13. As a counterpart, a masquerader survives for a 

longer time than in Centralized-Backup because of the time to check the 

audit data in all cloud nodes, see Figure 7.11. Furthermore, the Independent 

model does not scale to clouds with a large number of VMs and users.  

Due to its centralized storage of user audits, the Centralized Backup 

achieves the best detection efficiency. Furthermore, no audit data is lost and 

the masquerader surviving is very short, see Figures 7.10 and 7.11. Figures 

7.12 and 7.13 show that, both the network overhead and detection time are 

acceptable. As a counterpart, this is a resource intensive model that speeds up 

the detection phase and protects the IDS components from attackers by 

reserving some management VMs. 

7.2.2.4 Evaluation of the Correlation Models 

We focus our evaluation on local users because, as previously noticed, 

the large deviation in their behaviours reduces the detection accuracy. We 

consider the four main factors mentioned in Chapter 6 namely: (A) The 

accuracy and efficiency using both the ROC curve and Maxion-Townsend 

cost, (B) Average live time of a masquerader session, (C) Average 

transmitted data per detection session, and (D) Average detection time per 

session. 

(A) The Accuracy and Efficiency 

Using the same approach of Chapter 6, we evaluate the accuracy and 

efficiency of the two correlation models. We focus on the effects of the 

alignment parameters that the DDSGA computes for each user, namely the 

detection threshold, the scoring system rewards and the penalties on the 

accuracy parameters i.e., false positive, false negative rates, and the hit ratio. 

Figure 7.10 shows the ROC curves for the two models in the cases of the 

scoring system, the Centralized-Backup model without the scoring system, 

and the No-Correlation model with the scoring system. 
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Figure 7.10: ROC curves for the three correlation models  

Table 7.3: The best accuracy of the three correlation Models  

Correlation Model False 

Positive % 

Hit % Maxion-

Town Cost 

Centralized-Backup model with 

return and Lexical Check 4.54 91.06 36.21 

Independent model with return and 

lexical check 5.11 90.03 40.63 

Centralized-Backup model without 

the scoring system (without check) 4.84 88.92 40.15 

No Correlation Centralized-Backup 

model with return and lexical check 6.01 82.99 53.07 

As shown in Figure 7.10 and Table 7.3, the Centralized-Backup model 

with the scoring system results in the best hit ratio with the corresponding 

lowest false positive rates. The scoring system increases the hit ratio by 

about 2.14% and reduces Maxion-Townsend cost by 3.94. The correlation 

among audits of the same user is the key element of detection in cloud 

systems as it improves the hit ratio by about 8.07% and reduces the Maxion-

Townsend cost by 16.86. 

(B) Average Masquerader Live Time  

We compute this time over all masquerade sessions for the two 

correlation models after determining in an experimental way the optimal 

number of management VMs in the Centralized Backup model. As shown in 
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Figure 7.11, this model achieves the shortest masquerader live time when 

using three management VMs. 

 
Figure 7.11: Average masquerader live time per session in the three 

correlation models 
 

(C) Average Network Overload per session. 

These experiments have evaluated the network overhead of the two 

correlation models in terms of the average data transmitted to analyze one 

session. According to the correlation model, the VM(s) that runs the 

detection task can send to the other VMs the user audits or the active session 

data. As shown in Figure 7.12, the Independent model is the lightest one. 

This figure also confirms that the network overhead of Centralized-Backup 

increases with the number of management VMs. 

 
Figure 7.12: Average transmitted data per session in the three models 
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(D) Average detection time per session 

The average DDSGA detection time is affected by the available 

processing resources, the size of the test session, the corresponding training 

sessions, and number of user VMs. Figure 7.13 shows that the average 

detection time of the Independent model when the user audits are distributed 

across three VMs depends upon NN, the number of cloud nodes running 

these VMs. In fact, the Independent model distributes the training audits 

across the nodes and each node independently runs the detection process 

using a few records. The detection time is minimized if the detection score in 

the first node is larger than the detection threshold, and this time increases as 

NN increases. The 3VMs audits label of the independent model in Figure 

7.13 means that user audits are distributed across three nodes, each running 

one user VM. Therefore, we can compare the 3-VM columns against the 

other correlation models and notice that the Independent model achieves a 

noticeable improvement. This improvement is reduced as the NN increases 

to 3 and becomes larger than in all other models. Therefore, this correlation 

model is ideal with a small number of users and VMs and it cannot be 

adopted in large cloud such as public or hybrid ones. On the other hand, the 

Centralized-Backup model has a reasonable detection time that may be 

reduced by increasing the number of management VMs. Hence, the model 

may be adopted in large cloud because it is more elastic and scalable.  

 

Figure 7.13: Average detection time per session in the three models 
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7.3 Detecting Masquerade Based on NetFlow Data Analysis  

Chapter 6 outlined the advantages of network centric approaches and 

proposed three approaches to capture the NetFlow data of interest. We 

describe how these approaches are applied to the cases of interest. 

7.3.1 Feature Extraction from NetFlow data.  

Chapter 6 has described how both CIDS and CIDS-VERT frameworks 

use the correlator components to define the beginning and the end of the user 

sessions outside the local system and to filter the NetFlow data 

corresponding to the user host session according to the source IP address. In 

the case of Windows audits, the distribution of NetFlow data for each of 

three CIDD user categories supports the same conclusion in Chapter 6 about 

the NetFlow features as summarized below: 

 System and server user sessions are more regular than those of local 

users because their destination IP addresses are more specific and 

consistent.  

 NetFlow data are less regular than security events, because user 

network activities have a lower consistency than user host ones. The 

sharing of the source IP among several users may further decrease 

data consistency and regularity in the network profile together with 

the accuracy of detection.  

The DDSGA scoring system takes into account all these features as 

detailed in both [143] and Section 6.3.2.  

7.3.2 The NetFlow Scoring System Evaluation 

We have evaluated the DDSGA approach through the NetFlow data 

corresponding to the sessions of each source IP in CIDD as in Section 7.2.2.2 

using the Centralized-Backup model of the CIDS-VERT framework.  

Figure 7.14 and Table 7.4 show the detection accuracy of DDSGA over the 

NetFlow data in terms of both the ROC curve and Maxion-Townsend cost.  



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

177 

 
Figure 7.14: ROC curve for DDSGA on the NetFlow audits 

Table 7.4: The best accuracy of the DDSGA approach on the NetFlow audits  

Approach False 

Positive % 

Hit % Maxion-Town 

Cost 

DDSGA with NetFlow scoring system 5.61 88.41 45.25 

DDSGA without NetFlow scoring system 5.7 82.51 51.69 

As shown in Figure 7.14 and Table 7.4, the NetFlow scoring system 

improves the hit ratio by 5.9% and reduces Maxion-Townsend cost by 6.44. 

7.4 Integrating Host and Network Detections using A Neural 

Network Model  

 To improve the accuracy and efficiency of detection, we implement an 

integrated approach that uses the neural network model of Chapter 6 and 

considers both host and NetFlow audits. The detection and training modes of 

the neural network model are adjusted as in Sections 6.4.1 and 6.4.2 

respectively. 

We compare the accuracy and the average detection time per session of 

the three detection approaches: the host based, the network based, and the 

integrated one, i.e. the neural network, using the Centralized-Backup model 

with three management VMs. As shown in Figure 7.15 and Table 7.5, the 

integrated approach results in the highest accuracy. As counterpart, Figure 
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7.16 confirms that it also results in the longest average detection time per 

session because it needs the outputs of the other approaches.  

 
Figure 7.15: The ROC curve for the three approaches 

Table 7.5: The best accuracy of the three detection approaches 

Approach False Positive % Hit % Maxion-Town Cost 

Neural Network Model 3.35 96.08 24.02 

DDSGA within Host system 4.54 91.06 36.18 

DDSGA using NetFlow 5.61 88.41 45.25 

 
Figure 7.16: Average detection time per session for the three approaches. 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

179 

7.5. A Comparison between the Two Detection Approaches  

In the following, we compare our proposed masquerade detection 

solution, denoted as Security Events (SE) and the one we introduced in 

Chapter 6 and that is based on the integration between the System Calls (SC) 

and the NetFlow. Since both SE and SC are among the most important audit 

sources to build a user profile to detect several kinds of attacks, a comparison 

can highlight some important issues in these approaches. In particular, we are 

interested in how parameters such as the number of training records and the 

consistency of both system calls and security events audit influence, among 

others, the detection accuracy and time, the masquerade live time, and the 

related overheads. Table 7.6 highlights the comparison between the proposed 

detection approaches through SE and SC for the local user category and 

using the Centralized-Backup model of CIDS-VERT framework. 

Table 7.6: Masquerade detection through system calls and security events 

 

Table 7.6 shows that the SC audits results in a better accuracy than the 

SE one. The reason is that SC audits have large number of training records, 6 

weeks of audits in CIDD. This helps in training both the update phase of 
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DDSGA and the neural network model. Instead, the SE audits have only 2 

weeks of training audits. The analysis of the SC audits results in a better 

accuracy than the SE one, because SC audits reflect all system activities. 

Furthermore, they provide some basic statistical information about user 

network activities that can be integrated with information on the user 

behaviours in the NetFlow audits. In turn, this simplifies the integration 

process. Furthermore, as shown by the conditional entropy in Table 7.6, SC 

audits are more regular than the SE one. This helps in recognizing a user 

normal behaviour and improves the accuracy of detection. 

Table 7.6 also shows that the session length corresponding to the SWS 

value is directly proportional to masquerade live time, network overhead, 

number of management VMs, and detection time. The SC audits have shorter 

session length than the SE one and, consequently, they may reduce 

masquerade live time, network overhead, management VMs, and detection 

time. Both NetFlow audits and the statistical information of the SE sessions 

are more consistent than the corresponding ones of the SC. This increases the 

accuracy of detection in the NetFlow of SE audits by 5.36% with respect to 

that of SC audits. As a result, the hit ratio of the neural network model 

increases from its corresponding host ratio by 5.02%, with respect to 3.83% 

of the SE. The False Positive rate is reduced by 1.19%, with respect to 0.72% 

of the SE. However, the SC NetFlow audits contain more training records 

than the SE one, but the consistency of these audits is much lower than in the 

SE NetFlow audits. This is due to the number of users that share the same IP 

addresses that is much larger in the SC NetFlow audits than in the SE 

NetFlow audits. 
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Chapter 8 

Efficient IDS Deployments through a Hierarchical 

Architecture  

 This chapter focuses on signature based analysis techniques that, in 

general may result in a best accuracy than behaviour based ones. The chapter 

introduces a hierarchical architecture [CIDS-2Deployments] of CIDS-VERT 

framework that supports two deployments, Distributed and Centralized, and 

it outlines their architectures, components, and relative advantages. 

Furthermore, it discusses how to correlate and summarize distinct HIDS and 

NIDS alerts. Finally, the chapter experimentally evaluates the accuracy of the 

proposed deployments to confirm the improvements with respect to current 

IDSs. 

8.1 THE HIERARCHICAL ARCHITECTURE OF OUR CLOUD IDS 

As discussed in Section 1.9, a cloud defense strategy has to satisfy some 

further requirements with respect to traditional ones. In particular, it should: 

(1) Be distributed and scalable. 

(2) Avoid single points of failure.  

(3) Correlate the user behaviours in distinct environments.  

(4) Integrate different service models. 

This section briefly outlines the hierarchical structure of the proposed 

cloud IDS [CIDS-2Deployments] together with its implementation models. 

The IDS can detect attacks in several classes, e.g. masquerade, host, 

network, and DDoS against all cloud models through signature based 

techniques and behavior based ones.  

This chapter evaluates the detection accuracy of the IDS using two 

deployment models, Centralized and Distributed, based on the CIDS-VERT 

framework that provides high scalability and resilience for large clouds. 
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Figure.8.1: The hierarchical architecture of the proposed cloud IDS

Figure 8.1 shows the hierarchical architecture of the proposed IDS. The six 

layers are described in the following:  

1) Infrastructure Layer: 

It defines the cloud physical specifications. In the considered case, the 

CID-VERT testbed consists of an HP C3000 Cloud blade with six nodes. 

One head node works as a front side interface and has a Quad core 2.3 GHz 

CPUs, 4 GB RAM, 80 GB Hard drive, and a SmartArray P400 Controller for 

Storage Connect. Each of the remaining nodes consists of: Quad core 2.8 

GHz CPUs, 16 GB RAM, 80 GB Hard drive, and a Gigabit Ethernet. The 

head node runs Microsoft GUI windows server 2012 with Microsoft cloud 

services and Microsoft Hypervisor manager 2012, while each other node 

runs Microsoft core windows server 2012. CID-VERT also includes a 24 

port Procurve Switch (10/100/1000 ports) for data networks and another 24 

port Procurve Switch (10/100 ports) for console management. 
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2) The Hypervisor and Cloud Service Layer: 

Besides managing the virtual VMs, virtual switches, and virtual SAN 

driver, it provides system security functions such as Isolation, Inspection, 

and Interposition. The IDS can support different frameworks such as 

VMware cloud [56], Microsoft private cloud [13], Open Stack [147], 

Eucalyptus [12]. In the testbed, this layer contains several components such 

as Microsoft windows server 2012 with its Hypervisor and Microsoft cloud 

software and tools.  

3) Virtualization Layer: 

It maps the VMs onto the physical cores. To provide a full heterogeneous 

environment, each testbed node hosts 3 VMs that runs, respectively, 

Windows XP Professional SP3, UNIX (Solaris) and Linux (Centos). Each 

VM is assigned one core of the Quad core and 3 GB RAM. Each VM runs a 

HIDS sensor and an event collector component to collect events and logs 

from the VM operating system and forward them to a centralized 

management VM to analyze them through DDSGA [DDSGA] and HIDS 

analyzers. Some VMs run a NIDS component as a sensor or a server based 

on the applied deployment. One VM runs the CPU Death Ping [50], LOIC 

[49], and the Metasploit [46] library. Section 8.4.1 explains the attack 

scenario in our experiments. 

4) Intrusion Detection Layer: 

This layer runs the main three IDS components: the HIDS, the NIDS and 

DDSGA. In the experiments, the HIDS is OSSEC [61] and the NIDS is 

Snort. This layer also defines the Centralized deployment model and the 

Distributed one. Section 8.2 outlines the deployments of all the IDS 

components in the VMs.  

5) Alert Integration and Reporting Layer: 

It integrates and correlates the alerts from host and network IDSs. To 

provide a standard, coherent representation of alerts and describe the 

relationship between simple and complex alerts, it uses the IDMEF Message 

format [76] described in Section 2.1.3. To simplify the handling of attacks, it 

also highlights the critical alerts. Sections 8.3.1 and 8.3.2 detail the 

integration and correlation processes. 
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6) Web Interface Layer: 

It offers a central location to admin and to manage the IDS components, 

as it runs the management VM and it handles the web pages to visualize the 

IDS charts and dashboards, see Section 8.4.3. 

8.2 THE DISTRIBUTED AND CENTRALIZED DEPLOYMENTS 

To evaluate our IDS in a realistic setting, we have partitioned the cloud 

into two virtual zones, VZ1 and VZ2, to distribute the DDoS Zombies into 

two distinct virtual cloud networks. The VMs are connected to virtual 

switches through virtual NIC cards, see Figures 8.2 and 8.4. In turn, virtual 

switches are connected to physical switch ports through the port mirroring 

facilities of the Hypervisor layer. Zone VZ1 includes node0 and node2, each 

running three VMs with distinct operating systems. A further VM on node2 

runs the Metasploit and LOIC attack libraries. Zone VZ2 includes node1, 

node3, and node4, each hosting 3 VMs as in VZ1. In the following, we 

describe the two proposed deployments and outline in Section 8.4 the 

experiments using the two deployment options. 

8.2.1 The Distributed Deployment 

As implied by its name, this model distributes the detection overhead 

among several cloud VMs. The final decision correlates the outputs of the 

IDS sensors in these VMs.  

In each virtual zone, the HIDS and NIDS components are distributed 

among the corresponding VMs. The HIDS consists of two main components, 

an agent and a server. The agent is a sensor that collects events from the VM 

operating system and forwards them to the server component in a VM in the 

zone. Agents are installed in all VMs except those running the HIDS servers. 

An HIDS server analyzes the collected events and exchanges its alerts with 

the server in the second zone so that the administrator can collect all the 

alerts from any server. The NIDS component works as a server that monitors 

the traffic through the virtual switch. It communicates its detection score to 

the NIDS server in the second zone that correlates the scores to take the final 

decision about network attacks. To avoid a single point of failure, the VM 

that hosts the HIDS and NIDS servers is backed up by a VM in another node 

in the same zone. This VM acts as a hot spare of the active one because a 

copy of the status of the active server is updated in the backup VM through 
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heartbeat messages. CIDS-VERT framework in Chapter 3 refers to the 

“Management VMs” that runs the NIDS and HIDS servers and its 

corresponding backup VMs.  

 

Figure 8.2: The distributed deployment 

As shown in Figure 8.2, VM0, hosted in cloud node0 of VZ1, is the active 

management VM that runs both the Snort and the OSSEC servers and it is 

backed up to VM6 in node2. The Snort server is connected to a promiscuous 

port on the virtual switch to mirror all traffic. The OSSIC server is connected 

to all OSSEC agents in the other VMs. In the same way, VM4, hosted in 

node1 of VZ2, runs the OSSEC and Snort servers and is backed up by VM10 

hosted in node2. The signature databases in both VM0 and VM4 are 
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simultaneously updated and the two VMs exchange the notification alarms. 

Furthermore, the final detection score correlates the scores of each Snort 

server. 

8.2.1.1 DDoS Detection scenario using the Distributed Deployment  

In an attack, several VMs in distinct virtual cloud zones may behave as 

DDoS zombies and generate a stream of packets towards victim machines.  

To detect DDoS attacks in the distributed deployment, each Snort server 

matches the incoming traffic in each zone against pre-defined rules to take 

appropriate responses, i.e., drop packet and trigger an alert. The Snort servers 

exchange three parameters through the CIDS-VERT communication facility 

namely: the detection scores, the notification alerts, and the new signature 

rules. An update of the signature database as in [49] may enable Snort to 

detect the DDoS attacks by the LOIC and CPU Death Ping libraries. As an 

example, the following rules detect specific behaviors for each protocol [49]:  

(a) The UDP traffic at specific ports is analyzed and the number of 

opened connections in a short time interval is compared against a 

threshold. While the UDP protocol is stateless, it is possible to define 

and track a UDP connection according to the change in the timeout 

field of each UDP packet [160, 49]. 

(b) The TCP rule checks whether an ACK TCP flag is set and check the 

packets size. 

(c) The HTTP rule is similar to the TCP one but it checks the packet 

contents, rather than the size. 

When each Snort server has computed its detection score, the Voting Score 

(VS), i.e. the final decision, integrates the scores as in Equation 8.1. 
 

 …………………………… (8.1) 

Where: 

 V(a): Voting of alert a. It is the percentage of IDSs that have sent this 

alert.  

 F: A flag to denote if c, the number of packets of a given type, a host 

may send in a given interval, is larger than a threshold t, 
 

F  

Figure 8.3 shows the DDoS detection scenario in this deployment. 
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Figure 8.3: The DDoS detection flowchart in distributed deployment 

 

8.2.1.2 Evaluation of the Distributed Deployment  

This deployment: 

(a) Distributes the computational overhead among several cloud VMs. 

(b) Reduces the network overhead because it does not forward events to a 

central location. 

(c) Avoid a single point of failure due to backup VM. 

As a counterpart, the integration of the outputs of several IDSs increases the 

detection time and reduces the accuracy with respect to a centralized 

deployment.  

8.2.2 The Centralized Deployment 

It uses the same components of the other model and it does not change 

the HIDS functionalities. Instead, it forwards all network packets to a 

centralized database to be analyzed by one Snort server. This changes both 

how the servers analyze and collect the packets and the handling of backups 

for both the centralized database and the Snort server. As far as concerns the 

first change, we recall that Snort can run in three modes: sniffer, packet 

logger, and detection. In the distributed deployment, all Snort servers run in 

the detection mode. Instead, in the centralized deployment, the servers run in 

packet logger mode and log the packets to a centralized database. The VM 

hosting this database is backed up by another VM in the other zone to avoid 
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a single point of failure. Each server is connected to the central database and 

to the backup VM and it runs in the detection mode to match the packets 

against Snort rules. Each server communicates its alerts to those in the other 

zone. 

 

Figure 8.4: The centralized deployment 

As shown in Figure 8.4, VMs 2 and 9 host, respectively, the centralized 

database and the backup one. VM0 runs the active Snort server in VZ1 while 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

189 

VM7 runs the backup one. In the same way, VM4 runs the active Snort server 

in VZ2 and VM10 runs the backup one. Just one server analyzes the packets 

in the database and exchanges the heartbeat messages with its backup. The 

dashed and the solid lines in the figure connect the IDSs to, respectively, the 

active centralized database and the backup one.  

8.2.2.1 DDoS Detection scenario using the Distributed Deployment 

The centralized deployment can easily detect DDoS attacks, because it 

collects in a single location the packets and network events to match them 

against rules in the central database. This improves the detection accuracy 

and enables the administrator to monitor the cloud from a central 

management VM. Figure 8.5 shows the DDoS attack detection scenario in 

the centralized deployment option. 

 

Figure 8.5: The DDoS detection flowchart in centralized deployment 

8.2.2.2 Evaluation of the Centralized deployment  

This deployment is characterized by a central analysis that reduces the 

detection time and increases accuracy. Furthermore, backup VMs increase 

the overall reliability. The counterpart is the large overhead due to both the 

central VM and the cloud network that forwards all packets to this VM. 
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8.3 ALERTS INTEGRATION, CORRELATION, AND RISK ASSESSMENT  

8.3.1 Alerts Integration: 

This layer collects alerts from several detectors and integrates them 

through a normalization process and a prioritization one.  

 The normalization process:  

It formats any detector alert into the IDMEF protocol to simplify their 

analysis and correlation in the next layer. To this purpose, it extracts 

information from the alert fields with different names and data formats and 

represents this information in a consistent and common format. Further 

information may be added to the normalized alert based on details on the 

data source or on fields in the original alert, e.g., impact severity and sub-

event id. Examples of the formatted fields are: the source and target 

addresses, sub-event id (sid), analyzer, time, priority, classification, and some 

additional information. 

 The prioritization process:  

To handle the prioritization systems of distinct detectors, this process maps 

alert priorities into a single range from 0 to n, where n is defined by system 

administrators. Consider, as an example, that Snort alerts have a maximum 

priority of 3 while OSSEC alerts have maximum priority of 12.  

The following examples explain both processes in the cases of the “ICMP 

PING NMAP” attack and OSSEC with SSHD “brute force” attack. The 

original alert information is in bold font in the normalized alert:  

 

Snort Alert: 

1998-06-05:11:12.452605 [**] [122:5:0] (portscan) ICMP PING 

NMAP [**] [Classification: Attempted Information 

Leak][Priority: 3] {ICMP} 192.168.0.1 -> 192.168.0.10 
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Normalized OSSEC Alert in IDMEF format 

<?xml version="1.0" ?> <IDMEF-Message version="1.0"> <Alert 

ident="12773"> <Analyzer analyzerid="OSSEC00" model="OSSEC" 

</Analyzer> <CreateTime ntpstamp= "0xb9225b23. 

0x9113836a">1998-06-05T11:55:15Z</CreateTime> 

<Source><Node> <Address category= "ipv4-addr"> 

<address>192.168.137.1 </address></Address></Node></Source> 

<Target> <Node> <Address category="ipv4-

addr"><address>192.168.137.10 </address> </Address> 

</Node></Target> <Classification origin="vendor-specific"> 

<name>msg= SSHD brute force trying to get access to the 

system </name> </Classification> <Classification 

origin="vendor-specific"> <name>sid=5710 </name>  

</Classification> <Classification origin="vendor-specific"> 

<name>class= ssh-failed </name>  </Classification> 

<Classification origin="vendor-specific"> 

<name>priority=10</name> </Classification> <Assessment> 

<Impact severity="high" /> </Assessment> <AdditionalData 

meaning="sig_rev" type="string">5</AdditionalData> </Alert> 

</IDMEF-Message> 

Normalized Snort Alert in IDMEF format: 

<?xml version="1.0" ?> <IDMEF-Message version="1.0"> <Alert 

ident="12773"> <Analyzer analyzerid="snort00" model="snort" 

</Analyzer> <CreateTime ntpstamp="0xb9225b23. 

0x9113836a">1998-06-05T11:55:15Z</CreateTime> <Source><Node> 

<Address category="ipv4-addr"> <address>192.168.137.1 

</address></Address></Node></Source> <Target><Node> <Address 

category="ipv4-

addr"><address>192.168.137.10</address></Address> 

</Node></Target> <Classification origin="vendor-specific"> 

<name>msg=ICMP PING NMAP</name> </Classification> 

<Classification origin="vendor-specific"> <name> 

sid=384</name>  </Classification> <Classification 

origin="vendor-specific"> <name> class= Attempted 

Information Leak </name>  </Classification> <Classification 

origin= "vendor-specific"> <name>priority=3</name> 

</Classification> <Assessment> <Impact severity="high" /> 

</Assessment><AdditionalData meaning="sig_rev" type="string" 

>5</AdditionalData> <AdditionalData meaning="Packet Payload" 

type="string"> 

2A2A2020202000AAEA020097A4020075DA</AdditionalData> </Alert> 

</IDMEF-Message> OSSEC Alert: 

Received From: (csd-wiki) 141.142.234.100->/var/log/secure 

Rule: 5712 fired (level 10) -> "SSHD brute force trying to 

get access to the system." 
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8.3.2 Alerts Correlation and Summarization: 

It correlates a large number of normalized alerts from different detectors 

to highlight the few critical ones. It looks for evidences of an alert to 

discover if it signals a true attack and then it correlates the related alerts. 

Alerts are logically related if they denote the same attack signature, have the 

same source and destination addresses, and are close in time. These alerts 

may also denote a step of a multi-stage or compound attack [161] that 

consists of several steps by the same attacker. The correlation process:  

(a) Reduces false positives alerts. 

(b) Summarizes the huge number of alerts to the cloud administrator. 

(c) Deals efficiently with multi-stages attacks.  

The correlation engine is implemented by OSSIM [62] described in 

Section 1.10. OSSIM uses a tree of logical conditions (rules) or AND/OR 

tree, see Figure 8.6. 

 
Figure 8.6: An example for a correlation tree 

The correlation stops if the root parent rule at level 1 is not matched. 

Otherwise, the engine considers the various levels and repeats the matching 

till the end of the tree. The implementation performs ANDING between 

levels and ORING between level's nodes or Childs. Furthermore, it computes 

a reliability value in each level to determine the final risk as detailed in 

Section 8.3.3. 

We show now two correlation examples. In the first one, the correlation 

helps to detect a brute force attack against an SSH Server [62]. Here, the 

alerts are produced by several instances of the same analyzer, i.e., Snort. In 
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the second example, distinct analyzers, i.e., OSSEC and Snort, produce the 

alerts and the correlation helps to detect the Reverse Shell attack. 

 Example 1: The engine builds a four levels tree to detect the brute force 

attack against an SSH Server, see Figure 8.7. As an example of the childs 

of the tree, we show the rule that is the left child of level 2. 

 

Where: 

 plugin_id: A unique numerical identifier of the tool that provides 

these events.  

 plugin_sid: A numerical identifier of the sub-events within the tool 

(plugin). 

 type: type of the rule. 

 name: describes what the system expects to collect to satisfy this rule. 

 occurrence :Number of events matching rule conditions.  

 time_out: Waiting time before the rule expires.  

 from and to : Source IP and Destination IP.  

 sensor: the firing sensor of the event. 

 Reliability: is used to compute the risk value, see Section 8.3.3. 
 

Figure 8.7 shows the four levels of the correlation tree:  

 Level 1: A root rule that will be matched by an authentication failed 

alert. After updating the reliability value and computing the risk, the 

correlation engine jumps to the next level.  

 Level 2: Two rules with two possible actions. The left rule is matched by 

a successful authentication alert. The correlation engine updates the 

reliability value, computes the risk, and then stops. Instead, the second 

right child rule is matched by the reception of ten authentication failure 

alerts. The engine updates the reliability value and computes the risk and 

jumps to level 3. Then, it will evaluate both level 3 and 4 in the same 

way and finally fires an alarm.  

<rule type="detector" name="SSH Successful 

Authentication (After 1 failed)" reliability="1" 

occurrence="1" from="1:SRC_IP" to="1:DST_IP" 

port_from="ANY" time_out="15" port_to="ANY" 

plugin_id="4003" plugin_sid="7,8"/> 
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Figure 8.7: Four levels of the correlation tree to detect a brute force attack. 

 Example 2: To detect the Reverse Shell attack, the engine correlates the 

alerts from both OSSEC and Snort. This is a multi-stages attack 

implemented as in the scenario in Figure 8.8 [161]: 

 

Figure 8.8: The Reverse Shell attack scenario 

In this scenario, the appropriate IDS, i.e., OSSEC or Snort, fires an alert 

for each step of the attack. While an analysis of individual alerts may be 
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useless, their correlation conveys useful information. The engine applies 

both the normalization and prioritization processes. The final correlation tree 

has four levels: 

 Level 1 root rule: This rule is matched by scanning and fingerprinting 

alerts from Snort system. Then, the engine updates the reliability value 

and computes the risk before passing to level 2.  

 Level 2: This rule is matched by suspicious ftp logins alerts from 

OSSEC. After updating the reliability value and computing the risk, the 

engine jumps to level 3.  

 Level 3: This rule is matched by a file uploading alert from OSSEC. 

After updating the reliability value and computing the risk, the engine 

jumps to level 4.  

 Level 4: This rule is matched by a Snort alert that denotes the activation 

and access shell using reverse TCP. After updating the reliability and risk 

values, the engine fires an alarm. 

8.3.3 Risk Assessment: 

 This value estimates the risk for the cloud asset based on the alerts that 

have been fired. It is computed at each correlation level through Equation 

8.2:  

RISK = (Asset * Priority * Reliability)/NF…………………………… (8.2) 

Where: 

 Asset denotes the value of the resource under attack and it ranges from 0 

to A, the maximum for the assessment. The user set this value when 

configuring the IDS. 

 Priority ranges between (0-P) where P is the maximum priority value 

and it denotes how dangerous the alert is. This value is set by the firing 

IDS and it is prioritized as in Section 8.3.1. 

 Reliability (0-R) is the probability that the attack defined in a correlation 

level is real. It changes in each level as detailed in section 8.3.2. 

 NF is a normalized factor based on A, P, R and maximum risk value 

(M), where NF = (A * P * R) / M 
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Risk Assessment Methodology: 

Risk is computed when matching the alerts from each IDS in the cloud 

against the rules in each level. The computation is repeated at each level. 

Once an alert matches a rule, its reliability value will be changed according 

to the weight of each rule based on the attack signature. When the risk value 

is at least one, an alarm will be fired. Figure 8.9 shows the correlation and 

risk assessment processes with N correlation levels. Each level has different 

number of rules. 

 

Figure 8.9: The correlation and risk assessment flowchart 
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To show how each correlation level computes the risk value, we consider 

the tree in Example 1 of Section 8.3.2 to detect the “SSH Brute Force” 

attack. [62]: 

 First Level: This rule is matched by one SSH Authentication failure. 

A rule is matched if all the elements of an alert match those of the current 

rule. If this rule is satisfied, the reliability value is set to zero, while the alert 

priority and asset values are 4 and 5, respectively. Hence, the risk value will 

be zero. 

Second Level: These rules are matched if 11 SSH authentication failure 

alerts are received in less than 40 seconds. The first alert matches one rule in 

this level and the other 10 match another rule of this level.  

 

If the previous rules are satisfied, the reliability value is set to 2, while 

the alert priority and asset values are 4 and 5, respectively. Hence, the risk 

value is (2*4*5)/25 = 1.6. If no further alerts that satisfy this attack are 

received, the correlation process ends and the engine fires an alarm because 

the risk is larger than one. Otherwise, the engine will jump to the next level. 

In the same way, the third level rules set the reliability and risk values to, 

respectively, 4 and (4*4*5)/25 = 3.2 and the fourth level rules set the 

reliability to 7, and the risk value to (7*4*5)/25 = 5.6. Finally, the engine 

finishes and an alarm is fired because the risk is larger than one.  

<rule type="detector" name="SSH Successful Authentication 

(After 1 failed) "reliability="1" occurrence="1" 

from="1:SRC_IP" to="1:DST_IP" port_from="ANY" time_out="15" 

port_to="ANY" plugin_id="a" plugin_sid="7,8"/> 

<rule type="detector" name="SSH Authentication failure (10 

times)" reliability="2" occurrence="10" from="1:SRC_IP" 

to="1:DST_IP"port_from="ANY" time_out="40" port_to="ANY" 

plugin_id="4003" plugin_sid="1,2,3,6,9"sticky="true"/> 

 

<rule type="detector" name="SSH Authentication failure" 

reliability="0" occurrence="1" from="ANY" to="ANY" 

port_from="ANY" port_to="ANY" plugin_id="4003" 

plugin_sid="1,2,3,6,9"/> 

 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

198 

8.4. EXPERIMENTAL RESULTS 

8.4.1 Attack Scenario 

To evaluate the detection accuracy of the proposed IDS, we run an attack 

scenario through the Metasploit library. We also consider a DDoS attacks 

scenario that uses both the LOIC and CPU death ping libraries 

independently.  

Figure 8.10 explains these scenarios where the Metasploit library 

installed in VZ1 attacks VM6 in the same zone and VMs 11 and 14 in VZ2. In 

the DDoS scenario, both LOIC and CPU death ping libraries have some 

agents distributed in VM8 in VZ1 and in VMs 5, 11, and 14 in VZ2. Each 

agent attacks one VM in each zone. Consequently, the agents of VM8 attacks 

VM6 and VM3, and the agents of VM5 attack VM3 and VM6. The agents of 

VM11 attack VM12 and the VM with the Metasploit library. Finally, the 

agents of VM14 attack VM12 and the VM with Metasploit library. LOIC 

floods the system by TCP and UDP packets, while CPU Death Ping floods 

by ICMP packets and HTTP requests. 

 
Figure 8.10: The host, network, and DDoS attacks scenarios 

8.4.2 Performance Evaluation for the Two Deployments  

This section evaluates the proposed IDS by analyzing the traffic of each 

Snort sensor in the Centralized VMs, VZ1, and VZ2. Furthermore, it 

evaluates the accuracy and the computational performance of the Centralized 
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and Distributed deployments. Figure 8.11 shows the spikes of the DDOS 

attacks resulted by the TCP floods of LOIC and the HTTP floods of the CPU 

Death PING library. Figure 8.12 shows the spikes of the DDOS attacks due 

to the UDP floods of LOIC and the ICMP floods of the CPU Death PING 

library. Both libraries run the attacks for 10 minutes. Each graph is splitted 

into four parts to show the network traffic in different situations. In part A, 

the cloud system acts in normal mode, and the system replies to legal packets 

without any problem. In part B the flooding attack starts and the traffic rate 

increases. Consequently, the cloud system can no longer respond to its users. 

In part C, the IDS starts to handle the attack and blocks the illegal packets. 

Finally, in part D, the traffic rate returns to normal again. 

 

Figure 8.11: The DDOS by TCP and HTTP floods  
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Figure 8.12: The DDoS by UDP and ICMP floods  

The two deployments are compared in terms of detection accuracy and 

computation time over 20,000 data packets. Figure 8.13 shows that the 

Centralized deployment signals a higher number, 34.3%, of true alerts than 

the Distributed one. This is due to the centralized decision on detection. 

However, Figure 8.14 shows that the Distributed deployment has a lower 

computation time, 28.8%, than the Centralized one because it distributes the 

detection overhead among several sensors and drops any packet that matches 

a rule without any further analysis. 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

201 

 

Figure 8.13: Number of true alerts  

 

 

Figure 8.14: The computation time  

8.4.3 HIDS and NIDS detection outputs  

The Web Interface layer offers a visual tool to manage and admin the 

IDS components and to display the detected attacks. Figure 8.15 shows a 

snapshot of some detected attacks with their corresponding risk values after 

correlating the alerts from OSSIC and Snort IDSs. We use the attack libraries 

of VM “192.168.137.223” and other VMs as in Section 8.3.1 to attack the 

cloud.  
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Figure 8.15: A snapshot of detected host and network attacks 

Figure 8.16 shows the top 5 alerts with high risk value fired by both 

OSSEC and Snort IDSs in distinct cloud locations. Figure 8.17 shows the top 

10 VMs that signaled multiple alerts. 

 
Figure 8.16: The top 5 alerts with high risk value fired by OSSEC and Snort. 
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Figure 8.17: The top 10 VMs with multiple alerts in the cloud system. 
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Conclusion 

Cloud Computing is a new term that denotes the use of IT services and 

resources that are accessed on a service basis provided by enterprises and 

that their users  access via the internet.   

Even if there is a large consensus on the benefits of cloud computing, 

concerns are being raised about the security issues introduced through the 

adoption of this model and to the lack of control by the cloud users on some 

architectural levels. The effectiveness and efficiency of traditional protection 

mechanisms are being reconsidered as the characteristics of this innovative 

computing model and the control on shared resources widely differ from 

those of traditional architectures. Cloud computing environments are easy 

targets for intruders and pose new risks and threats to an organization 

because of their service and operational models, the underlying technologies, 

and their distributed nature.  In particular, some kind of sharing is intrinsic to 

cloud computing and cannot be avoided. In turns, this blurs the traditional 

distinction between private and shared resources. 

In principle, IDSs are among the efficient security mechanisms that can 

handle most of the threats of cloud computing. However, several deficiencies 

of current IDSs technologies and solutions hinder their adoption in a cloud.  

This thesis has proposed and developed a cloud based intrusion detection 

system that satisfies the cloud requirements and deals with several classes of 

attacks against all cloud deployment models. 

The architecture of the proposed IDS is fully distributed to provide a 

scalable and elastic solution and avoid a single point of failure. Furthermore, 

the IDS isolates the user tasks from cloud nodes and achieves a high 

coverage of attacks by integrating both knowledge and behaviour based 

techniques. The IDS adapts with distinct cloud computing environments and 

it collects and correlates the user behaviours from the cloud VMs and 

integrates the alerts from different IDSs into a single report.  

We have introduced two frameworks of the proposed IDS to support 

distinct cloud deployment models namely, the Cloud based Intrusion 

Detection System, CIDS, and its full virtual version, CIDS-VERT. CIDS 

P2P architecture hinders scalability but it achieves a high performance and 



PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed 

205 

low network overhead in small or private clouds. Instead, the better 

scalability and controllability of CIDS-VERT makes it the ideal solution for 

hybrid and public clouds. Furthermore, the management and the 

configuration of CIDS–VERT are rather simpler than those of CIDS. 

To efficiently correlate the behaviour of the same user in distinct cloud 

nodes, we have proposed, developed and evaluated three alternative models 

that define the exchange of audit data and of alerts between the IDS 

components.  The first two models, Audit Exchange and Independent, work 

with CIDS framework, while the third, the Centralized-Backup works with 

CIDS-VERT. 

Three are the main contributions of this thesis, namely: 

(1) CIDD, a cloud intrusion detection dataset. 

(2) The behaviour based detection. 

(3) The signature based detection 

The first contribution has defined a cloud intrusion detection dataset, 

CIDD, the first dataset that can support the training and the evaluation of any 

cloud IDS. Current datasets are not suitable for these purposes because they 

neglect the typical behaviours of a cloud user and lack real attack patterns. 

CIDD solves these deficiencies and provides the complete audit parameters 

to support the detection of more than hundred instances of attacks and 

masquerades.  CIDD consists of both knowledge and behavior based audit 

data and has real instances of host and network based attacks and 

masquerades. CIDD provides complete audit parameters from heterogeneous 

environments e.g., Windows, UNIX, and NetFlow, to evaluate the 

effectiveness of detection techniques. The comparison in Chapter 4 confirms 

the larger efficiency of CIDD with respect to current datasets. To build 

CIDD, we have developed a log analyzer and correlator system to parse and 

analyze the host based log files and network packets.  

The second contribution of the thesis is the definition of the Data-Driven 

Semi-Global Alignment, DDSGA, approach and of three behavior based 

detection strategies. DDSGA is focused on the detection of anomalous user 

behaviour generated by masquerade attacks. Masquerading is by far one of 

the most critical attacks because once the attacker logs in successfully to a 

cloud, he/she can maliciously control the huge amount of resources it 
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includes. DDSGA improves both the security efficiency and the 

computational performance of SGA, a fast detection technique with low false 

positive rate that has not yet achieved the accuracy and performance for 

practical deployment. DDSGA aligns the sequence of the current user 

session to the previous ones of the same user and the presence of several 

misalignments is a strong indicator of a masquerade attack.  

From the security efficiency perspective, DDSGA supports a more 

accurate modeling of distinct users as it introduces distinct parameters to 

model their behaviours. DDSGA can tolerate changes in the low-level 

representation of the commands functionality through two scoring systems 

that categorize user commands to align distinct commands in the same class 

without reducing the alignment score. Furthermore, to tolerate changes in the 

user behavior, DDSGA updates the signatures that describe this behavior 

according to the current user behavior  All these features result in a strong 

reduction in false positive and missing alarm rates and as well as an increase 

in the detection hit ratio. According to our experiments, DDSGA achieves a 

better performance than SGA. As an example, it improves the hit ratio by 

about 21.9% and reduces Maxion-Townsend cost by 22.5%. 

From the computational perspective, DDSGA simplifies the alignment 

by dividing the signature sequence into a smaller set of overlapped 

subsequences. Furthermore, it speeds up the detection and the update 

processes by running them in parallel.  

A main reason of the low performances of current detection approaches 

is that they do not correlate the behaviour of a user in distinct environments, 

host and network, and in distinct cloud nodes. To solve this issue we have 

developed three detection strategies. The first strategy applies DDSGA to 

sequences of correlated audits from the VMs operating systems. We have 

evaluated this strategy on two distinct kinds of audits, system calls and 

security events. The second strategy analyzes NetFlow data from the 

network environment. The third strategy correlates the user behavior in host 

and network environments by integrating the other two strategies through a 

neural network. In this way, we convert masquerade detection from a binary 

problem to a classification or machine learning one. The evaluation has 

considered the three alternative correlation models mentioned before through 

both CIDS and CIDS-VERT frameworks based on CIDD data.  
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Chapter 6 has defined two extensions of DDSGA to detect masquerade 

attacks through, respectively, system call sequences and NetFlow data. We 

build a consistent profile of system calls through a “Behaviours Triangle 

Model” that focuses on system calls to implement file operations and process 

activities. A consistent NetFlow profile is built for each source IP address in 

terms of the sequences of nodes that are accessed and the protocols that are 

used.  To efficiently correlate the user behaviour, we have evaluated the 

three correlation models i.e., Audit Exchange, Independent, and Centralized-

Backup, using both CIDS and CIDS-VERT frameworks. Empirically, we 

have verified that correlation strongly improves the hit ratio by about 

19.64% and reduces the Maxion-Townsend cost by 23.24. These 

experiments also show that the Independent model works much better with 

CIDS than the Audit Exchange model. This model is the ideal solution for 

small and private clouds as it achieves good accuracy and computational 

performance with low network overhead and short masquerade live time. 

Instead, the Centralized-Backup model works efficiently with CIDS-VERT 

in large clouds with good accuracy and computational performance, low 

network overhead and short masquerade live time.  

After tuning and optimizing the correlation of user behaviour in each of 

the two detection subsystems, we have correlated the subsystem by 

integrated their results through a neural network. This results in the best 

overall accuracy, 98.07%, with respect to 94.24% of the host based and 

83.04% of NetFlow based detection. As expected, it also results in the largest 

detection time, and the largest survival time of a masquerader because it 

waits for the results of both subsystems.  

The experiments results of Chapter 7 concerns two subsystems that 

detect masquerade attacks through, respectively, sequences of security events 

and NetFlow audits. Consistent host based user profiles and NetFlow data 

profile for each source IP address are built as in Chapter 6. DDSGA 

compares the active log sessions in both host and network environments 

against the corresponding profile and computes the detection outputs for 

each subsystem. Then, it integrates these outputs using a neural network. As 

in Chapter 6, the proposed neural network model results in the best accuracy, 

96.08%, with respect to 91.06% of host based and 88.41% of NetFlow based.  

The correlation improves the hit ratio by about 8.07% and reduces Maxion-
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Townsend cost by 16.86. The experimental results further confirm the 

conclusion of Chapter 6 that the independent model is ideal for small and 

private cloud networks while big clouds like hybrid and public ones should 

prefer the Centralized-Backup one. 

Finally, the third contribution is related to signature based detection. We 

introduce a hierarchical architecture that overcomes some limitations of 

current IDSs and supports two deployments, a Distributed and a Centralized 

one for the proposed IDS. The deployments use host based and network 

based IDSs that exploit signature based analysis techniques. The Distributed 

deployment distributes the computational overhead among several cloud 

VMs and reduces the network overhead while avoiding a single point of 

failure. However, its accuracy is lower than the one of the Centralized 

deployment. The latter also has a shorter detection time and a large overhead 

for the central VM and the cloud network. According to our experiments, the 

Centralized deployment improves the detection rate and also signals a higher 

number, 34.3%, of true alerts than the Distributed deployment. However, the 

Distributed deployment has a better detection time, 28.8%, than the 

Centralized one. For an efficient detection, we have integrated and correlated 

the HIDS and NIDS alerts through IMDEF. This helps in detecting multi-

stage or compound attacks and reduces both false alarms and the number of 

alerts from HIDS and NIDS.  

The diagram in Figure 1 resumes the work in this thesis to define, 

implement, and evaluate a general, efficient, and accurate cloud IDS that can 

be adopted in a very large number of clouds and that covers alternative 

deployment models.   
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Figure 1: The Proposed Cloud IDS Components Diagram 
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As far as concern the possible developments of this thesis, we plan to 

integrate the behaviour based detection of DDSGA with current signature 

based detection techniques. DDSGA can detect anomalous behaviours for 

both users and hosts in a network. Hence, if the hosts or their users have a 

profile of normal behaviours, DDSGA can compare it against anomalous 

actions to block an anomalous user or host. We have introduced a similar 

analysis based on the masquerade actions in system calls and NetFlow in 

Chapter 6 and another one based on the security event and NetFlow in 

Chapter 7. The anomalous actions that can be detected for DDoS include, 

among others, sending packets with a suspect total length or a number of 

packets with a total length larger than normal threshold in a specific time 

range. Another possible development concerns the adoption of alternative 

machine learning approaches to train our IDS and to maintain the validity of 

the proposed IDS over the system’s life time. It would also be interesting to 

develop an adaptive control strategy for managing and evaluating cloud 

system performance and resilience under normal and abnormal conditions 

 

Finally, we plan to extend our IDS system to provide autonomous 

capabilities particularly autonomous response and self-resilience and to 

provide a security measure to evaluate vulnerabilities and risks in a system as 

an essential milestone to build trust in cloud environments. In [165, 166 and 

167], we have introduced a mechanism to build a security measure based on 

the assessment of the risks and the criticality of the security events. 

Furthermore,  self-resilience is supported by, (a) preventing altering or 

modification of security events in the data storage, (b) avoiding single point 

of failure by replicating the intrusion detection components. The auto 

response actions are based on a set of polices defined by the system 

administrator. Lastly, we have built an early warning and forecasting model 

to predict host and network anomalies using a Hidden Markov Model and 

Holt Winter forecasting Algorithm [168]. 
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