
DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

PH.D. THESIS

Cloud Computing Security,

An Intrusion Detection System for Cloud Computing

Systems

Hesham Abdelazim Ismail Mohamed

SUPERVISORS:

Prof. Fabrizio Baiardi

Dipartmento di Informatica, Pisa University, Italy

President of the council of information security

Prof. Salim Hariri

Electrical and Computer Engineering Department

University of Arizona, USA.

The Director of NSF Center: Cloud and Autonomic Computing

June, 2013

To the most precious inspiration of my life:
My parents and my brothers and sisters

General Acknowledgments

In the name of Allah, Most Gracious, Most Merciful

I would like to express my deepest respect and most sincere gratitude to

all those who made this dissertation possible by their support specially my

advisors, Prof. Fabrizio Baiardi and Prof. Salim Hariri, for the source of

knowledge, guidance, and support that they have been to me over the past

years.

I would like to give my special thanks to the Computer Science

Department of the University of Pisa for their logistic and financial support

to study and apply practical work abroad in colleague of Engineering of

University of Arizona in USA and for giving me the opportunity to have an

international PH.D. title through the collaboration with University of

Arizona. I give my special thanks to the president of the doctorate school,

Prof. Pierpaolo Degano, for his kind support. I also give my sincere

gratitude to the members of the NSF Center: Cloud and Autonomic

Computing Center in University of Arizona for helping me to complete the

practical work of my dissertation. I also would like to thank the internal

PH.D. committee members, Prof. Fabrizio Luccio and Prof. Maurizio

Bonuccelli for their help, suggestions, and advices. I give great thanks to my

university in Egypt, Fayoum University, and the dean of the faculty Prof.

Nabila Hassan for facilitating the procedures to study in this scholarship.

Most of all, I would like to thank my parents, my brothers, and sisters for

their encouragement and emotional support. This dissertation is dedicated to

them.

Hesham Abdelazim Ismail Mohamed

Thesis Acknowledgments:

 This PH.D. is achieved through an international joint program with a

collaboration between University of Pisa in Italy (Department of

Computer Science, Galileo Galilei PH.D. School) and University of

Arizona in USA (College of Electrical and Computer Engineering).

 The PH.D. topic is categorized in both Computer Engineering and

Information Engineering topics.

 The thesis author is also known as "Hisham A. Kholidy" as referred to in

our publications underlying the thesis work.

 The thesis supervisors and committee members are:

1) Prof. Fabrizio Baiardi (Department of Computer Science,

Pisa University, Italy)

Supervisor

2) Prof. Salim Hariri (Department of Electrical and

Computer Engineering, University of Arizona, USA)

Supervisor

3) Prof. Aris M. Ouksel (Department of Computer Science,

Information and Decision Sciences, University of Illinois

at Chicago, USA)

Committee Member

(External Reviewer)

4) Prof. Manish Parashar (Department of Electrical and

Computer Engineering, Rutgers, The State University of

New Jersey, USA)

Committee Member

(External Reviewer)

5) Prof. Fabrizio Luccio (Department of Computer Science,

Pisa University, Italy)

Committee Member

(Internal Reviewer)

6) Prof. Maurizio Bonuccelli (Department of Computer

Science, Pisa University, Italy)

Committee Member

(Internal Reviewer)

7) Prof. Sherif Abdelwahed (Department of Electrical and

Computer Engineering, Mississippi State University,

USA)

External Examiner

8) Prof. Chiara Bodei (Department of Computer Science,

Pisa University, Italy)

Internal Examiner

9) Prof. Sebastiano Vigna (Department of Computer

Science, University of Milan, Italy)

External Examiner

10) Prof. Riccardo Scateni (Department of Mathematics and

Computer Science, University of Cagliari, Italy)

External Examiner

i

Table of Contents

Abstract ... 1

Introduction ... 2

Chapter 1: Background and Main Concepts 10

1.1 Cloud Computing .. 10

1.1.1. Essential Characteristics of Cloud Computing 11

1.1.2. Cloud Service Models ... 12

1.1.3 Cloud Deployment Models .. 13

1.2 Cloud Computing Security.. 13

1.2.1 Seven Risks to be analyzed before Committing 13

1.2.2 Top Seven Threats to Cloud Computing .. 14

1.3 Virtual Machines ... 17

1.4 System Calls.. 19

1.5 The Event Logs ... 19

1.6 NetFlow Data (Network Flows) .. 20

1.7 Entropy .. 22

1.8 The Artificial Neural Network (ANN) .. 23

1.8.1 ANN Transfer Function .. 23

1.8.2 Threshold Logic Unit (TLU).. 25

1.8.3 ANN Types .. 25

1.9 Host, Network, and DDoS Attacks ... 26

1.9.1 Host and Network Attacks and Their Libraries 28

1.9.2 DDoS Attacks .. 29

1.9.3 Current DDoS Detection Techniques in Cloud systems 31

1.10 Software Tools Used in the Thesis Work ... 32

Chapter 2: Intrusion Detection and Related Works 37

2.1 Intrusion Detection Systems ... 37

2.1.1 Intrusion Detection System Architecture ... 37

2.1.2 Intrusion Detection Methods and Techniques.................................... 40

2.1.3 Intrusion Detection Message Exchange Format (IDMEF) 43

2.1.4 Related Work in Intrusion Detection Systems 44

ii

2.2 Masquerade Attacks and Detection Techniques 57

2.2.1. The Receiver Operator Characteristic Curve 58

2.2.2. The Maxion Townsend Cost ... 59

2.2.3. A literature Study for Masquerade Detection 60

2.2.4. Masquerade detection using SGA and Enhanced-SGA 65

2.3 Intrusion Detection Dataset ... 68

2.3.1 Existing Masquerade Datasets and Their Deficiencies 69

2.3.2 Deficiencies of Using Current Datasets for Cloud Systems 71

Chapter 3: CIDS and CIDS-VERT Frameworks

and Their Correlation Models .. 72

3.1 CIDS Framework .. 72

3.1.1 CIDS Architecture ... 73

3.1.2 CIDS-Testbed .. 76

3.1.3 CIDS Parser and Summarizer Approach ... 76

3.2 CIDS-VERT, the Full Virtualization Framework of CIDS 78

3.2.1 CIDS-VERT Architecture .. 78

3.2.2 CIDS-VERT-Testbed ... 82

3.3 Choosing the Proper Framework .. 82

3.4 Attacks and Cloud Service Models Covered by CIDS 83

3.5 The Correlation Models .. 84

 Chapter 4: Cloud Intrusion Detection Dataset (CIDD) 88

4.1. Challenges to build a cloud dataset .. 88

4.2 Cloud Intrusion Detection Dataset (CIDD) .. 89

4.2.1 LACS System ... 89

4.2.2 CIDD Architecture ... 94

 Chapter 5: Data-Driven Semi Global Alignment

(DDSGA) ... 100

5.1 DDSGA Approach Overview ... 100

5.2 The Configuration Phase ... 103

5.2.1 DDSGA Initialization Module ... 104

5.2.2 User Lexicon Categorization Module .. 105

5.2.3 Scoring Parameters Module ... 106

iii

5.2.4 Average Threshold Module ... 109

5.2.5 Maximum Test Gap Module .. 111

5.3 The detection Phase .. 112

5.3.1 The Top-Matching Based Overlapping (TMBO) module 116

5.3.2 The parallelized Detection Module .. 120

5.4 The Update Phase ... 121

5.4.1 The Inline Update Module ... 122

5.4.2 The Long Term Update Module .. 126

Chapter 6: Detecting Masqueraders through

System Calls and NetFlow Data ... 127

6.1 Overview ... 127

6.2. Detecting Masquerades in Host Environment...................................... 128

6.2.1 System Calls Feature Extraction .. 128

6.2.2 Applying DDSGA to Correlated System Calls 133

6.2.2.1 Choosing the Best Sliding Window Size (SWS) 134

6.2.2.2 Scoring System ... 140

6.2.3 The Independent, Audit Exchange, and Centralized-Backup

Models .. 142

6.2.4 A Comparison of the Three Models ... 144

6.3. Detecting Masquerade in Network Environment Based on

NetFlow Data Analysis ... 149

6.3.1 Feature Extraction from NetFlow data in the cloud Network. 150

6.3.2 The NetFlow Scoring System .. 153

6.4. A Neural Network Model to Integrate the Host and Network

Detection Outputs .. 155

6.4.1 The Detection Mode of the TLU .. 155

6.4.2 The Training Mode of the TLU ... 157

6.4.3 Performance Evaluation of the Integrated Approach 159

Chapter 7: Detecting Masqueraders through

Security Events and NetFlow Data .. 161

7.1 Overview .. 161

7.2 Detecting Masquerades Based on Security Events Analysis 162

7.2.1 Feature Extraction from Security Events in Cloud VMs 162

iv

7.2.2 Detecting Masquerade in Windows VMs .. 166

7.2.2.1 Choosing the Best Sliding Window Size 166

7.2.2.2 Scoring System ... 170

7.2.2.3 The Independent and Centralized-Backup Models 171

7.2.2.4 Evaluation of the Correlation Models ... 172

7.3 Detecting Masquerade Based on NetFlow Data Analysis 176

7.3.1 Feature Extraction from NetFlow data ... 176

7.3.2 The NetFlow Scoring System Evaluation .. 176

7.4 Integrating Host and Network Detections using A Neural

Network Model ... 177

7.5. A Comparison between The Two Detection Approaches 179

Chapter 8: Efficient IDS Deployments through

a Hierarchical Architecture ... 181

8.1 The Hierarchical Architecture of our Cloud IDS 181

8.2 The Distributed and Centralized Deployments 184

8.2.1 The Distributed Deployment .. 184

8.2.1.1 DDoS Detection scenario using the Distributed Deployment 186

8.2.1.2 Evaluation of the Distributed Deployment 187

8.2.2 The Centralized Deployment ... 187

8.2.2.1 DDoS Detection scenario using the Centralized Deployment 189

8.2.2.2 Evaluation of the Centralized deployment 189

8.3 Alerts Integration, Correlation, and Risk Assessment 190

8.3.1 Alerts Integration ... 190

8.3.2 Alerts Correlation and Summarization .. 192

8.3.3 Risk Assessment .. 195

8.4. Experimental Results ... 198

8.4.1 Attack Scenario .. 198

8.4.2 A Performance Evaluation for the Two Deployments 198

8.4.3 HIDS and NIDS detection outputs .. 201

Conclusion .. 204

References ... 211

Our Publications Underlying the Thesis Work 222

v

Table of Figures

Figures of Introduction

Figure 1: Thesis organization review .. 6

Figures of Chapter 1

Figure 1.1: NIST Visual Model of Cloud Computing Definition 12

Figure 1.2: A virtual machine monitor.. 17

Figure 1.3-A: type II VMM .. 18

Figure 1.3-B: type I VMM (Hypervisor) .. 18

Figure 1.4: NetFlow architecture .. 21

Figure 1.5: The basic structure of the artificial neuron 23

Figure 1.6: The Unit step (threshold) transfer function 24

Figure 1.7: The sigmoid transfer function .. 24

Figure 1.8: The Piecewise Linear transfer function 25

Figure 1.9: The Gaussian transfer function ... 25

Figure 1.10: A Taxonomy for attacks on cloud services 28

Figure.1.11: The DDoS Strategy .. 30

Figure 1.12: The main components of Microsoft private cloud. 33

Figure 1.13: The Analysis flow chart of OSSEC .. 35

Figure 1.14: Snort Architecture .. 36

Figures of Chapter 2

Figure 2.1: Simple Intrusion Detection System .. 38

Figure 2.2: IDMEF Data model .. 44

Figure 2.3: An example of network-based intrusion detection system 45

Figure 2.4: An example of Host-based intrusion detection system 47

Figure 2.5 Hierarchical DIDS ... 48

Figure 2.6 Unique central server ... 48

Figure 2.7: An Agent System Model .. 49

Figure.2.8: A flowchart for GIDS job analyzer component 53

Figure.2.9: The proposed IDS architecture in a subnet 55

Figure 2.10: The proposed IDS architecture ... 56

Figure 2.11: Examples for three ROC curves ... 59

Figure 2.12: ROC curves for some detection techniques 63

Figure 2.13: An alignment example using SGA algorithm......................... 65

Figure 2.14: The three transitions to fill each cell in the

transition-matrix .. 66

vi

Figures of Chapter 3

Figure 3.1: CIDS Architecture .. 75

Figure.3.2: CIDS-VERT Architecture .. 79

Figure.3.3: Data exchange among the management VMs 81

Figure.3.4: Attacks and cloud service models covered by CIDS 83

Figures of Chapter 4

Figure 4.1: The architecture of LACS system .. 90

Figure 4.2: An example of CIDD Solaris auditing data 90

Figure 4.3: An example of CIDD Windows auditing data.......................... 91

Figure 4.4: Examples of training data (sequences of mails and

web services) ... 91

Figure 4.5: A snapshot of TCPdump data with labeled attacks 92

Figure.4.6: Attacks distribution in the training data (Solaris

BSM, Windows Audits and TCP-dump data) ... 94

Figure 4.7: Masquerade attacks in week 6 of Part1 and the two

testing weeks of part2 ... 95

Figure 4.8: Users distribution in CIDD training part 96

Figure 4.9: Attacks distribution in CIDD testing part 96

Figure 4.10: Attacks distribution in testing data of part1 (Solaris

BSM and TCP-dump data) .. 97

Figure 4.11: Attacks distribution in testing data of part2

(Windows audits and TCP-dump data) ... 98

Figures of Chapter 5

Figure 5.1: DDSGA Phases and modules ... 101

Figure 5.2: The non-overlapped test sequences and the

overlapped signature subsequences .. 105

Figure 5.3: The best alignment score that corresponds to the

optimal combinations of gap penalties for user 1 in SEA Dataset 107

Figure 5.4: The restricted permutation scoring system 108

Figure 5.5: The Free Permutation Scoring System 109

Figure 5.6: The Transition and Backward-Transition matrices 111

Figure 5.7: The ROC curve for our two scoring systems, SGA

ones, and the other detection approaches .. 114

Figure 5.8: Overlapped Signature Subsequences of Size 14 117

Figure 5.9: The impact of our TMBO approach on the system

accuracy .. 119

Figure 5.10: The processes of the parallelized detection module 120

vii

Figure 5.11: FPM and SPM modes for user 7 in Machines “A”

and “B” ... 122

Figure 5.12: FPM and SPM modes for user 23 in Machines “A”

and “B” ... 122

Figure 5.13: The inline update steps ... 124

Figure 5.14: The impact of the inline update on the system accuracy 125

Figures of Chapter 6

Figure 6.1: The Behaviors Triangle Model ... 129

Figure 6.2: Three training sessions with the extracted features for

three types of users .. 131

Figure 6.3: The Local User with ID “2140” in CIDD................................. 132

Figure 6.4: The Server User with ID “2060” in CIDD 132

Figure 6.5: The System User with ID “UUCP” in CIDD 133

Figure 6.6: The conditional entropy under different SWS values for

local user “2140”, server user “2060”, and system user “UUCP” 136

Figure 6.7: The ROC for the three sliding window selection

methods for local user "2140" in CIDD .. 138

Figure 6.8: The ROC for the three sliding window selection

methods for server user "2060" in CIDD .. 138

Figure 6.9: The ROC curve for the three SWS approaches for

system user "UUCP" in CIDD .. 139

Figure 6.10: The masquerader live time in seconds for local,

server, and system users in some attached sessions 140

Figure 6.11: A flowchart for the modified DDSGA scoring

system ... 142

Figure 6.12: DDSGA threshold and masquerades distribution in

test sessions of CIDD users 2139 and 2142 .. 145

Figure 6.13: The ROC curve for the three correlation models

with and without the scoring system ... 146

Figure 6.14: Average Masquerader live Time per session in the

three correlation models .. 147

Figure 6.15: Average transmitted data per session in bytes in the

three implementation models .. 148

Figure 6.16: Average detection time per session in milliseconds

in the three models .. 149

Figure 6.17: The distribution of NetFlow destination IP

addresses in local user sessions (user ID 2143 in CIDD) 151

Figure 6.18: The distribution of NetFlow destination IP

addresses in server user sessions (user ID 2059 in CIDD) 152

viii

Figure 6.19: Two training sessions with the extracted NetFlow

features for local user 2143 and server user 2059 153

Figure 6.20: A flowchart for the modified NetFlow scoring

system. .. 153

Figure 6.21: The ROC curve for the DDSGA approach on the

NetFlow audits with and without the scoring system 154

Figure 6.22: The neural network model in the training mode for

one user ... 155

Figure 6.23: The effect of learning iterations on the error

distance .. 158

Figure 6.24: Average detection time per session in milliseconds

in host, network, and the neural network models 159

Figure 6.25: The ROC curve for the DDSGA approach using

network, host, and neural network approaches ... 159

Figures of Chapter 7

Figure 7.1: Extracted feature from security events 162

Figure 7.2: A user session and its extracted features from

Windows security events .. 164

Figure 7.3: The distribution of objects (files and directories) in

local user with ID 500 in CIDD .. 165

Figure 7.4: The distribution of objects (files and directories) in

server user with ID 1031 in CIDD .. 165

Figure 7.5: The distribution of objects (files and directories) in

system user with ID “SYSTEM” in CIDD ... 165

Figure 7.6: Conditional entropy under different SWS for a local

user, a server user and a system one ... 167

Figure 7.7: The ROC for the three sliding window selection

methods for a local, a server, and a system user in CIDD 168

Figure 7.8: Masquerader live times for local, server, and system users 169

Figure 7.9: A flowchart for the modified DDSGA scoring system 171

Figure 7.10: ROC curves for the three correlation models 173

Figure 7.11: Average masquerader live time per session in the

three correlation models .. 174

Figure 7.12: Average transmitted data per session in the three models 174

Figure 7.13: Average detection time per session in the three models 175

Figure 7.14: ROC curve for DDSGA on the NetFlow audits 177

Figure 7.15: The ROC curve for the three approaches 178

Figure 7.16: Average detection time per session for the three

approaches... 178

ix

Figures of Chapter 8

Figure.8.1: The hierarchical architecture of the proposed cloud IDS 182

Figure 8.2: The distributed deployment .. 185

Figure 8.3: The DDoS detection flowchart in distributed deployment 187

Figure 8.4: The centralized deployment ... 188

Figure 8.5: The DDoS detection flowchart in centralized deployment....... 189

Figure 8.6: An example for a correlation tree ... 192

Figure 8.7: Four levels correlation tree to detect a brute force attack 194

Figure 8.8: The Reverse Shell attack scenario .. 194

Figure 8.9: The correlation and risk assessment flowchart 196

Figure 8.10: The host, network, and DDoS attacks scenarios 198

Figure 8.11: The DDOS by TCP floods using LOIC and the

HTTP floods using CPU Death PING .. 199

Figure 8.12: The DDoS by UDP floods using LOIC and ICMP

floods using CPU Death PING ... 200

Figure 8.13: Number of true alerts signaled by the Centralized

and Distributed Deployment ... 201

Figure 8.14: The computation time of the Centralized and

Distributed Deployment .. 201

Figure 8.15: A snapshot of detected host and network attacks 202

Figure 8.16: The top 5 alerts with high risk value fired by

OSSEC and Snort .. 202

Figure 8.17: The top 10 VMs with multiple alerts in the cloud system 203

Figures of the conclusion

Figure 1: The Proposed Cloud IDS Components Diagram 209

x

Table of Tables

Tables of Chapter 2

Tabe.2.1: Possible status for an IDS reaction ... 39

Table.2.2: Evaluation of HIDS and NIDS .. 47

Table.2.3: Comparing characteristic of previous related works

for GIDS ... 53

Tables of Chapter 3

Table.3.1: An example for the alert description table 76

Table.3.2: The final alerts summarization table .. 77

Tables of Chapter 4

Table 4.1: Comparison of publicly available datasets 99

Tables of Chapter 5

Table 5.1: A comparison between DDSGA and Enhanced-SGA 103

Table 5.2: User 1 Lexicon List ... 105

Table 5.3: Example of the Top Match Scores of User 1 107

Table 5.4: An Example for the Trace-Matrix ... 110

Table 5.5: A Comparison between Our Two Scoring Systems

and the Current Detection Approaches ... 115

Table 5.6: TMBO approach in three detection approaches 118

Table 5.7: The masquerade detection approach against DDSGA with its two

scoring systems ... 119

Table 5.8: Masquerade detection approaches against DDSGA

with its inline update module .. 125

Tables of Chapter 6

Table 6.1: Examples for sensitive files and programs 137

Table 6.2: A comparison between the best detection outputs for

the SWS approaches ... 139

Table 6.3: The best accuracy of the three Correlation Models 146

Table 6.4: The best accuracy of the DDSGA approach on the NetFlow

audits with and without the scoring system .. 154

Table 6.5: The best accuracy of the three detection approaches 160

xi

Tables of Chapter 7

Table 7.1: Examples of sensitive actions .. 168

Table 7.2: A comparison of the two SWS approaches for local,

server and system users ... 169

Table 7.3: The best accuracy of the three correlation Models 173

Table 7.4: The best accuracy of the DDSGA approach on the

NetFlow audits ... 177

Table 7.5: The best accuracy of the three detection approaches 178

Table 7.6: Masquerade detection through system calls and

security events ... 179

xii

Table of Equations

Equation 1.1:The conditional entropy ... 22

Equation 1.2: The artificial neuron network output function 23

Equation 2.1: True Negative Rate ... 39

Equation 2.2: True Positive Rate .. 39

Equation 2.3: False Positive Rate ... 39

Equation 2.4: False Negative Rate .. 39

Equation 2.5: IDS accuracy measure .. 39

Equation 2.6: Precision ... 39

Equation 2.7: The general Maxion Townsend cost function 59

Equation 4.1: CIDD correlation function ... 93

Equation 5.1: The match score of a test sequence 106

Equation 5.2: The sub-average score function .. 110

Equation 5.3: The detection-update-threshold function 110

Equation 5.4: The length of overlapped signature subsequences 112

Equation 5.5: The computational enhancement of DDSGA 112

Equation 5.6: The total false positive function ... 113

Equation 5.7: The total false negative function .. 113

Equation 5.8: The total hit ratio function .. 113

Equation 5.9: Maximum Factor of Test Gaps ... 116

Equation 5.10: Number of Asymptotic Computations 118

Equation 6.1: Data regularity measure using conditional entropy 134

Equation 6.2: The conditional entropy for a window size SWS 135

Equation 6.3: The conditional entropy for system call sequences 136

Equation 6.4: The total false positive for system call sequences 144

Equation 6.5: The total false negative for system call sequences 145

Equation 6.6: The total hit ratio for the system call sequences 145

Equation 6.7: The TLU output for system call sequences 156

Equation 6.8: Probability that active session has a masquerade 156

Equation 6.9: DDSGA net score ... 156

Equation 6.10: The neural network weights adjustment function 158

Equation 8.1: The voting score. .. 186

Equation 8.2: The risk estimation function ... 195

xiii

Table of Algorithms

Algorithm 2.1: The Semi-Global Alignment (SGA) 67

Algorithm 3.1: The parsing and summarization processes 77

Algorithm 3.2: The analysis algorithm for the Independent model 86

Algorithm 5.1: The Mismatch-Score Evaluation .. 107

Algorithm 5.2: The Trace Backward Algorithm (TBA) 111

Algorithm 5.3: The Top-Matching Based Overlapping (TMBO) 116

xiv

List of Abbreviations

ANN: Artificial Neural Network

ASSL: Average Signature Session Length

BSM: Basic Security Module

CIDD: Cloud Intrusion Detection Dataset

CIDS: Our proposed Cloud Intrusion Detection System

CIDS-VERT: Full virtual version of CIDS

CSA: Cloud Security Alliance

DDoS: Distributed Denial of Service Attack

DDSGA: Data-Driven Semi-Global Alignment

DIDS: Distributed Intrusion Detection System

DoS: Denial of Service attack

FPR: False Positive Rate

FTP: File Transfer Protocol

GDP: Generalized Delta Procedure

GIDS: Grid based Intrusion Detection Systems

GUI : Graphic User Interface

HIDS: Host-based Intrusion Detection System

HIMAN Hisham and Abdelrahman Grid Middleware System

HXen: Hosted Xen project

IaaS: Infrastructure as a Service

IDMEF: Intrusion Detection Message Exchange Format

IDS: Intrusion Detection System

IPAM: Incremental Probabilistic Action Modeling

LACS: Log Analyzer and Correlator System

MAIDS: Mobile Agent Intrusion Detection Systems

MAs: Mobile Agents

MCE: Minimum Conditional Entropy

MFTG: Maximum factor of test gaps

NAC: Number of Asymptotic Computations

NF: Normalized Factor

NIDS: Network-based Intrusion Detection System

NIST: National Institute of standards and Technology

NN: Number of cloud nodes running user VMs

OS: operating system

OSSEC: Open Source Host-based Intrusion Detection System

PaaS: Platform as a Service

R2L: Remote to Local attack

xv

ROC: The Receiver Operator Characteristic curve

SaaS: Software as a Service

SC: System Calls

SE: Security Events

SGA: Semi-Global Alignment

SMTP: Simple Mail Transfer Protocol

SVM: Support vector machine

TBA: Trace Backward Algorithm

TLU: Threshold Logic Unit

TMBO: Top-Matching Based Overlapping

TOS: Type of Service

TPR: Positive Rate

TSL: Test Session Length

TSLSA: Test Session Length with Sensitive Action

U2R: User to Root attack

VM: Virtual Machines

VMM: Virtual Machine Monitors

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

1

Abstract

Cloud computing is widely considered as an attractive service model

because it minimizes investment since its costs are in direct relation to usage

and demand. However, the distributed nature of cloud computing

environments, their massive resource aggregation, wide user access and

efficient and automated sharing of resources enable intruders to exploit

clouds for their advantage. To combat intruders, several security solutions

for cloud environments adopt Intrusion Detection Systems. However, most

IDS solutions are not suitable for cloud environments, because of problems

such as single point of failure, centralized load, high false positive alarms,

insufficient coverage for attacks, and inflexible design.

The thesis defines a framework for a cloud based IDS to face the

deficiencies of current IDS technology. This framework deals with threats

that exploit vulnerabilities to attack the various service models of a cloud

system. The framework integrates behaviour based and knowledge based

techniques to detect masquerade, host, and network attacks and provides

efficient deployments to detect DDoS attacks.

This thesis has three main contributions. The first is a Cloud Intrusion

Detection Dataset (CIDD) to train and test an IDS. The second is the Data-

Driven Semi-Global Alignment, DDSGA, approach and three behavior

based strategies to detect masquerades in cloud systems. The third and final

contribution is signature based detection. We introduce two deployments, a

distributed and a centralized one to detect host, network, and DDoS attacks.

Furthermore, we discuss the integration and correlation of alerts from any

component to build a summarized attack report. The thesis describes in

details and experimentally evaluates the proposed IDS and alternative

deployments.

Key Words: cloud computing, security, intrusion detection, attacks,

masquerade, dataset, masquerade detection, sequence alignment, system

calls, security events, NetFlow, feature extraction, DDoS.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

2

Introduction

Cloud computing is a large-scale distributed computing paradigm driven

by economies of scale and outsourcing, where a pool of abstracted,

virtualized, dynamically-scalable, managed computing, storage, platforms,

and services are delivered on demand over the Internet. Cloud computing

technology is enabling IT managers to provision services to users faster and

in a much more flexible and cost-effective way without having to re-design

or update the underlying infrastructure [4].

Clouds in general provide services at three different levels [2] defined by

what is called “SPI” models or Software as a Service (SaaS), Platform as a

Service (PaaS), and Infrastructure as a Service (IaaS). In SaaS, a consumer

can use applications running on a cloud infrastructure. In PaaS, the consumer

can deploy onto the cloud infrastructure consumer-created or acquired

applications developed through programming languages and tools supported

by the provider. In IaaS, the provider offers a large amount of interconnected

computing nodes to run a consumer-created network of virtual machines.

Four deployment models exist for cloud services, with derivative variations

that address specific requirements namely [4]: Public, Private, Community,

and Hybrid Cloud. In a Public Cloud, the cloud infrastructure is made

available to the general public or a large user group. In a Private Cloud, the

cloud infrastructure is operated for a single organization. In a Community

Cloud, the cloud infrastructure is shared by several organizations to support

a specific community that has shared concerns, and in Hybrid Cloud, the

cloud infrastructure interconnects two or more clouds (private, community,

or public).

Given the benefits of cloud computing, its broad appeal is not surprising.

However, this new approach does raise some concerns. Chief among them is

securing data in the cloud. Security controls in cloud computing are, for the

most part, the same ones that any IT environment can apply. However,

because of cloud service and operational models and the technologies to

enable these services, cloud computing may present new risks and threats to

an organization. Furthermore, due to their distributed nature, cloud

computing environments are easy targets for intruders looking for possible

vulnerabilities to exploit. The impact of intrusions in cloud systems is

potentially very large, as intruders can exploit for their advantage the

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

3

massive resource aggregation, wide user access, efficient and automated

resource allocation of a cloud. The Cloud Security Alliance has defined

seven top threats to cloud computing systems [1] namely:

1. Abuse and Nefarious Use of Cloud Computing.

2. Insecure Interfaces and APIs.

3. Malicious Insiders.

4. Shared Technology Issues.

5. Data Loss or Leakage.

6. Account or Service Hijacking.

7. Unknown Risk Profile.

Some of these threats can be handled by an Intrusion Detection System

(IDS). An IDS is a software or a hardware system that monitors and analyzes

events in a computer system or network to discover signs of security

problems. As attacks increase in number and severity, IDSs have become a

necessary addition to the security infrastructure of most organizations. There

are three main categories of IDSs based on the protection objectives, namely

[2]:

 Host-based Intrusion Detection System (HIDS), where sensors to

detect an intrusion are focused on a single host.

 Network-based Intrusion Detection System (NIDS), where sensors

are focused on a network segment.

 Distributed Intrusion Detection System (DIDS) which integrates both

types of sensors (i.e., HIDS and NIDS).

According to the underlying technology and the characteristics of the

system to be protected, DIDS can be categorized as Mobile Agent Intrusion

Detection Systems (MAIDS), Grid based Intrusion Detection Systems

(GIDS), and recently Cloud based Intrusion Detection Systems.

Several deficiencies of current IDSs solutions hinder their adoption in a

cloud environment. As an example, an attack against a cloud can be silent for

a host-based IDSs (HIDS), because cloud-specific attacks may not leave

traces in the operating system of the node running the host-based IDS. Since

in a cloud computing environment distinct users share both computing and

communication resources, attacks may be originated within the infrastructure

itself. Hence, an attack originating in the cloud can be directed against

resources of the same cloud. This increases the complexity of attack

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

4

detection for a NIDS as all the communications that implement the attack are

among cloud nodes. Current distributed IDSs have shown their effectiveness

in some large scale networks, but their adoption in cloud computing is still

challenging. The complex architecture of a cloud infrastructure and the

distinct kinds of users lead to different requirements and possibilities for an

IDS. As an example, a distributed hierarchical IDS may be scalable but it has

the problem of single point of failure because if any part of an internal node

is disabled, a branch of the IDS will be unreliable. Furthermore, some IDSs

lack the flexibility to support distinct cloud architectures. Another deficiency

is that several IDSs detect attacks through either the behaviour base

technique or the knowledge base one. Instead, a good IDS should integrate

both techniques because the latter is efficient in detecting known attack

patterns with low false positive alarms, i.e. an alert almost always signals a

real attack, but it does not detect unknown attacks or even trivial

modification of known attacks. Instead, the knowledge based technique

detects unknown attacks but it has high false positive alarms.

Hence, a proper defense strategy needs to:

1. Support distinct cloud computing environments.

2. Be distributed, resilient and with no single point of failure.

3. Protect the intrusion detection components.

4. Isolate the host from any vulnerability from the executed tasks.

5. Integrate behaviour and knowledge base techniques to increase attack

coverage.

6. Collect and correlate user behaviours from all environments in the

cloud system.

Building a new cloud based IDS is a new challenging area of research.

Few papers have addressed cloud IDSs in general and some have proposed

some frameworks for cloud systems but without any real implementation and

most of them do not satisfy the previous requirements.

The main goal of this thesis is to develop a framework for a cloud based

intrusion detection system that satisfies the previous requirements and deals

with the following attacks:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

5

1. Masquerade attacks: they abuse the privileges of a legitimate user to

illegally use a service’s abundant resources. Only a behaviour based

analysis can detect them.

2. Host based attacks: they may be consequences of the previous attacks

and result in an observable user behavior anomaly or leave some

trails at the VM operating system.

3. Network-based attacks: They generally result in an observable user

behavior anomaly or leave some trails at the Network packets.

4. Distributed Attacks: they are implemented with the help of tools or

exploit scripts and include denial-of-service attacks, probes, and

worms. They may leave their trails at several locations of a cloud’s

infrastructure.

The proposed framework assumes a fully distributed architecture to

provide a scalable and elastic solution. To avoid a single point of failure, the

framework distributes the processing tasks among cloud nodes. It isolates

these tasks from the cloud node system, by executing them in a VM

monitored by a VM monitor. The framework achieves a high coverage of

attacks by integrating both knowledge and behaviour based techniques. It

also provides an audit system to support the adoption of the framework in

distinct cloud computing environments. This system also collects and

correlates the user behaviours from the cloud VMs. The framework

integrates the alerts from different IDSs and builds a final summarized attack

report.

To support several deployment models we have introduced two versions

of the framework, the Cloud based Intrusion Detection System, CIDS, and

its full virtual version, CIDS-VERT. CIDS P2P architecture hinders

scalability but it achieves a high performance and low network overhead in

small or private clouds. CIDS-VERT is ideal for hybrid and public clouds

due to its better scalability and controllability. However, it consumes a large

amount of resources because it reserves some management VMs for the

detection and management tasks. The diagram in Figure 1 shows the main

contributions of the thesis and the corresponding chapters.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

6

Figure.1: Contributions of the thesis and chapters organization

The first contribution is CIDD, the first cloud intrusion detection dataset

that can be used to train and test any cloud IDS. It consists of both

knowledge and behavior based audit data and has real instances of host and

network based attacks and masquerades. CIDD provides complete diverse

audit parameters from several environments to evaluate the effectiveness of

detection techniques.

The second contribution is related to behaviour based detection. The

thesis defines the Data-Driven Semi-Global Alignment, DDSGA approach

[DDSGA], and three detection strategies. DDSGA detects masquerade

attacks in the cloud by aligning the sequence of the current session to the

previous sequences of the same user. Then, it labels misalignment areas as

anomalous and the presence of several anomalous areas is a strong indicator

of a masquerade attack. DDSGA tolerates small mutations in user command

sequences by allowing small changes in the low-level representation of the

commands functionality. It also tolerates changes in user behaviour by

updating the user signatures according to the current behaviours. We show

that DDSGA improves both accuracy and performance with respect to

current solutions. We apply three detection strategies based on DDSGA to

detect masquerade attacks in clouds. The first one applies DDSGA to

sequences of correlated audits from the VMs operating systems. This

strategy is applied independently to two kinds of audits, system calls and

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

7

security events. The second strategy analyzes NetFlow data from the

network environment. The third strategy improves the overall detection by

integrating the first two strategies through a neural network. The evaluation

has also considered the correlation of the behavior of the same user in

distinct cloud nodes. We have evaluated three alternative correlation models

through both CIDS and CIDS-VERT: Audit Exchange, Independent, and

Centralized-Backup. These models are detailed in Chapter 3 that shows how

the Independent model is the ideal one in combination with CIDS for small

and private cloud, while the Centralized-Backup model is the most suitable

one in combination with CIDS-VERT for large clouds such as public and

hybrid ones.

Finally, the third contribution is related to signature based detection. We

introduce a hierarchical architecture that supports two deployments, a

distributed and a centralized one for the proposed IDS. The deployments use

host based and network based IDSs that exploit signature based analysis

techniques. The hierarchical architecture overcomes some limitation of

current IDSs and can efficiently detect host, network, and DDoS attacks.

Furthermore, we discuss the integration and the correlation of alerts that

come from all detection components.

We briefly outline the content of the various chapters:

Chapter 1: Background and Main Concepts.

It introduces the main concepts underlying the thesis together with DDoS

attacks and the related work on their detection in clouds. Finally, it outlines

the software tools that the thesis uses.

Chapter 2: Intrusion Detection and Related Works.

It introduces the definition, architecture and techniques of intrusion

detection systems, and surveys the previous works on intrusion detection,

masquerade detection techniques, and the current intrusion detection

datasets.

Chapter 3: CIDS and CIDS-VERT Frameworks and their Correlation

Models.

It describes the components, architecture, testbed, pros and cons of both

CIDS and CIDS-VERT frameworks. Furthermore, it discusses the proper

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

8

framework for each cloud deployment model. Finally, it details the three

correlation models, Audit Exchange, Independent, and Centralized-Backup.

Chapter 4: Cloud Intrusion Detection Dataset (CIDD).

After discussing the major challenges to build a cloud dataset, it

introduces the Log Analyzer and Correlator System (LACS) that helps in

building CIDD dataset. Then it describes in details the distribution of attacks

and masquerades in CIDD and compares CIDD against other publicly

available datasets.

Chapter 5: Data-Driven Semi Global Alignment (DDSGA).

It introduces the DDSGA approach and describes its three main phases

namely, configuration, detection, and update. It outlines the modules and

experimental results for each phase and compares DDSGA against other

approaches.

Chapter 6: Detecting Masqueraders through System Calls and NetFlow

Data.

It introduces three strategies to detect masquerade attacks. The first one

is based on sequences of system calls audits. We outline how it builds a

consistent user profile from the features extracted from the system calls.

Then, we adapt DDSGA to the extracted features by considering the CIDS

and CIDS-VERT frameworks using the three correlation models in Chapter

3. The second strategy is based on NetFlow data. We outline the main

features extracted from the NetFlow data and the adaption of DDSGA to

these features. The third detection strategy integrates the other two through a

neural network. After evaluating the three strategies in isolation, the chapter

compares their accuracy and performance.

Chapter 7: Detecting Masqueraders through Security Events and

NetFlow Data.

Also this chapter considers the three strategies of Chapter 6 but with

different audit data and distinct operating system. The first detection strategy

uses sequences of security events. We outline the main features extracted

from the security events and how DDSGA is adapted to these features by

considering the CIDS and CIDS-VERT frameworks with the Independent

and Centralized-Backup correlation models respectively. Lastly, we evaluate

the efficiency and the computational performance of this strategy. The

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

9

second and third strategies are evaluated as in Chapter 6. Finally, this chapter

compares the strategy based on security events and the one that uses system

calls introduced in Chapter 6.

Chapter 8: Efficient Deployments of HIDS and NIDS using A

Hierarchical Architecture of CIDS-VERT

It discusses the detection of host, network, and DDoS attacks by

signature based techniques. It introduces a hierarchical architecture of CIDS-

VERT framework that supports two deployments: Distributed and

Centralized one, and outlines their relative advantages. Furthermore, it

discusses the approaches to integrate, correlate, and summarize distinct alerts

from the signature based techniques i.e., HIDS and NIDS. Finally, this

chapter shows some experimental results and evaluates the accuracy of the

proposed deployments.

Conclusion and Future Work:

This section draws conclusion remarks and outlines future work.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

10

Chapter 1

Background and Main Concepts

This chapter introduces the main concepts underlying the thesis namely

the definition of cloud computing systems from the unique perspectives of IT

network and security. Furthermore, we introduce the cloud essential

characteristics and deployment and service models. We also present cloud

security definition, the risks a cloud user should assess before committing

and top threats to clouds. We also present some miscellaneous concepts

regarding Virtual Machines (VM), Virtual Machine Monitors (VMM),

system calls, security events, NetFlow, Entropy, Threshold Logic Unit

(TLU), and the host based, network based attacks. Finally, this chapter

discusses DDoS attacks and their detection in cloud systems and outlines the

software tools we use.

1.1. Cloud Computing

Each of the current definitions of cloud systems addresses cloud systems

from a distinct perspective. Here we assume the perspectives of IT network

and security.

According to NIST (National Institute of standards and Technology) [2],

“Cloud computing (‘cloud’) is an evolving term that describes the

development of several existing technologies and approaches to computing

into something different. Cloud separates application and information

resources from the underlying infrastructure, and the mechanisms used to

deliver them”. According to Ian Foster et al. [4], “Cloud computing is a

large-scale distributed computing paradigm that is driven by economies of

scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services are delivered on

demand to external customers over the Internet”. There are a few key points

in this definition. First, cloud computing is a specialized distributed

computing paradigm; it differs from traditional ones in that

1) It is massively scalable.

2) Can be encapsulated as an abstract entity that delivers different levels

of services to customers outside the cloud.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

11

3) It is driven by economies of scale, and 4) the services can be

dynamically configured via virtualization or other approaches and

delivered on demand.

NIST defines cloud computing in terms of five essential characteristics,

three service models, and four deployment models. They are summarized in

visual form in Figure 1.1 and explained below as in [2, 4].

1.1.1. Essential Characteristics of Cloud Computing

Cloud services exhibit five essential characteristics that demonstrate their

relation to, and differences from, traditional computing approaches [2]:

 On-demand self-service. A consumer can unilaterally provision

computing capabilities as needed and automatically, without human

interaction with a service provider.

 Broad network access. Computing capabilities are available over the

network and accessed through standard mechanisms that promote use by

heterogeneous thin or thick client platforms (e.g. mobile phones, laptops,

and PDAs) as well as other traditional or cloud based software services.

 Resource pooling. A provider pools computing resources to serve

several consumers using a multi-tenant model, which dynamically

assigns and reassigns physical and virtual resources according to

consumer demand. There is a degree of location independence in that the

customer generally has no control or knowledge over the exact location

of the provided resources.

 Rapid elasticity. Capabilities can be rapidly and elastically

provisioned, in most cases automatically, and rapidly released to quickly

scale out and scale in. For a consumer, the capabilities appear to be

unlimited and can be purchased in any quantity at any time.

 Measured service. Cloud systems automatically control and optimize

resource usage by leveraging a metering capability according to the type

of service. Usage can be monitored, controlled, and reported, providing

transparency for both the provider and the consumer.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

12

Figure 1.1: NIST Visual Model of Cloud Computing Definition

1.1.2. Cloud Service Models

In general, clouds offer services at three different levels [4]: IaaS, PaaS,

and SaaS. However, some providers can expose services at multiple levels.

 Software as a Service (SaaS) delivers software that is remotely

accessible by consumers through the Internet with a usage-based pricing

model. E.g., Live Mesh from Microsoft allows files and folders to be

shared and synchronized across multiple devices.

 Platform as a Service (PaaS) offers a high-level integrated

environment to build, test, and deploy custom applications as in Google’s

App Engine [7]. Inside this layer resides the middleware system, a

portable component for both grid and cloud systems. Examples include

WSO2 Stratos [5], Windows Azure [6], and our middleware HIMAN [8,

9, and 10].

 Infrastructure as a Service (IaaS) provisions hardware, software,

and equipments to deliver software application environments with a

resource usage-based pricing model. Infrastructure can scale up and

down dynamically based on application resource needs. Typical

examples are Amazon EC2 (Elastic Cloud Computing) Service [11],

Eucalyptus [12], Microsoft Private Cloud [13].

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

13

1.1.3. Cloud Deployment Models

There are four deployment models for cloud services, with derivative

variations that address specific requirements:

 Public Cloud. The cloud is made available to the general public or a

large industry group and is owned by an organization selling cloud

services.

 Private Cloud. The cloud is operated solely for a single

organization. It may be managed by the organization or by a third

party, and may exist on-premises or off- premises.

 Community Cloud. The cloud is shared by several organizations to

support a specific community that has shared concerns. It may be

managed by the organizations or by a third party and may exist on-

premises or off-premises.

 Hybrid Cloud. The cloud infrastructure consists of two or more

clouds (private, community, or public) that remain unique entities but

are bound together by standardized or proprietary technology that

enables data and application portability.

1.2. Cloud Computing Security

Cloud computing may adopt the same control of any IT environment.

However, the cloud service models, the operational models, and the

supporting technologies change the risk landscape for an organization with

respect to traditional IT. The next section outlines seven risks a user should

consider before committing and seven top threats to cloud computing

systems.

1.2.1. Seven Risks to be analyzed before Committing

There are seven possible risks a user should assess before committing

[14]:

 Privileged user access: sensitive data should be processed outside the

enterprise only with the assurance that they are only accessible and

propagated to privileged users.

 Data segregation: is the user data should be fully segregated from data

of other users.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

14

 Regulatory compliance: a cloud provider should have external audits

and security certifications and the infrastructure should comply with

regulatory security requirements.

 Data location: the cloud provider should commit to storing and

processing data in specific jurisdictions and to obey local privacy

requirements on behalf of the customer;

 Recovery: the provider should offer an efficient replication and

recovery mechanism to fully exploit the potentials of a cloud in the

event of a disaster;

 Investigative support: support should to be ensured for forensics and

investigation with a contractual commitment.

 Long-term viability: a user data should be accessible even when the

provider is acquired by another company or the user moves to another

provider.

1.2.2. Top Seven Threats to Cloud Computing

We briefly highlight seven threats that CSA (Cloud Security Alliance)

[1] ranks and that apply across all of the different cloud computing models.

Threat #1: Abuse and Nefarious Use of Cloud Computing

The top threat that CSA identifies is the abuse and nefarious use of cloud

computing. This is related to the use of botnets to spread spam and malware.

Attackers can infiltrate a cloud system, by abusing the relative anonymity

behind the cloud registration system and usage models. Then, they can

upload malware and use the power of the cloud to attack other machines. The

CSA suggests to:

1. Monitor public blacklists for one’s own network blocks.

2. Use a stricter initial registration and validation processes.

3. Enhanced credit card fraud monitoring and coordination.

Threat #2: Insecure Interfaces and APIs

The CSA cautions against unsure application programming interfaces

between applications for interoperability. The CSA suggests to:

1. Analyze the security model of cloud provider interfaces.

2. Ensure strong authentication and access controls are implemented in

concert with encrypted transmission. Some Grid and Cloud portals

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

15

can be used for this target e.g. Nubifer [15], Ubuntu Portal [16], and

our HIMAN-GP [17].

3. Understand the dependency chain associated with the API.

Threat #3: Malicious Insiders

Organizations need to assess the risk on the service provider's end and

demand segregation of duties to prevent a malicious insider from accessing

data. The CSA suggests to:

1. Enforce strict supply chain management and conduct a

comprehensive supplier assessment.

2. Specify human resource requirements as part of legal contracts.

3. Require transparency into overall information security and

management practices, as well as compliance reporting.

4. Determine security breach notification processes.

Threat #4: Shared Technology Issues

Cloud users have to be aware of vulnerabilities in shared technologies,

such as VMs, communications systems or key management technologies. A

zero-day attack can use these technologies and quickly spread across a public

cloud and expose all data within it. The CSA suggests to:

1. Implement security best practices for installation/configuration.

2. Monitor environment for unauthorized changes/activity.

3. Promote strong authentication and access control for administrative

access and operations.

4. Enforce service level agreements for patching and vulnerability

remediation.

5. Conduct vulnerability scanning and configuration audits.

Threat #5: Data Loss or Leakage

There are several alternative ways to compromise data. Deletion or

alteration of records without a backup is an obvious example. A cloud

increases the risk of data compromise, due to risks and challenges which are

either unique to cloud, or more dangerous because of the architectural or

operational characteristics of a cloud environment.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

16

The CSA suggests to:

1. Implement strong API access control.

2. Encrypt and protect integrity of data in transit. There are many

encryption schemes for high performance systems e.g., GridCrypt

[18] and our “Ultra GridSEC” [19, 20, 21].

3. Analyzes data protection at both design and run time.

4. Implement strong key generation, storage and management, and

destruction practices.

5. Contractually demand providers wipe persistent media before it is

released into the pool.

6. Contractually specify provider backup and retention strategies.

Threat #6: Account or Service Hijacking

Cloud users need to be aware of account service and traffic hijacking.

Examples for attacks that may cause these threats are: man-in-the-middle,

phishing, spam campaigns, and DDoS. Cloud solutions add a new threat to

the landscape. If an attacker gains access to a user credentials, then she can

eavesdrop on activities and transactions, manipulate data, return falsified

information, and redirect the user clients to illegitimate sites. The CSA

suggests to:

1. Prohibit the sharing of account credentials between users and

services.

2. Leverage strong two-factor authentication techniques where possible.

3. Employ proactive monitoring to detect unauthorized activity.

4. Understand cloud provider security policies and SLAs.

Threat #7: Unknown Risk Profile

One of the tenets of cloud computing is the reduction of hardware and

software ownership and maintenance costs to allow companies to focus on

their core business strengths. This has clear financial and operational

benefits, which must be weighed carefully against the contradictory security

concerns when the migration to a cloud is driven by expected saving only by

groups who may lose track of security issues. Information about who is

sharing an infrastructure may be pertinent, in addition to network intrusion

logs, redirection attempts and/or successes, and other logs. An IDS is the

ideal tool for this threat, as it can deal with all suggestions of CSA like:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

17

1. Disclosure of applicable logs and data.

2. Partial/full disclosure of infrastructure details (e.g., patch levels,

firewalls, etc.).

3. Monitoring and alerting on necessary information.

1.3. Virtual Machines

A virtual machine (VM) is as an efficient and isolated duplicate of a real

one [22]. Typical applications of VMs include the development and testing

of new operating systems, simultaneously running distinct operating systems

on the same machine, and server consolidation [23].

A “virtual machine” is a fully protected and isolated copy of the

underlying physical machine’s hardware that gives to its users the illusion of

a dedicated physical machine. Figure 1.2 illustrates the traditional

organization of a virtual machine system. The virtual machine monitor,

VMM, is a software layer that takes complete control of the machine

hardware and creates VMs, each of which behaves like a complete physical

machine with its own operating system (OS).

Figure 1.2: A virtual machine monitor

 To maximize performance, the VMM gets out of the way

whenever possible and allows a VM to execute directly on the

hardware, albeit in a non-privileged mode. The monitor regains control

anytime the VM tries to perform an operation that may affect the

correct operation of other VMs or of the hardware. The monitor safely

emulates the operation before returning control to the VM. The result

of a complete machine virtualization is the creation of a set of virtual

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

18

computers that runs on a physical computer. An OS that runs in a VM

is a guest OS. Since VMs are isolated from each other, the crash of a

guest OS does not affect other VMs. [23]

VMMs build some useful properties for system security, among them

[24, 25]:

 Isolation: Software running in a VM cannot access or modify

the monitor or other VMs.

 Inspection: The VMM can access the entire VM state.

 Interposition: The VMM can intercept and modify operations

issued by a VM.

There are two classical approaches to organize VMs [26, 27]:

 A type II VMM runs on top of a hosting operating system and then

spawns higher level virtual machines. Examples include the JavaVM,

Dot Net environment, Virtualbox [28] and Hosted Xen project

(HXen) [29]. These VMMs monitor their VMs and redirect requests

for resource to appropriate APIs in the hosting environment. Figure

1.3-A depicts type II VMM.

 A type I VMM, or hypervisor runs directly on the hardware without

the need of a hosting OS. Examples include the mainframe

virtualization solutions offered by Amdahl and IBM, and on modern

computers by solutions like VMware ESX [30], Xen [31] and

Windows virtualization. Figure 1.3-B depicts type I VMM.

 Figure 1.3-A: type II VMM. Figure 1.3-B: type I VMM (Hypervisor)

1.4. System Calls

A system call [32] is a request for an action of an OS on behalf of a user

program. System calls provide an essential interface between a process and

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

19

the OS like the API. On Unix-like systems, this API is usually part of an

implementation of the C library (libc). On Windows systems, it is part of the

Native API. Several tools can record the system calls sequences, the most

common ones are the UNIX tool “strace” and the Linux audit daemon

“auditd”. System calls can be categorized into five main categories [32]:

1. Process Control

2. File management:

3. Device Management:

4. Information Maintenance:

5. Communication:

1.5. The Event Logs

An event is a notification to the user or an entry added to a log that

denotes any significant occurrence in hardware, software, and system

components of a local or a remote computer [33]. The event log service

records application, security, and system events. Event logs support the

prediction, the identification and the diagnosis of system problems.

Monitoring security events helps in detecting attacks and threats. Each OS

has a specific auditing or event log service. In Windows systems it is the

“Event Viewer” service [33]. The log entry consists of two parts, (a) the

header information and (b) event description.

a) Event Header:

This header records [33]:

 Date: The date the event occurred.

 Time: The time the event occurred.

 User: The name of the logged user when the event occurred.

 Computer: The name of the computer where the event occurred.

 Event ID: An event number that identifies the event type.

 Source: The source of the event. This can be the name of a program,

a system component, or an individual component of a large program.

 Type: The type of event.

 Category: A classification of the event by the event source.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

20

b) Event Description

The description of an event depends on its type. Events can be classified into

one of the following types [33]:

 Information: It describes the successful operation of a task, For

example, an Information event is logged when a network driver loads

successfully.

 Warning: It does not imply an urgent necessity but it may indicate a

future problem. For example, a Warning message is logged when

disk space starts to run low.

 Error: It signals a significant problem, such as the failure of a critical

task. For example, the startup of an important process failed.

 Success Audit (Security log): It records the successful execution of a

security action. For example, a user logs onto/off the computer.

 Failure Audit (Security log): It signals a partial failure of a security

action. For example, a user cannot log onto the computer.

Chapter 6 details security events and their important features.

1.6. NetFlow Data (Network Flows)

NetFlow is a network protocol developed by Cisco Systems to collect

network flows. A network flow is a unidirectional sequence of packets that

share seven values [34, 35]:

 Ingress interface.

 Source IP address

 Destination IP address

 IP protocol

 Source port for UDP or TCP, 0 for other protocols

 Destination port for UDP or TCP, type and code for ICMP, or 0 for

other protocols

 IP Type of Service (TOS). Based on TOS values, a packet would be

placed in a prioritized outgoing queue, or take a route with

appropriate latency, throughput, or reliability.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

21

Figure 1.4: NetFlow architecture [34]

Figure 1.4 shows the export of NetFlow records. The router outputs a

flow record when it determines that the flow is finished. It does this by flow

aging: when the router sees new traffic for an existing flow it resets the aging

counter. Flow record can be transmitted at a fixed interval even if the flow is

still ongoing. Several software tools support NetFlow recording such as,

Cisco NetFlow [36], vSphere [37], and sFlow [38]. A NetFlow record can

contain a wide variety of information about the flow traffic such as [34]:

 Input interface index.

 Output interface index or zero if the packet is dropped.

 Timestamps for the flow start and finish time, in milliseconds since

the last boot.

 Number of bytes and packets observed in the flow

 Layer 3 headers:

 Source & destination IP addresses

 Source and destination port numbers for TCP,UDP, SCTP

 ICMP Type and Code.

 IP protocol

 Type of Service (ToS) value

 For TCP flows, the union of all TCP flags observed over the life of

the flow.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

22

 Layer 3 Routing information:

 IP address of the immediate next-hop along the route to the

destination

 Source & destination IP masks.

1.7. Entropy

The definition of the entropy is a quite broad and general and it is

expressed in terms of the application field. In information theory, entropy

measures the amount of information that is missing before reception and it is

also referred to as Shannon entropy [39]. The conditional entropy (or

equivocation) [40] is one of the information entropy categories that

quantifies the amount of information to describe the outcome of a random

variable Y if the value of another random variable X is known. The entropy

of Y conditioned on X is written as H(Y|X). If H(Y|X=x) is the entropy of the

variable Y conditioned on the variable X taking the value x, then H(Y|X) is

the average of H(Y|X=x) over all possible values of X. Equation 1.1 [40]

formally defines conditional entropy given a discrete random variable X with

support and Y with support .

H(Y|X) = 0 if and only if the value of Y is completely determined by the

value of X. Conversely, H(Y|X) = H(Y) if and only if Y and X are

independent.

 (1.1)

Chapters 6 and 7 use conditional entropy to measure the regularity of the

training data for each user.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

23

1.8. The Artificial Neural Network (ANN)

An ANN [41] is a mathematical function that consists of some artificial

neurons that receives and sums their inputs. Usually the sums are weighted,

and the sum is passed through a non-linear function, a transfer or activation

function.

Figure 1.5: The basic structure of the artificial neuron

As shown in Figure 1.5, the basic structure of the ANN consists of three

types of nodes, input, hidden, and output. The artificial neuron receives m +

1 inputs with signals x₀ through and weights w₀ through . Equation 1.2

defines the output of the k
th

 neuron:

 (1.2)

Where, ϕ is the transfer function that translates the input signals to output

signals.

1.8.1. ANN Transfer Function

Four types of transfer functions are commonly used, Unit step

(threshold), sigmoid, piecewise linear, and Gaussian.

1) Unit step (threshold) function:

The output is one of two values depending on whether the total input is

larger than a threshold x. Figure 1.6 shows the shape of this function.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

24

Figure 1.6: The Unit step (threshold) transfer function

2) Sigmoid function:

The sigmoid function consists of 2 functions, logistic and tangential. The

logistic function has a range 0..1, while the range of the tangential one is -1..

+1. Figure 1.7 shows the shape of this function.

Figure 1.7: The sigmoid transfer function

3) Piecewise Linear function:

The output of the Piecewise Linear function is proportional to the total

weighted output. Figure 1.8 shows the shape of this function.

 Figure 1.8: The Piecewise Linear transfer function

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

25

4) Gaussian function:

Gaussian functions are continuous curves with a bell shape. The node

output is interpreted in terms of class membership (1/0), depending on how

close the net input is to a chosen average value. Figure 1.9 shows the

function shape.

Figure 1.9: The Gaussian transfer function

1.8.2. Threshold Logic Unit (TLU):

TLU [42] is a simple type of ANN similar to the threshold transfer

function that uses a simple model with binary inputs and outputs, some

restrictions on the possible weights, and a more flexible threshold value. Any

boolean function can be implemented by networks of such ANN.

1.8.3. ANN Types

There are different types [41] of neural networks, but they are generally

classified into feed-forward and feed-back networks.

A feed-forward network is a non-recurrent network where the signal

travels in one direction. Input data is passed onto a layer of processing

elements where each element computes a weighted sum of its inputs that

feed the next layer. The process continues through all the layers to compute

the final output. The output layer sometime uses a threshold transfer

function.

A feed-back network has feed-back paths that send the signal in both

directions using loops. All connections between the neurons are possible and

this may result in loops. Because of these characteristics, this type of

networks is a non-linear dynamic system which changes continuously until it

reaches an equilibrium. Feed-back networks are often used in associative

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

26

memories and optimization problems. We use this type of networks to train

our IDS system to adjust the weights of the ANN.

1.9. Host, Network, and DDoS Attacks

Attacks utilize network media and manipulate computing and/or network

resources to severely degrade the performance of the services of an ICT

network and eventually shutdown the entire network. We can classify attacks

according to the type of penetration (inside, outside), type of interactions

(passive, active) and the mechanism to launch the attack. [43, 44]

Penetration Type: Penetration can be carried out as an outsider or as an

insider. Insiders are legal users that are conducting malicious activities

through their accounts or by illegally using other user accounts. Instead, an

outsider launches attacks from outside the network perimeter or implements

probing or scanning attacks to acquire information on the network before

launching the real attacks. Potential outsiders range from amateur to

organized crime, cyber terrorists, and hostile governments.

Interaction Type: Attack classification should also consider the interaction

between the attackers and the network environment. Based on this criterion,

network attacks can be either classified as active or passive. In a passive

attack (e.g., wiretapping, port scanner, idle scan), the attacker listens to the

streams of traffic to gather valuable information. Thus the anomalous

behaviors caused by this type of attacks are hard to observe because they

leave the minimum footprint. Active attacks aim to change the configuration

of system resources or affect their operation (e.g., Denial of Service Attacks,

Spoofing, Man-in-middle attack, ARP positioning). They trigger an

anomalous behavior that can be observed and quantified provided that the

appropriate metrics are used.

Mechanism Type: the mechanisms and techniques to launch an attack

partition attack into five classes: Denial of Service (DoS), User to Root

(U2R), Remote to Local, probing, and virus/worm attacks.

Denial of Service (DoS) attack: It prevents services for the users by

limiting or denying their access to system resources such as bandwidth,

memory, buffers, and/or processing power. To this purpose, these attacks can

target software vulnerabilities, change configuration, or exhaust the network

resource to its limit. Possible examples include ICMP Nukes, Teardrop,

Land Attack, the ping of death, and playing with the configuration of a

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

27

compromised router. While these attacks can be easily fixed by installing

proper software patches, reloading correct configuration, and limit the access

to resources, they impose a critical load on network administrators that

increases with the number of attacks. Section 1.9.2 describes a popular attack

in this class, the Distributed Denial of Service (DDoS).

User to Root (U2R) attack: Attackers with login access can bypass

authentication to gain the higher privileges of another user in controlling and

accessing the system.

Remote to Local (R2L) attack: Attackers can bypass normal authentication

and execute commands and programs on the target with local machine

privileges.

Probe/Scanning attacks: These attacks blueprint the network and its

resources to discover vulnerability or entry points that the attacker can use to

penetrate or attack network resources.

Worm/virus: This attack is run by a malicious piece of code that spreads

across a network and targets hosts or network resources to cause dysfunction,

data loss, or data theft.

Attacks against an information system can also be classified according to

the number of involved computers. An attack that may involve even a large

number of computers is the DDoS ones outlined in Section 1.9.2. Attacks

can also be classified into network or host ones according to the mechanism

or the type of vulnerabilities they exploit.

 [45] presents classification criteria based on attack surfaces of the cloud

computing scenario participants as shown in Figure 1.10.

Figure 1.10: A Taxonomy for attacks on cloud services

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

28

(a) Service-to-User: includes attacks in common client-server

architectures, e.g. buffer overflow attacks, SQL injection, or privilege

escalation.

(b) User-to-Service: includes attacks in the common environment of client

program, e.g. browser-based attacks, attacks on browser caches, or

Phishing attacks on mail clients.

(c) Cloud-to-Service: includes attacks of a service instance against its

hosting cloud system, e.g. the resource exhaustion attacks, or attacks

on the hypervisor.

(d) Service-to-Cloud: incorporates attacks of a cloud provider against a

service, e.g., availability reductions, privacy related attacks or even

malicious interference. This category is by far the most critical one, as

the provider can implement them in a rather simple way and attack

impacts are tremendous.

(e) Cloud-to-User: includes user attacks against the interface of the cloud

system to control the provided services and that enables the customers

to add new services or change the number of service instances.

(f) User-to-Cloud: involves every kind of attack that targets a user and that

originates from the cloud system. It is similar to the phishing attempts

to trigger a user into manipulating cloud-provided services.

1.9.1. Host and Network Attacks and Their Libraries

We briefly classify attacks into network and host ones and describe the

libraries that support their implementation.

Network attacks exploit vulnerabilities in the communication protocols or

in the interconnection structure to attack the integrity and confidentiality of

communications. As an example, since most communications adopt an

unsecured or clear text format, an attacker that can access network data paths

can also read and interpreter the traffic these paths transmit. Some examples

of these attacks are [43]:

(1) Eavesdropping: it is also known as sniffing or snooping. This attack

monitors the network traffic.

(2) Data Modification: it modifies transmitted data in a way that cannot

be detected by the sender or the receiver.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

29

(3) Identity or IP Address Spoofing: it builds IP packets that appear to

originate from valid addresses to modify, reroute, or delete some

data. It is supported by specialized libraries.

(4) Denial-of-Service Attack (DoS): It shuts down applications or

network services by flooding them with invalid traffic. This can

prevent legal user from accessing network resources.

(5) Man-in-the-Middle Attack: This attack inserts a distinct entity

between two communicating components to capture and modify their

communications.

Host based attacks are enabled by vulnerabilities in the host OS or in the

applications. Some classes of these attacks are [Host-attack]:

 Buffer overflow: It violates memory safety to overwrite adjacent

memory positions. It exploits the lack of controls on the size of a

parameter

 Rootkit: It installs software components to hide a malicious processes

running on the node and that grants to the attacker a privileged access

to the system.

 Format string: It can crash a program or execute harmful code. It

exploits the lack of control on user inputs such as the format string in

some C functions.

Several libraries have been developed to support host and network

attacks. As an example, Metasploit [46] is a consistent and reliable library of

constantly updated exploits for network, OSs and applications. An exploit is

a code fragment to automate, at least partially, an attack. Metasploit defines a

complete environment to develop new tools and automate every aspect of an

attack. It simplifies the development of attack vectors to extend its exploits,

payloads, encoders to create and execute more advanced and specialized

attacks against a target system.

1.9.2. DDoS Attacks

Distributed Denial of Service (DDoS) attacks [47] are a class of attacks

that disrupt the service quality of a system. It is worth considering these

attacks in relation with clouds because their effectiveness increases if an

attacker can use the massive amount of resources in a cloud.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

30

Figure.1.11: The DDoS Strategy.

Figure 1.11 shows the four elements of DDoS attacks [48] namely:

(1) The attacker machine.

(2) The handlers: these are hosts controlled by the attacker as a result of a

previous attack. They run some malware and act as an intermediate

interfaces to control the agents and route to them the attacker

commands.

(3) The agents or zombie hosts: also these hosts are controlled by the

attacker. They run some malware that either implements an attack on

behalf of the attacker (botnets) or generates a stream of packets

towards the target system.

(4) The victim or target system.

While several kinds of DDoS attacks exist, any implementation of these

attacks includes the following stages:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

31

(1) Search of vulnerable hosts to act as handlers and zombies. This step

can exploit a standard vulnerability scanner such as Nessus [51].

(2) Compromising the vulnerable hosts: The attacker exploits the

vulnerabilities returned by the scanner to attack some vulnerable hosts

and stealthy install some malware.

(3) Communication, broadcasting, and flooding: The attacker

communicates a command to one or more handlers. Then, the handler

broadcasts any received commands to hundreds or even thousands of

zombies that start flooding the network of the target system until the

attacker sends a stop command.

In the experiments, we implement DDoS attacks through the LOIC

library [49]. LOIC is one of the most powerful free DOS and DDOS

attacking tool, it attempts to open several connections to the same target host

and continuously floods it with false TCP or UDP packets, or with HTTP

requests that lead to a service disruption. A DDOS attack runs LOIC through

multiple zombies. Another library we have used is the CPU Ping Death

library [50]. It is a DDoS attacking tool that opens multiple floods to a large

number of hosts and continuously floods them with fake packets and HTTP

requests to reduce their bandwidth and their performance.

1.9.3. Current DDoS Detection Techniques in Cloud systems.

We briefly review some IDSs that have recently been proposed to detect

DDoS attacks in clouds.

[52] investigates the effect of DDoS on clouds and proposes an IDS

based on the behavioral threshold. The IDS assumes that a user is attacking

the system if the user requests are outside the normal user range. The

threshold is automatically determined as a dynamic variable according to the

network position and pressure traffic. To simplify the discovery of legal

users, several solutions may be integrated with the IDS such as load

balancing of the network traffic and a honeypot [53]. The latter discovers the

attacker signatures by analyzing the collected data. The IDS does not

correlate network events in distinct virtual zones of the cloud. Furthermore,

no deployment in a real cloud system is described and the accuracy and the

performance of the IDS are not evaluated.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

32

[54] uses an IDS sensor such as the version of Snort [55] installed on

VMware ESX [56] machine that sniffs both in-bound and out-bound traffic

to detect DoS attacks. Snort analyzes in-bound packets and looks for several

intrusion patterns. If at least one matches, it drops all the packets from the

same IP address. The accuracy and performance of this solution is not

evaluated. Furthermore, also this solution does not correlate network events

to discover attacks against several virtual zones.

[57] proposes a cooperative IDS that reduces the impact of DoS attack in

each cloud regions. Several IDS components are distributed across these

regions and a cooperative module receives their alert messages. Then, a

majority vote determines the trustworthiness of these alerts. This system

avoids any single point of failure but its accuracy is not satisfactory.

Furthermore, it has not been evaluated against a DDoS attack.

The analysis of current solutions confirms that a defense strategy for

clouds against DDoS attacks introduces some further requirements with

respect to those for traditional systems. To be adopted in clouds, a solution

needs to:

(1) Be distributed and scalable,

(2) Avoid single points of failure,

(3) Correlate the user behaviours in distinct environments.

(4) Integrate different service models.

1.10 Software Tools Used in the Thesis Work

In the following, we highlight the software tools to build and deploy the

proposed framework.

A. Cloud Management Software

In our practical deployments, we used Microsoft Private Cloud [13] in

our CID-VERT framework and VMware system in CIDS framework to

control the deployment of the VMs and applications and to manage the

creation of the virtual networks.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

33

1) Microsoft Private Cloud

Microsoft private cloud [13] offers traditional IaaS services, such as VMs

on demand and supports for deploying multi-tier applications, monitoring

and updating those applications, and automation services. It relies on several

different System Center 2012 components and supports multiple type-1

hypervisors, see Figure 1.12, such as: Microsoft Hyper-V [13], VMware

ESX/ESXi [56], and Citrix XenServer [58]. It also supports conventional

compute, storage, and networking hardware along with pre-packaged

hardware configurations that conform to the Hyper-V Cloud Fast Track

specification. [59]

Figure 1.12: The main components of Microsoft private cloud. [59]

The components that Microsoft private cloud relies on are [59]:

 System Center Virtual Machine Manager (VMM) 2012: it provides

the fundamental services for creating and managing clouds as well

as to deploy and update VMs and applications.

 System Center App Controller 2012: it is a self-service portal for

requests made directly to a private cloud created with VMM 2012.

 System Center Service Manager 2012: it provides automated IT

service management and an associated self-service portal.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

34

 System Center Orchestrator 2012: it provides a way to automate

interactions among other management tools such as VMM 2012

and Service Manager.

 System Center Operations Manager 2012: it monitors VMs,

applications, and other aspects of a private cloud. Then, it fires

actions to fix problems it detects.

All these technologies depend on Windows Server 2012 and Active

Directory.

2) VMware Workstation

VMware Workstation [60] is a type-2 hypervisor that enables users to set

up multiple VMs that supports the following functions [60]:

 Bridging existing host network adapters.

 Share physical disk drives and USB devices with a virtual machine.

 Simulate disk drives.

 Save "snapshots" for the VMs which can later be restored to return

the virtual machine to the saved state.

B. Intrusion Detection Software

In our deployment, we used some open source IDSs and tools to detect

host, network, and DDoS attacks based on the signature based analysis

techniques namely, OSSEC, Snort, and OSSIM.

1) OSSEC

OSSEC [61] is an Open Source Host-based Intrusion Detection System.

It performs log analysis, file integrity checking, policy monitoring, rootkit

detection, real-time alerting and active response. It runs on most OSs and it

has two types of installation, Local and Agent-Server. In the local

installation, OSSEC only protect a local machine. Instead, the Agent-Server

installation protects the machines of the network. The agents are installed in

several hosts systems to report back to a central OSSEC server to aggregate

the information from the agents, analyze it and fires alerts.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

35

Figure 1.13: The Analysis flow chart of OSSEC

 As shown in Figure 1.13, the analysis processes includes pre-decoding,

decoding, rule matching, and alerting.

 The Pre-decoding process extracts the static information such as the

event message, the location or the program name.

 The Decoding process extracts non static information such the attributes

of the regular expression that defines each field.

 The Rule Matching process applies the Rule Matching Engine to

determine if the received event matches any stored rules to fire an alert.

 The Alerting process determines where the rules should be sent. Alerts

can be emailed to the user or logged into database.

2) Snort

Snort [55] is an open source network intrusion detection system that can

log network packets. It uses a rule-based language that integrates signature,

protocol, and anomaly inspection methods. Snort consists of five main

components [55], see Figure 1.14, namely, Packet Decoder, Preprocessors,

Detection Engine, Logging and Alerting, and the output module.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

36

Figure 1.14: Snort Architecture

The analysis processes of Snort are summarized below:

(1) It captures packets from network using “LibPCap” component.

(2) The packet decoder component receives packets from different types of

network interfaces (Ethernet, SLIP, PPP…), prepares a packet for

processing and fits it at the data structure.

(3) The preprocessor component prepares data for the detection engine. It

also handles defragmentation and TCP streams and detects anomalies

in packet headers.

(4) The detection engine, the most important component, detects if any

intrusion activity exists in a packet by applying a rule-based string

matching algorithm. The algorithm dissects the packet and applies rules

on different parts of the packet. If a packet matches any rule,

appropriate action is taken. Otherwise no action is taken.

Finally, the Output Module processes alerts and logs and generates the

final output according to the user policy and the packet content.

3) OSSIM

OSSIM [62] provides a common framework for the deployment,

configuration, and management of security tools including IDS sensors. It

offers event collection, normalization, correlation and incident response. We

modified two modules from OSSIM, the normalization and correlation to

integrate all alerts from different IDSs analyzers in the cloud i.e., OSSEC

and Snort alerts by applying the IDMEF protocol. We detail the two

modules in Chapter 8.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

37

Chapter 2

Intrusion Detection and Related Works

This chapter introduces the intrusion detection systems definition,

architecture and techniques. Then, it reviews previous works on intrusion

detection systems and masquerade detection. Finally, it discusses the current

intrusion detection datasets and their deficiencies for cloud systems.

2.1 Intrusion Detection Systems

Intrusion detection [63] is the process of monitoring and analyzing the

events occurring in an ICT system to detect signs of intrusions. Intrusions are

defined as attempts to compromise the confidentiality, integrity, availability

of a system component, or to bypass a security mechanism. They may be

generated by attackers accessing the systems from the Internet or by

authorized users who attempt to gain additional privileges or misuse their

privileges.

Intrusion Detection Systems (IDSs) are software or hardware

components that automate the monitoring and the analysis. There are several

compelling reasons to adopt IDSs [63]:

 To prevent illegal behaviors by increasing the perceived risk of

discovery and punishment.

 To detect attacks and other security violations not prevented by other

security measures.

 To detect and deal with the preambles to attacks

 To document existing threat to an organization.

 To act as quality control for security design and administration.

 To provide useful information about intrusions that do take place,

allowing improved diagnosis, recovery, and correction of root causes.

2.1.1 Intrusion Detection System Architecture

At a very macroscopic level, an IDS can be described [64] as a detector

that processes three kind of information from the system to be protected

(Figure 2.1):

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

38

(1) Long-term information depending upon the technique to detect

intrusions, e.g. a knowledge base of attacks.

(2) Configuration information about the current system state.

(3) Audit information describing the system events e.g., C2 audit trail, the

syslog in the UNIX world, the event log in Windows NT.

The detector removes unnecessary information from the audit trail and

presents a synthetic view of security-related user actions. A decision is then

made according to the probability that these actions are symptoms of an

intrusion.

Figure 2.1: Simple Intrusion Detection System

The following three measures of the efficiency of an IDS have been

highlighted in [68]

(1) Accuracy. An inaccurate IDS flags as anomalous or intrusive a

legitimate action in the environment.

Any IDS has four possible outcomes defined by the IDS reaction

matrix, see Table 2.1. The outcomes are known as. True negatives

(TN) as well as true positives (TP) correspond to a correct IDS

operation when events are successfully labeled as normal and attack,

respectively. False positives (FP) refer to normal events predicted as

attacks, while false negatives (FN) are attacks incorrectly predicted as

normal events. [65, 66]

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

39

Table.2.1: Possible status for an IDS reaction [65, 66]

The following equations compute the rate of these reactions to quantify the

IDS performance [67]:

(2) Performance. The performance of an IDS is the rate at which it

processes audit events. A poor performance prevents real-time

detection.

(3) Completeness. An incomplete IDS fails to detect an attack. The

evaluation of this measure is rather complex due to the lack of global

knowledge of attacks.

Two further properties are defined in [64]:

(1) Fault tolerance or resilience. An IDS should resist to attacks,

particularly to denial of service. This is important because most IDSs

run on top of commercial OSs or hardware which are vulnerable to

attacks.

(2) Timeliness. The performance of an IDS should enable an early reaction

to prevent the attacker from subverting the audit source or the IDS

itself. The corresponding performance measure encompasses both the

native performance of the IDS and the time to propagate the

information and react to it.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

40

2.1.2 Intrusion Detection Methods and Techniques

There are two distinct approaches to detect an intrusion:

A. The search for evidence of attacks based on knowledge accumulated

from known attacks.

B. The search for deviations from a model of normal behavior based

upon observations of a system during a known normal state.

The first approach is referred to as misuse detection or detection by

appearance. The second trend is referred to as anomaly detection or detection

by behavior. We denote the first approach as knowledge-based intrusion

detection because it describes more precisely the adopted technique. The

second approach is characterized as behavior-based intrusion detection. We

highlight both approaches in the next sections with their relative techniques

as in [64]

A. Knowledge-based intrusion detection

Knowledge-based intrusion detection techniques exploit the knowledge

available about specific attacks and system vulnerabilities. The IDS stores

and manages information about these vulnerabilities and looks for attempts

to exploit them. When it detects an attempt, it triggers an alarm. In other

words, any action that is not explicitly recognized as an attack is accepted.

Therefore, knowledge-based intrusion detection systems may achieve a good

accuracy. However, they achieve completeness only if their knowledge of

attacks is updated regularly.

Knowledge-based approaches have the potential for very low false alarm

rates, and the IDS may implement a detailed contextual analysis that

simplifies preventive or corrective actions.

Drawbacks include the difficulty of gathering information on attacks and

keeping it abreast with new vulnerabilities. Knowledge-based method uses

different techniques namely: expert systems, signature analysis, and state

transition analysis.

 Expert systems. These IDSs contain set of rules that describe attacks

[69]. Audit events are translated into facts carrying their semantic

meaning in the expert system and the inference engine draws

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

41

conclusions using these rules and facts. This method increases the

abstraction level of the audit data by attaching a semantic meaning to

it. Rule-based languages [70] are a natural tool for modeling the

knowledge about attacks. This approach allows a systematic

browsing of the audit trail in search for evidence of attempts to

exploit known vulnerabilities.

 Signature analysis. Signature analysis follows the same knowledge-

acquisition approach as expert systems. However, these IDSs exploit

in a different way the knowledge because the method decreases the

semantic level of the attack description by transforming it into

information that can be found in the audit trail. For example, attack

scenarios might be translated into the sequences of audit events they

generate, or into patterns of data in the system audit trail. The

implementation of this technique can be very efficient and it is

therefore adopted by commercial IDSs. As in any knowledge-based

approaches the main drawback is the update to keep up with the

stream of new vulnerabilities and attacks.

 State-transition analysis. This technique [71] was implemented first

in UNIX and later in other environments. It is conceptually identical

to model-based reasoning: it describes attacks as a set of goals and

transitions, but represents them as state-transition diagrams.

B. Behavior-based intrusion detection

Behavior-based intrusion detection techniques assume that an intrusion

can be detected by observing a deviation from the normal or expected

behavior of the system or the users. The model of normal or valid behavior is

extracted from information collected by various means. Then, the IDS

compares this model with the current system activity and raises an alarm

when it observes a deviation In other words, anything that does not

correspond to a previously learned behavior is considered intrusive.

Therefore, the intrusion-detection system might be complete, but its accuracy

poses complex issues.

Behavior based approaches can detect attempts to exploit new and

unforeseen vulnerabilities and they can even contribute to the (partially)

automatic discovery of new attacks. They are less dependent on OS specific

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

42

mechanisms and can also help to detect "abuse of privileges" attacks that do

not actually exploit any security vulnerability. A high false alarm rate is

generally cited as their main drawback because the learning phase may not

cover any possible behavior. Also, behavior can change over time,

introducing the need for periodic on-line retraining, resulting either in the

unavailability of the IDS or in false alarms. If the information system is

under attack when the IDS is learning what is acceptable behavior, the

behavior profile may contain intrusive behavior, which is then not detected

as anomalous. The method uses different techniques namely: statistics,

expert systems, neural network, and user intention identification.

 Statistics. Statistics is the most widely used tool to build behavior-

based IDSs [72]. The user or system behavior is measured by a

number of variables sampled over time. Examples include the login

and logout time of each session, the resource duration, and the

amount of processor-memory-disk resources consumed during the

session. The time sampling period ranges from a few minutes to

about one month. The original model keeps averages of all these

variables and detects whether thresholds are exceeded based on

standard deviations.

 Expert systems. They are useful for policy-based usage profiles but

less efficient than the statistical approach to process large amounts of

audit information.

 Neural networks. Knowledge-based intrusion detection use neural

networks to learn attack traces and seek them in the audit stream.

Currently, a neural network cannot propose an explanation of the

attack because there is no reliable way to understand what triggered

the association. Therefore, IDSs use neural networks to learn the

behavior of actors in the system e.g. users, daemons. Experiments

that used a neural network to predict user behaviors [73] have shown

that the behavior of UNIX root users is extremely predictable because

of the very regular activity generated by automatic system actions or

daemons. Furthermore, the behavior of most users is also predictable

but that of a very small fraction of users is unpredictable.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

43

 User Intention Identification. User Intention Identification [74] is a

technique [75] that models the normal behavior of users in terms of

their high-level tasks. Then, these tasks are refined into actions

related to the audit events observed on the system. The analyzer pairs

each user with a set of tasks the user can perform. Whenever a user

action does not fit the task pattern, an alarm is issued.

2.1.3 Intrusion Detection Message Exchange Format (IDMEF)

The Intrusion Detection Message Exchange Format (IDMEF) [76] is a

XML standard format for messages exchanged among IDSs. This model is

an object-oriented representation of the alert data that the intrusion detection

analyzers transmit to the management systems. It provides a standard,

coherent representation of alerts and it describes the relationship between

simple and complex alerts.

As shown in Figure 2.2, IDMEF Message is the top-level class and it has

two subclasses, Alerts and Heartbeat. A heartbeat message signals the

current status of the IDS analyzer to the central manager or the other way

around and they are sent with a predefined frequency. The absence of a

Heartbeat message denotes a failure of the analyzer or of its network

connection. The Alert message is a response from an IDS analyzer and its

information is used to integrate and correlate the alerts from different IDSs.

The integration is based on the similarity of one or more of the data model

subclasses as following:

a) Attack name or signature given by the classification subclass.

b) Times of creation and of analysis. The two times are based upon the

characteristics of the firing IDS. Hence, two alerts might be

considered similar even though their times of creation and of analysis

differ.

c) Source and target. The structures of the source and target subclasses

are similar; they might be described by an IP address or a host or user

name.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

44

Figure 2.2: IDMEF Data model

2.1.4 Related Work in Intrusion Detection Systems

IDS technology has been proposed as an efficient security measure and is

nowadays widely adopted for securing critical IT-Infrastructures. According

to the protected objectives, IDSs can be categorized to three main categories

namely [77]:

(1) Network-based Intrusion Detection Systems (NIDS).

(2) Host-based Intrusion Detection Systems (HIDS).

(3) Distributed Intrusion Detection Systems (DIDS).

The latter contains both types of sensors (i.e., HIDS and NIDS)

Cloud based IDS is a new trend of researches which extends distributed

IDSs. A few papers have proposed some IDSs frameworks for cloud

systems. Some of these frameworks target SaaS service model, the others

adapt some traditional techniques such as mobile agents. These papers do not

discuss an implementation of the proposed frameworks or sometimes cover

only one service model. This section describes all the previously mentioned

categories of IDSs and reviews previous works on this theme.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

45

(1) Network-based Intrusion Detection Systems

A Network-based IDS (NIDS) detects attacks by capturing and analyzing

network packets. By listening on a network segment or switch, a NIDS can

monitor the network traffic among the hosts connected to the segment.

NIDSs often consist of a set of single-purpose sensors or hosts at various

points in a network. These components monitor network traffic, implement a

local traffic analysis and reports attacks to a central management console

[63].

The best strategy to secure a large-scale network is to partition it into

smaller networks using switches. Separate network segment are then

protected through security technology such as firewalls and IDSs [78].

Figure 2.3 gives an example of NIDSs deployment.

Figure 2.3: An example of network-based intrusion detection system

The advantages of NIDSs are [63]:

(1) A few well-placed NIDSs can monitor a large network.

(2) Their deployment has little impact on an existing network.

(3) They can be made very robust against attack and even made invisible

to most attackers.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

46

The disadvantages [63] are:

(1) NIDSs cannot analyst all the packets in a large or busy network.

Hence, they may fail to recognize an attack launched during periods

of high traffic.

(2) Several advantages of NIDSs do not apply to switch-based networks.

While switches subdivide networks into many small segments,

sometime they do not provide universal monitoring ports where all

the traffic is mirrored. This limits the monitoring range of a NIDS

sensor.

(3) NIDSs cannot analyze encrypted information. This problem is

increasing as more organizations (and attackers) use virtual private

networks.

(4) Most NIDSs can discover that attack is attempted but cannot tell

whether or not it was successful. Hence, if a NIDS detects an attack,

administrators have to manually investigate whether it was

successful.

(5) Some NIDSs become unstable and may crash if network-based

attacks involve fragmenting packets.

(2) Host-based Intrusion Detection Systems

A Host-based intrusion detection system (HIDS) is installed on a host to

monitor suspicious events occurring within it. In other words, a HIDS resides

on network end-points. Unlike NIDSs, HIDSs monitor not only malicious

network traffic but also events within the protected host.

An HIDS is rather powerful [78] because it is designed to operate on a

specific host such as web or a mail server. Hence, it may be integrated with

the software node and be designed to communicate with other network

components and OSs.

Furthermore, HIDSs can complement NIDSs because they can analyze

packets at the application ends and inspect encrypted traffic [78]. Since an

HIDS detects attacks inside its local host, it could not detect attacks from

outside its boundaries. Figure 2.4 gives an example of HDS deployment and

Table 2.2 summarizes advantages and disadvantages of HIDS and NIDS.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

47

Figure 2.4: An example of Host-based intrusion detection system

Table.2.2: Evaluation of HIDS and NIDS

NIDS HIDS

Better for detecting attacks from outside Better for detecting attacks from inside that

NIDS cannot analyze

Examines packet headers & entire packet Does not see packet headers

Host independent Host dependent

Bandwidth dependent Bandwidth independent

Slow down the networks that have IDS

clients installed

Slow down the hosts that have IDS clients

installed

Detects network attacks, as payload is

analyzed

Detects local attacks before they hit the

network

Not suitable for encrypted and switches

network

Well-suited for encrypted and switches

network

Does not perform normally detection of

complex attacks

Powerful for analyzing a possible attack

because of relevant information in database

High false positive rate Low false positive rate

Examples: Snort [55], Cisco Guard XT

[79]

OSSEC[61], Samhain [80], Osiris[81], and

eEye Retina [82]

(3) Distributed Intrusion Detection Systems

A distributed IDS (DIDS) consists of multiple IDSs over a large network.

The IDSs interact in a hierarchical architecture with either several servers or

a unique central server [DIDS-Symantec]. Figure 2.5 shows the tree structure

of a hierarchical architecture where circles represent network nodes and

arrows denote the information flows between different types of nodes. The

leaf nodes represent network-based or host-based collection points. They

gather information that is transmitted to internal nodes, which aggregate

information from multiple nodes. Further aggregation, abstraction and data

reduction occurs at higher level nodes until reaching the root node. This node

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

48

is a command and control system that evaluates attack signatures, issues

responses and reports to an operator console where an administrator can

manually assess status and issue commands. The hierarchical structures

make the IDS vulnerable to direct attacks. Several points of failure exist in

the IDS that have no redundant communication lines or the capability to

dynamically reconfigure relationships if a key component fails. The IDS may

also still be vulnerable because current implementations do not apply

survivability techniques such as redundancy, mobility, or dynamic recovery

[84, 85]. Some known examples of DIDS are EMERALD [86], INBOUNDS

[87]. Sometimes, see Figure 2.6, the IDS collector components over a large

network communicate with a central server to simplify network monitoring,

incident analysis, and instant attack data. The system works as a centralized

IDS but with a collection of distributed collector components.

Figure 2.5 Hierarchical DIDS

Figure 2.6 Unique central server

 The data collection component in Figure 2.6 receives information from

the audit logs and the host internal interfaces or from the network packets.

Then, it transmits information to a centralized analysis component in another

machine (i.e., a server or a dedicated machine) that analyzes it [78]. This

architecture is effective for small numbers of monitored nodes. The

centralized analysis limits the system’s scalability: as more collection

components are added, the processing load on the analysis component

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

49

increases with the overhead on the machine running this component. Also

this architecture represents a single point of failure. Some known examples

of this type of DIDS are NIDES [88], ARMD [89], Stalker [90], and

UNICORN [91].

DIDS can be categorized as Mobile Agent Intrusion Detection Systems

(MAIDS), Grid based Intrusion Detection Systems (GIDS), and Cloud based

Intrusion Detection Systems. We will review them below.

(a) Mobile Agent Intrusion Detection Systems (MAIDS)

The DIDS architecture does not scale well for large networks since any

new component increases the load on the DIDS director, and the data

flowing to the director can consume most of network bandwidth. MAIDS

address these scalability problems by using Mobile Agents (MAs) for

decentralized data analysis.

A software agent is a software entity which functions continuously and

autonomously in a given environment. It can execute activities in a flexible

and intelligent manner that responds to changes in the environment, learns

from its experience and cooperates with other agents [92]. MAs are a type of

software agent with the capability to move from one host to another. For

mobile agents to be useful for intrusion detection, a MA platform has to be

installed on most, if not all, hosts and network devices. There are different

functional and performance requirements [93] to enable the MAs to

successfully detect intrusions. Figure 2.7 shows the movement of an agent

among several platforms.

Figure 2.7: An Agent System Model

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

50

The platform where an agent originates is referred to as the home

platform. Normally, this is the most trusted environment for an agent. One or

several hosts may comprise an agent platform that may support multiple

locations or meeting places where agents can interact. The main advantages

of mobile agent for IDS are reported in [93].

While MAs are a powerful tool, their implementation has been hindered

by security considerations that are critical for IDSs, with the result that most

security research in this field has concentrated upon the architecture to

provide security for mobile agents [93]. The adoption of MAs for IDS poses

several problems [93]:

(1) The security issues related to MAs: there are different security threats

for MAs namely, agent-to-agent, agent-to platform, platform-to-agent,

and other-to-agent platform. The agent-to-agent category represents the

set of attacks where agents attack other agents by exploiting their

security weaknesses. The agent-to-platform category represents the

attacks the agents launch against a platform. The platform-to-agent

category represents the attacks where platforms compromise the

security of agents. The other-to-agent platform category represents the

set of attacks where external entities, including agent platforms,

threaten the security of an agent platform.

(2) The performance issue: MA software will generally hinder rather than

help an IDS to rapidly process events and detect attacks. MA runtime

environments implemented in slow interpreted languages may slow

down MAIDS.

(3) The code size issue: IDS services require a large amount of code. If

agents have to implement specific tasks on multiple OSs then the code

base may become extremely large. The code size may limit the MAID

functionality because an agent transfer takes a long time and a large

amount of computing and network resources.

(4) Lack of a priori knowledge: Large enterprise networks include several

distinct hardware platforms, running several OSs, each with different

configurations and applications. It is not trivial for MAs to have a

priori knowledge about a system and still remain lightweight. Hence, in

a large enterprise, the required priori knowledge may prohibit a rapid

agent transfer.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

51

(5) Coding and Deployment Difficulties: MAs that are developed in-house

or purchased from trusted vendors are likely to undergo the same

software engineering methods as their non-mobile counterparts to

assure the quality of code. This historically produces code with several

faults. The capability of MA, such as moving and cloning, increase the

complexity of design and development. Hence, MAIDS will be even

more prone to faults than their non-MA counterparts.

A comparison between previous related works for MAIDS is outlined in

[94].

(b) Grid based Intrusion Detection System (GIDS)

The heterogeneity of grid systems and their geographical spread over

boundaries and organizational structures lead to potential security issues. The

underlying network infrastructure of a grid can be the target of an attack.

Attacks against any network or host in a grid can also be considered as

attacks against the grid, because they affect its security aspects. Grid systems

are susceptible to specific attacks because of their new protocols and

services. Grid attacks mostly target to [96, 97]:

 Processes running in kernel space e.g., OS daemons.

 Processes running outside kernel space e.g. grid middleware, grid

applications, and any non-grid applications running with either root

or user privileges.

 Grid protocols stack and network devices.

Some works related to GIDS are outlined in the following. [98] describes

a grid-based IDS architecture where agents located at grid nodes collect and

transmit host audit data to storage and analysis servers. This centralized

solution is not scalable. [99] proposes an efficient and scalable solution for

storing and accessing audit data collected from grid nodes, but it does not

discuss how to use the data to identify intrusions. [100] proposes a solution

that integrates the grid system with an IDS to analyze data from the grid

network. However, these approaches cannot detect grid-specific attacks,

because they cannot capture high-level data to identify grid users. The Grid

Intrusion Detection Architecture (GIDA) [101] solves the scalability problem

by distributing the intrusion detection task among several analysis servers.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

52

Both [98] and [101] focus on the detection of anomalies in the interaction of

grid users with resource but neither architectures provide protection against

the host and network attacks. [102] proposes a Performance based Grid

Intrusion Detection System (PGHIDS). This IDS uses the abundant

resources of a grid to detect intrusion packets, but it does not detect attacks

to the grid itself and it acts as a NIDS, rather than a Grid-based IDS because

it only looks for network attacks. GHIDS is an IDS [103] to defend

computational grids against misusing of shared resource. It integrates a

HIDS in a grid environment to protect against typical OS attacks, but it does

not consider middleware vulnerabilities. [104] proposes a high-level Grid-

based IDS built on the functionality of lower-level HIDS and NIDS.

However, both traditional HIDS and NIDS are not precisely suitable for grid

specific-attacks. For example, traditional HIDS identifies an intruder not

with grid user ID but with local user ID. Hence, this IDS cannot identify grid

intruder precisely and the information without grid user ID is less useful for

the behavior analysis of a grid user. Furthermore, some characteristic of grid-

specific attacks differ from those of traditional ones. Hence, the adoption of

standard HIDS to detect grid attacks will results in high missing rate. The

same authors have proposed another framework [105] for both grid and

cloud systems. They increase the scalability by balancing among all nodes the

load to analyze the intrusions and by removing the centralization deficiency

from the IDS in [104].

They also enhanced the coverage of attacks by applying both knowledge-

base and behaviour-base techniques, but their solution lacks several features

related to the cloud system like virtualization, utilization, and deployment of

cloud environments. Since the solution has been applied to a specific grid

middleware, the proposed framework is more suitable to grid systems than to

clouds. In [106] we proposed a new job analyzer component based on stack

inspection methodology to work inside a GIDS that can be applied to

different existing grid systems e.g., Condor [107], Globus [108] and our

HIMAN system [8, 9]. The job analyzer component considers access

permissions of submitted tasks. Its functionality is shown in Figure 2.8:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

53

Figure.2.8: A flowchart for GIDS job analyzer component

 The scheduler loads the submitted job to the host machine

 Collects evidence from the assembly by host machine

 Evaluates and tests evidence against the grid security policy.

 Uses the output of the previous evaluation step to build the permission

sets that enable the requests in next step.

 Checks the requests for permission using the stack inspection

methodology [109, 106].

 If the submitted job and its callers have been granted the requested

permission then the operation can proceed otherwise, a security

exception is raised.

Table 2.3 summarizes previous proposals for GIDS

Table.2.3: Comparing characteristic of previous related works for GIDS

IDS

Reference

Knowledge-

based

technique

Behaviour

based

technique

Data Source

Host-

based

IDS

Network

-based

IDS

Valid for

Grid

GIDS2003 NO NO N/A No Yes No

Grid-

wide2005

Yes No Network No Yes Yes

GIDA2005 No Yes Grid Network Yes No Yes

GIDS2005 Yes No Network No Yes Yes

GHIDS2006 Yes No Host Yes No Yes

GIDS2008 No Yes Host, Network Yes Yes Yes

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

54

There are several reasons that make it difficult to apply solutions of grid

based IDS to Cloud based IDS:

(1) The different service models (SaaS, PaaS, and IaaS) with different

types of threats and distinct kinds of users’ requirements.

(2) The scalability issue, because most current GIDSs exploits either a

hierarchical or a centralized architectures.

(3) Most GIDSs do not integrate the knowledge base and the behaviour

base techniques.

(4) They use NIDS that cannot deal with the encrypted data while most

data exchanged among cloud nodes is encrypted.

(5) They do not correlate alerts from different nodes to analyze distributed

attacks.

(c) Cloud based intrusion detection system

Intrusions in cloud systems are characterized by the potentially higher

performance, consequences, and damages of cloud based intrusions. The

deficiencies of current IDSs hinder their application to clouds. Here, we

highlight the few papers discussing this topic. [94] proposes an IDS based on

MAs technology to provide intrusion detection for cloud applications

regardless of their locations and that handles attacks for cloud applications

from the SaaS point of view. The proposed IDS tries to solve some of the

security problems for MAs by isolating the agents inside VMs that provide

secure sandboxes for the MAs. Figure.2.9 shows the proposed architecture.

The proposed hybrid model introduces four main components, namely

IDS Control Center (IDS CC), Agency, Application Specific Static Agent

Detectors, and Specialized Investigative MA. Static Agents (SA) can

implement packet filtering and look for intrusion signatures in the packets.

SA generate an alert to IDS Control Center whenever they detect suspicious

activities. Then, IDS Control Center will send investigative task-specific

Mobile Agent to every agency that sent similar alerts (VM 1 and VM 2 in

this example).

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

55

Figure.2.9: The proposed IDS architecture in a subnet

As shown in Figure 2.9, MAs will visit and investigate all those VMs,

collect information, correlate it and finally send or carry back the result to

IDS Control Center. Consequently, the Alerting Console in IDS Control

Center will analyze the incoming information to raise the alarm if it detects

an intrusion. Names and identifications of suspected VMs will be black

listed and sent to other VMs. This solution is flexible and cost-effective as it

tries to further reduce network load by making each MA lighter as it is only

responsible for detecting certain types of intrusions.

Nevertheless, there are many deficiencies in this architecture:

(1) The security issues related to MAs mentioned before.

(2) The proposed IDS isolates the MAs from the host environment but it

cannot protect them from their generator, i.e. the IDS Control Center

environment. Obviously, it is impossible to keep agent private from a

malicious runtime system executing the agent [95].

(3) Performance is critical because the MA runtime environments slow

down MAIDS. The solution [93] uses MAIDS just for some functions

and it implements core IDS by statically located systems: This

restricts scalability and opens a single point of failure problem.

(4) The central IDS control component restricts scalability.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

56

(5) It does not correlate the host and network IDSs to handle the

encrypted packets.

(6) The proposed IDS does not handle other deficiencies for MA such as

lack of a priori knowledge and the Coding and Deployment

Difficulties.

(7) It is applied to the cloud client only and it handles intrusions related to

the SaaS service model and not the other service models.

[77] proposes a theoretical framework targeting all existing service

model. To simultaneously provide multiple benefits from various IDS

sensors, they used the Intrusion Detection Message Exchange Format

(IDMEF) [76] to enable interoperability among different approaches. They

enable the end users to control and configure resources with distinct types of

sensors, various configurations of the rule-sets and thresholds to efficiently

monitor their virtualized components. Figure 2.10 shows the proposed IDS

architecture

Figure 2.10: The proposed IDS architecture

The architecture includes several IDS Sensor VMs and an IDS

Management Unit. An IDS Management Unit consists of four active

components: Event Gatherer, Event Database, Analysis Component, and IDS

Remote Controller. The Event Database records information about received

events. It can be accessed through the Analysis Component. User controls

the IDS management through direct interaction and configuration of the core

components. The IDS Sensors on the VMs are connected to the Event

Gatherer and identify malicious behavior and generates alerts that will be

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

57

processed by the Event Gatherer. A sensor can be configured through the

IDS Remote Controller. The Event Gatherer collects events from sensors and

standardizing the outputs. It also implements the communication between the

sensor and the management unit. The Analysis Component represents and

analyzes the gathered events [77]. The main deficiencies of this framework

are:

(1) It does not correlate alerts from the detectors. The correlation is

essential for detecting attacks which leave their trails in distinct cloud

locations.

(2) It uses User-Mode-Linux, a type II VMM which only runs on Linux

based systems.

(3) The centralized ID unit that manages all other IDSs raises

performance and scalability problems.

(4) No component evaluates threats probabilities from the other nodes and

compares them against a threshold to support the scheduler decision

on the running tasks and their relevant users.

The analysis of previous work confirms that, a proper defense strategy for

clouds needs to:

(1) Be distributed to avoid any single point of failure and increase

robustness.

(2) Protect the intrusion detection components from the intrusions.

(3) Be scalable to not reduce elasticity.

(4) Have a flexible architecture to be applied to distinct architectures.

(5) Increase attack coverage by integrating both behaviour and knowledge

base techniques.

(6) Consider the utilization and deployment in cloud computing by

handling different service models and user requirements.

This is discussed in the next chapter with reference to the proposed

framework.

2.2 Masquerade Attacks and Detection Techniques

A masquerader is an insider or outside attacker who authenticates as a

legal user by stealing the user credentials or by attacking the authentication

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

58

service. To understand the masquerader actions, we consider alternative

implementations of this attack [110]. Among them, we recall duplication or

ex-filtration of user password, the installation of backdoors, eavesdropping

and packet sniffing, spoofing and social engineering attacks. Some of these

actions may leave some trail in log files that, after the fact, can be linked to

some user actions. Here a log analysis by a host-based IDS remains the state-

of-the art to detect these actions. Attacks that do not leave an audit trail in the

target system may be discovered by analyzing the user behaviors through

masquerade detection. Traditional security technologies such as firewalls,

IDSs, or authentication protocols are useless because, an attacker can access

all the user privileges.

Masquerade detection gathers user information and builds a profile for

each user through information such as login time, location, session duration,

and commands issued. Then, user logs are compared against the profiles and

a mismatching behavior is designated as an attack. The detection of

masquerade attacks is quite difficult because even the legitimate daily

activities can easily become malicious according to its context. This

increases the false positive rate [111]. Masquerade detection is more

challenging in cloud systems, since they include a massive amount of

resources and users can have different activities in several VMs. Hence, to

build a profile, we have to correlate these activities. All the approaches

reported in Section 2.2.3 analyze user behaviors according to the sequences

of actions in distinct environments i.e., UNIX, Windows, or Network.

Possible actions include user command, system calls, a network operation

and the name of a window or of a file. To evaluate the detection techniques,

we highlight some concepts such as ROC curve and Maxion Townsend Cost

[112]. After that, we review current masquerade detection approaches.

2.2.1. The Receiver Operator Characteristic Curve

The Receiver Operator Characteristic (ROC) curve [113] graphically

represents a classification system as its discrimination threshold is varied.

The ROC is also known as a Relative Operating Characteristic curve,

because it compares two operating characteristics, True Positive Rate (TPR),

accuracy or Hit ratio and the False Positive Rate (FPR) as the criterion

changes. We use this curve to evaluate attack detection accuracy against false

positive rate. The plot is obtained by varying the detection threshold and

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

59

other detection parameters. Figure 2.11 shows how the ROC curve measures

the tradeoff between false positives rates and correct detections.

Figure 2.11: Examples for three ROC curves

2.2.2. The Maxion Townsend Cost

Maxion and Townsend [112] created a scoring formulation to rate a

masquerade detection algorithm. The formula evaluates the cost of the

detection algorithm in terms of a relation between the false alarms and

misses, where the miss rate is equals to (100 – Hit Ratio). The overall

“goodness” of each of several detection methods can be ranked by this

function. While there is a wide consensus in the literature that a false alarm

should be more expensive than a miss, it is difficult to determine how much

more expensive. According to the experiments that the authors did using the

seven masquerade detection approaches detailed in section 2.2.3, a rigorous

evaluation requires that the cost of a false alarm to be 6 times that of a miss.

Hence, the final cost function is given in Equation 2.7:

Percentage Cost = 6 × False-Positive-Rate + Miss Rate (2.7)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

60

2.2.3. A literature Study for Masquerade Detection

None of the current proposals to detect masquerade attacks has achieved

the level of accuracy for a practical deployment. This review highlights

masquerade detection techniques based on the analysis of user audits. These

audits have been collected by several profiling methods from different

environments e.g. UNIX, Windows and/or Network environments. We will

see later in Chapter 3, how our dataset, CIDD, is collected using different

profiling methods so that its data can be used with different detection

techniques.

1) Masquerade Detection in UNIX Environments

In UNIX environment, the sources of audit data to build signature

patterns are user commands, programs, and system calls. In this review, we

highlight and compare several masquerade detection approaches based on

UNIX commands in the user dataset called “SEA” described in Section

2.3.1. The considered approaches are: Uniqueness, Naïve Bayes One-step

Markov, Hybrid Multi-Step Markov, compression, Incremental Probabilistic

Action Modeling (IPAM), sequence-match, Support vector machine (SVM),

Recursive Data Mining with SVM, Naïve Bayes classifier, Episode based

Naïve Bayes, Naïve Bayes and Weighted Radial Basis Function, Adaptive

Naïve Bayes and sequence alignment algorithms.

 Uniqueness: This approach [114] assumes that commands not previously

seen in the training data may indicate a masquerade. Moreover, the fewer

users that are known to use that command, the more indicative that

command is of a masquerade. Uniqueness is a relatively poor performer

in terms of detection, but it is the only method able to approach the target

false alarm rate of 1%.

 Naïve Bayes One-step Markov: This approach [115] builds transition

matrices from one command to the next for each user’s training and

testing data. It raises an alarm when there is a considerable difference

between the training data transition matrix and the testing data one. It

achieves a good performance in terms of correct detections, but failed to

get close to the desired false alarm rate.

 Hybrid Multi-Step Markov: This method [116] is based on Markov

chains. If the test data contain too many commands that did not appear in

the training data, a Markov model may be useless and a simple

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

61

independence model with probabilities estimated from a contingency

table of users versus commands may be more appropriate. [114] toggled

between a Markov model and the simple independence one. This method

has one of the best performances.

 Compression: the main underlying idea [114] is that new data from a

user compresses at about the same ratio as old one from the same user.

Instead, data from a masquerading user will compress at a different ratio.

This approach is the worst performer.

 The Incremental Probabilistic Action Modeling (IPAM):It predicts the

sequence of user commands according to [117] the one-step command

transition probabilities estimated from the training data. Too many wrong

predictions signal a masquerade. IPAM’s performance ranks with the

lowest ones.

 Sequence-match: It computes a similarity match between the user

profiles and the corresponding sequence of commands. Any score lower

than a threshold indicates a masquerader [118]. Its performance on the

SEA dataset is not very high.

 Support vector machine (SVM): Support vector machine refers to a

collection of machine learning algorithms designed for binary

classification. SVM classifies data by determining a set of support

vectors, the training inputs that outline a hyper plane in feature space

[119]. SVM has shown a good performance, it is relatively easy to use

and is relatively insensitive to the number of data points and can

potentially learn a large set of patterns. However, it has a high false alarm

rate and a low detection rate. Furthermore, it has to update user behavior

model when a user profile changes.

 Recursive Data Mining with SVM: Szymanski et al [120] proposed a

recursive mining approach that finds the frequent patterns in the

sequence of user commands, encodes them with unique symbols and

rewrites the sequence using the new coding. This approach uses a one-

class SVM classifier for masquerade detection but it has to mix user data

that may be complex in real-world.

 Naïve Bayes classifier: Maxion and Townsend [112] applied a Naïve

Bayes classifier widely used in text classification tasks and that classifies

sequences of user-command data into either legitimate or masquerader.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

62

The method has not yet achieved the level of accuracy required for

practical deployment.

 Episode based Naïve Bayes: Dash et al [121] introduced an episode

based Naïve Bayes technique that extracts meaningful episodes from a

long sequence of commands. The Naïve Bayes algorithm identifies these

episodes either as masquerade or normal according to the number of

commands in masquerade blocks. The proposed technique significantly

improves the hit ratio but it still has high false positive rates and it does

not update the user profile.

 Naïve Bayes and Weighted Radial Basis Function (NB-WRBF): Alok

et al [122] integrates a Naïve Bayes approach with one based on a

weighted radial basis function, WRBF, similarity. The Naïve Bayes

algorithm includes information related to the probabilities of commands

entered by one user over the other users. Instead, the WRBF similarity

takes into account the similarity measure based on the frequency of

commands, f, and the weight associated with the frequency vectors. Here,

f is a similarity score between an input frequency vector and a frequency

vector from the training dataset. The experiments confirm that NB-

WRBF significantly improves the hit ratio but, as the previous approach,

it suffers from the high false positive rates. Furthermore, it computes

both the Naïve Bayes and the WRBF and integrates their results and this

increases the overall overhead. Lastly, it does not update the user profile

and neglects the low level representation of user commands.

 Adaptive Naïve Bayes: Dash et al [123] introduced an adaptive Naïve

Bayes approach based on the premise that both the commands of a

legitimate user and those of an attacker may differ from the trained

signature but the deviation of the legitimate user is momentary, whereas

the attacker one persists longer.

 Sequence alignment: The ability of sequence alignment algorithms to

find areas of similarity can be used to differentiate legitimate usage from

masquerade attacks. To do so, a signature of the normal behavior for a

given user should be aligned with audit data from monitored sessions to

find areas of similarity. Areas that do not align properly can be assumed

to be anomalous, and the presence of several anomalous areas is a strong

indicator of masquerade attacks [124]. Among possible algorithms such

as global, local and semi-global alignments the most efficient is semi-

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

63

global alignment. The proposed approaches has several shortcomings and

to address them. [125] modifies the Smith-Waterman alignment

algorithm [133] to a semi-global alignment algorithm (SGA), along with

a new scoring systems and signature updating scheme. SGA offers

several advantages such as:

1) Better accurate and efficiency than current approaches. It achieves

a low false positive rates and high hit ratio.

2) It can work with different kinds of audit data. This simplifies its

adoption in heterogeneous environments such as grids and clouds.

3) The detection performance reduces the survival of the

masquerader inside the system.

4) It can tolerate the few deviations in the legitimate user behaviors.

Figure 2.12 compares all the previous mentioned techniques against the

SGA algorithm detailed in Section 2.2.4 in terms of the ROC curves based

on SEA dataset. The SGA algorithm with its update scheme achieves a

higher hit ratio with a corresponding lower false positive rate.

Figure 2.12: ROC curves for some detection techniques [124].

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

64

2) Masquerade detection in Windows Environments

In general, Windows security log files contain records of login/logout

activity and/or other security-related events as specified by the system audit

policy. As mentioned in Section 1.5, there are three log sources in Windows

system namely: system, application and security. System and application log

are used, respectively, by the operating system and by the applications. Only

the Local Security Authority Subsystem Service (lsass.exe) can directly write

to the Security log. Several categories of the events that can be logged [33].

Less research work has considered the Windows environments than the

UNIX one.

[126] introduced a new framework to create a unique feature set for user

behavior on GUI based systems. They collected real user behavior data from

live systems and extracted parameters to construct feature vectors. These

vectors contain information such as mouse speed, distance, angles and

amount of clicks during a user session. They modeled their technique of user

identification and masquerade detection as a binary classification problem

and used a Support Vector Machine (SVM) to learn and classify the feature

vectors.

[127] considers the interaction of the current user with the graphical user

interface. Rather than mouse movements or keystroke dynamics, it profiles

how the user manipulates windows, icons, menus, and pointers. The method

shows potential for use in real-time systems, because it requires less data

than other GUI interaction-based masquerade detection techniques while

using a much simpler classification engine. Another user profiling method

monitors system calls by analyzing the audit logs and program execution

traces [128, 129].

3) Masquerade detection in Network Environments

The previous host profiling methods handle only user audits inside a host

machine. Other approaches detect masquerade attacks through the user

network behavior.

[130] uses basic network statistics. It does not consider host audits at all,

because sometimes this data is not accessible or legal/ethical restrictions

apply. The approach tags network events in the server log with the associated

user and build user network profiles through anonymized summary data.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

65

This limits the privacy impact and avoids the data accessibility issues of

host-based approaches.

[131] adopts the well-known Interval Algebra network [132]. The

underlying idea is that the signature captures detectable patterns in a user

command sequence. A user is modeled as a binary constraint network where

each node represents an episode of commands. A binary relationship between

a pair of episodes is encoded as the disjunction of the Allens interval

relations [132]. Any new subsequence of commands should be consistent

with at least one user network.

2.2.4. Masquerade detection using SGA and Enhanced-SGA

The SGA [124] is more accurate and efficient than current approaches. It

has low false positive and missing alarm rates and high hit ratio. It can be

adopted in heterogeneous environment with distinct operating system

because it can be applied to distinct audit data such as command line entries,

mouse movements, system calls, registry events, file and folder names,

sequence of opened windows titles and network access audit data. SGA

aligns large sequence areas as in global alignments, while preserving the

nature of local alignments. It can ignore both prefixes and suffixes and it

only aligns the conserved area with the maximal similarity. Figure 2 shows

an application of SGA and the influential parameters of an alignment

namely: match score, mismatch score, test_gap penalty, signature_gap

penalty, and detection threshold.

Figure 2.13: An alignment example using SGA algorithm

To discover the optimal alignment, SGA exploits dynamic programming.

To this purpose, it initializes an m+1 by n+1 score matrix, M, and then

determines the value of each position of M by one of three transitions, see

Figure 2.14:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

66

1. Diagonal transition: it aligns the i−1 symbol in the signature

sequence with the j−1 symbol in the test sequence. The alignment

score depends upon the lexical match of the symbols being aligned

and it is added to M(i−1, j−1).

2. Vertical transition: A gap is inserted into the signature sequence and

it is aligned with the j−1 symbol in the test sequence. The gap penalty

is added to M(i, j−1).

3. Horizontal transition: A gap is inserted into the test sequence and

aligned with the i−1 symbol in the signature sequence. The gap

penalty is added to M(i−1, j).

Figure 2.14: The three transitions to fill each cell in the transition-matrix

The SGA scoring system determines the gap penalties in transitions 2 and

3. The actual alignment depends upon the maximum value of the three

transitions and its value is assigned to M(i, j). M(i, j) is the score of the

optimal alignment of all symbols up to location i−1 in the signature sequence

and j−1 in the test one. Hence, M(m, n) gives the score of the optimal

alignment of the two sequences returned by the scoring system. We can

rebuild this alignment by tracing back the transitions that have produced the

score. The final score at M(m, n) measures the similarity of the two

sequences according to the scoring system used and it is an indicator of

masquerade attacks. The SGA algorithm is shown below [125]:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

67

Algorithm 2.1: The SGA algorithm

The Enhanced-SGA:

Coull et al [125] modified the SGA algorithm to handle the problems of

the traditional Smith-Waterman alignment algorithm from two perspectives.

The first one considers that the usage patterns of legal users may change due

to changes in their role or to new software. A static user signature is therefore

prone to label as attacks some variations of legal users. To avoid these false

positives, the signature is updated as new behaviour is encountered by

exploiting the ability of SGA of discovering areas of similarity. Furthermore,

as outlined in Section 5.2.3, they defined two scoring systems, the command

grouping and binary scoring systems, to set the alignment scores and the gap

insertion penalties.

Align (test_subseq of length n, sig_subseq of length m, match_score, mismatch_score,

sig_gap_penalty, tes_gap_penalty)

01: Begin

02: for i=0 to m step 1 do

03: for j=0 to n step 1 do

04: if (i=0 or j=0) then

05: M(i, j)=0

06: else

07: if (i=m or j=n) then

08: top = M(i, j-1)

09: left = M(i-1, j)

10: else

11: top = max (0, M(i, j-1) – sig_gap_penalty)

12: left = max (0, M(i-1, j) – test_gap_penalty)

13: end if

14: if (sig_subseq(i-1) = test_subseq(j-1)) then

15: diagonal = M(i-1, j-1) + match_score

16: else

17: diagonal = M(i-1, j-1) + mismatch_score

18: end if

19: M(i, j)= max(top, left, diagonal)

20: end if

21: end for

22: end for

23: return (M(m, n))

24: End

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

68

The problem with Enhanced-SGA algorithm lies in determining the best

scoring system. Till now, the penalties for gap insertion to the signature and

test sequences (-3 and -2 respectively) are fixed and equal for all the users.

Since distinct users behave in a different way, this reduces the efficiency of

detection, because the alignment cannot tolerate slight changes in the user

behaviour over time. Distinct scoring parameters improve the Enhanced-

SGA algorithm and strongly reduce the number of false negatives and false

positives. Instead of forcing the same scoring parameters for all users, Data

Driven Semi-Global Alignment approach (DDSGA) [DDSGA], see Chapter

5, computes the best scoring parameters for each user separately based on

user data and improves the computational performance and the security

efficiency of the Enhanced-SGA algorithm.

The signature update scheme is applied with the binary scoring, their most

efficient system. This scheme augments both the current signature sequence

with information on the new behaviours and the user lexicon with the new

commands the user invokes. The scheme also introduces a threshold for each

user profile to ensure that both the signature sequence and user lexicon

remain free of tainted commands from masquerade attacks. The threshold is

used in both detection and update processes, and it is built through a

snapshot of the user signatures.

The other perspective considers that the Smith-Waterman algorithm is

computationally expensive and impractical to detect masquerade attacks on

multi-user systems. By selectively aligning only the portions of the user

signature with the highest success probability, the Heuristic Aligning

approach [125] can significantly reduce the computational overhead with

almost no loss of accuracy in detection. These modifications have been

tested on the SEA dataset to simplify the comparison with other approaches.

2.3 Intrusion Detection Dataset

A dataset is a profile of training and testing signature patterns to train and

evaluate a behaviour based IDS. In the following, we highlight the current

masquerade datasets and the deficiencies arising when adopting them to

evaluate cloud IDSs.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

69

2.3.1 Existing Masquerade Datasets and Their Deficiencies

We briefly describe [134, 135] the four datasets that are currently used to

evaluate masquerade detection techniques namely, SEA [136] Greenberg

[137], Purdue [138], and RUU [139].

1) SEA dataset

Most papers about masquerader detection use the SEA dataset [136] with

its associated configurations, SEA-I and 1v49. This dataset consists of

commands collected from UNIX acct audit data. Only the username and the

command were taken among all the fields of audit data. The data describe 50

users each issuing 15000 commands. The first 5000 commands are

considered genuine. The remaining 10000 commands of each user are

partitioned into 100 blocks of 100 commands each. These blocks are seeded

with masquerade users, i.e. with data of further users. A block is a

masquerader with a probability of 1%. If a block is a masquerader, then there

is an 80% probability that the following one is a masquerader too. As a

result, about 5% of the test data contain masquerades. One of most critical

defects of this dataset is that commands have neither arguments nor any

parameters. Due to the way acct collects audit data, it is impossible to tell

commands typed by human users from those run from shell scripts. This can

lead to pair some users with a very regular pattern of few commands.

1v49 Configuration: [112] propose an alternative configuration to the SEA

dataset to address some methodological shortcomings in the original

configuration. As an example, different masqueraders were injected into

different users and some users did not even get any masquerader. This

increases the complexity of evaluation and error analysis. In 1v49

configuration, for each user, the first 5000 commands of the other 49 users

are used as masquerader data for testing purposes. Despite its

methodological advantages, this configuration has not been widely used as it

does not simulate masqueraders that are expected in real world.

SEA-I: It is a variation on the original SEA dataset. It was proposed in

[140], where the masquerader blocks are replaced by synthetic blocks

created according to the command frequency of each user. This is an attempt

to model the behavior of an intruder who tries to act like the legitimate user.

As a result, more complex techniques are required to detect masqueraders.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

70

2) Greenberg dataset

This dataset [137] contains data from 168 UNIX users using csh (C shell)

as command line shell. Users are classified into four groups: novice

programmers, experienced programmers, computer scientists and non-

programmers. Collected data is stored in plain text files that record : session

start time, session end time, the command line entered by the user, the

current working directory, the alias expansion of the previous command, an

indication whether the line entered has a history expansion or not, and any

error detected in the command line. This dataset was first used for

masquerader detection purposes in [141]. In contrast with SEA, its main

advantage is the availability of additional information for each command

which may help to improve detection effectiveness.

3) Purdue University dataset

Purdue, or PU dataset [138] consists of the UNIX shell command

histories of 4 users of the Purdue Millennium Lab, collected in a four month

period. The number of collected commands per user goes from 7769 to

22530, with an average of about 16500 commands. Command names,

arguments and options are preserved but filenames are omitted. This is due to

the intuition that the behavior of a user is more significant than content for

profiling. The very low number of works that use this dataset is probably due

to the low number of users.

4) RUU dataset:

This dataset was collected by Columbia IDS group [139] from Windows

environments. To this purpose, they built a Windows host sensor to audit

process registry behavior and user window touches. Three types of records

were created by the audit program: registry actions, process execution, and

window touches. The registry actions that are recorded are open, close and

update of specific registry keys by running programs. The records specifying

user window touches include the actions of clicking on a window, of

switching between two or more windows, and of updating the title of a

window. The group has built and published only a Windows dataset even if

they have also built a Linux sensor to collect information about the name of

the process, path, command line parameters, and system level calls.

The dataset was collected from 34 normal volunteer users and 14

masquerade users who were paid to conduct a red team exercise. On average,

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

71

each normal user generated about 1 million records over about 4.5 days of

computer use of Windows systems. They model how normal users typically

search their computer file system and these models can be used to detect

unusual searches that may be a warning of an illegal use of the machine. The

masquerader data contains records from about 15 minutes of computer use

by each masquerader. The red team users were asked to perform a specific

task to find any data that could be used for financial gain on a target file

system they had no prior access to.

2.3.2 Deficiencies of Using Current Datasets for Cloud Systems

The datasets previously described suffer partially or fully from several

deficiencies which prevent their adoption to evaluate cloud IDSs. Their most

significant weakness is the lack of real masquerade and attack data. No

command sequences were issued by attackers, only the RUU dataset includes

real masquerades but in a predefined scenario where masquerader users were

asked to find any data useful for financial gain. Also the SEA dataset

simulates masquerade attacks by randomly inserting excerpts of command

sequence from one user into the command sequences issued by another user.

Some other problems of the datasets are:

(1) They neglect the heterogeneity of clouds systems where user audits

may be distributed among different VMs running distinct OSs.

Furthermore, cloud users normally use a larger set of applications than

those considered by the datasets. The existing masquerade datasets are

based on host-based user profiling parameters, and lack important

network parameters.

(2) The absence of command arguments and/or other useful audit details

such as the time when the user commands were issued and the duration

of each user's session.

(3) Their size is very small.

(4) They lack signature details. An efficient cloud dataset should include

both behavior based and knowledge based audit data for better training

and coverage for attacks in all cloud service models.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

72

Chapter 3

CIDS and CIDS-VERT Frameworks and Their

Correlation Models

This chapter introduces two frameworks for a Cloud based Intrusion

Detection System, CIDS [142], and CIDS-VERT [143], its specialization

version. The two frameworks deal with attacks like: masquerade, DDoS,

host-based, and network-based attacks. This chapter details the architecture,

testbed of both CIDS and CIDS-VERT frameworks. Furthermore, it

describes some essential features of these frameworks to support the

selection of the proper one for the cloud system of interest. Finally, it details

the three correlation models, Audit Exchange, Independent, and Centralized-

Backup.

3.1 CIDS Framework

CIDS is a framework for intrusion detection that provides a defense

strategy that deals with attacks against the most widely used cloud services:

SaaS, PaaS and IaaS. It is an active IDS that stops the malicious action and

raises an alarm.

CIDS has a P2P architecture without a central coordinator to avoid a

single point of failure. The architecture distributes the processing load at

several cloud locations and executes the user tasks in a monitored VM to

isolate them from the cloud. This helps in protecting CIDS components from

threats that can control a task in the VM and that can modify CIDS

components. To increase attack coverage, CIDS integrates knowledge

techniques and behavior based ones. Furthermore, it collects events and

audits from VMs to analyze them in the detector and correlator components.

Each node also includes an audit system that monitors messages among

nodes and the middleware logging system, and collects events and logs from

the VMs.

By sharing both the knowledge and behavior databases in each node

among the audit components, CIDS can detect the masqueraders that access

from several nodes and both host-based and network-based attacks.

Furthermore, to take into account the large volume of data in a cloud that

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

73

prevents administrators from observing any action, a further CIDS

component parses and summarizes a large number of alerts from a NIDS

component in a physical or virtual switch in the cloud virtual network. A

report for the administrators collects alert messages from all the IDS

detectors in the cloud system. CIDS resides inside the cloud middleware

which provides a homogeneous environment for accessing all nodes. The

middleware sets the access control policies and supports a service-oriented

environment. Since the middleware can be install inside distinct grid and

cloud systems, CIDS can be applied to several Grid and cloud systems.

3.1.1 CIDS Architecture

In the proposed architecture, each node runs two IDSs detectors, CIDS

and HIDS and it cooperates to intrusion detection by identifying the local

events that could represent security violations and by exchanging its audit

data with other nodes. Figure 3.1 shows the sharing of information among

the following CIDS components:

Cloud node: It is one cloud blade that hosts users VMs and resources

homogeneously accessed through the cloud middleware.

Guest task: it is a sequence of actions and commands submitted by a user to

an instance of VM.

Logs & audit collector: it acts as a sensor for both CIDS and HIDS

detectors and collects logs, audit data, and sequence of user actions and

commands.

VM: it encapsulates the system to be monitored. The detection mechanisms

are implemented outside the VM, i.e. out of reach of intruders. A single

instance of a VM monitors can observe several VMs.

Type II Virtual Machine Monitor (VMM): CIDS uses type II VMM

implemented as a process of the OS of the host machine. Some properties of

a VMM are useful in system security, among them: Isolation, Inspection, and

Interposition as detailed in Section 1.3. VMM stores in the audit system the

data collected by the logs and audit collector component and forwards them

to both the CIDS and HIDS correlator components.

The audit system: this component implements three main functions. First of

all, it monitors message exchanges among nodes and deduces the behavior of

the cloud user. Then, it monitors the middleware logging system in the node

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

74

itself. CIDS can collect all audit data and middleware events such as user

login or logout from the cloud system or tasks submissions. The third

function collects and stores events and logs from the VM system. A log entry

is created for each node action with the action type, (e.g. error, alert, or

warning), the event that generated it, and the message.

CIDS correlator and detector: it correlates sequence of commands or

actions, collected from several sources and analyzes them through our new

Data Driven Semi-Global Alignment approach (DDSGA) detailed in Chapter

5.

HIDS correlator and detector: it correlates user logs and signatures

collected from several sources. Then, it analyses them to detect known trails

left by attacks or predefined sequences of user actions that might represent

an attack. It is implemented by the OSSEC IDS tool detailed in Section 1.10

that receives user logs and signatures and determines whether a rule in the

knowledge based database is being broken. After that, it computes the

probability that a user action represents an attack, and it communicates this

to the alert system that alerts the other nodes if the probability is sufficiently

high.

Behavior-based database: it is a profile history database for the behavior of

cloud users. It is important that all nodes share the same behaviour database

of the same user because this helps in correlating the normal behaviors of a

user to detect a suspected behavior distributed among user VMs in several

nodes. Since a behavior deviation in one VM can be normal in another one,

correlation reduces the false alarms rate and it is more suitable for the

deployment and utilization of the cloud system, as a user task can be

executed in several VMs. Access to all databases, including events collected

by the VMM from the VMs, can be easily implemented by the middleware

that transparently creates a virtual homogeneous environment and

synchronizes the nodes. As an example, consider that the audit system can

create a log entry such as: “User Roy only logs in for 2 to 3 hours and uses a

specific sequence of UNIX commands”, only if the nodes know the behavior

of the user in all VMs in these nodes.

Knowledge-based database: it stores a set of rules and signatures for

known attacks. It describes a malicious behavior with a rule to be matched

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

75

against those in the database. Like the behavior-based database, all nodes

should share the same knowledge base.

Alert System: it uses the middleware’s communication mechanisms to alert

other nodes if the CIDS or HIDS correlator and detector components signal

an attack. It also communicates its alerts to the report producer.

Parser and summarizer: it parses and summarizes the alerts fired by a

component in the cloud virtual network. We will briefly explain later the

adopted algorithm.

Report producer: it collects alerts from any IDS in the system and sends a

report to the cloud scheduler. It helps service providers to discover if their

infrastructure is exploited to penetrate other victims.

Yellow components are CIDS components, Green ones are cloud system

components, and Pink ones are NIDS components

Figure 3.1: CIDS Architecture

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

76

3.1.2 CIDS-Testbed:

The testbed consists of 3 nodes connected by a Gigabit Ethernet. Each

node is a quad core clocked at 2.8 GHz with 16 GB RAM and a 80 GB Hard

drive. To provide a full heterogeneous testbed, each node hosts 3 VMs with a

distinct OS, namely: Windows XP Professional SP3, UNIX (Solaris) and

Linux (Centos)). Each VM is assigned one core of the physical node and 3

GB of RAM. Each node runs the VMware system that manages the

communications among the VMs, and one 24 port Procurve Switch

(10/100/1000 ports) for data networks and another 24 port Procurve Switch

(10/100 ports) for console management.

3.1.3 CIDS Parser and Summarizer Approach

A clear, summarized, and readable alarm report is fundamental for the

cloud administration. Since the high scalability of a cloud implies that a

NIDS component produces an intensive number of alerts, this component

reduces the number of alerts. Among the approaches to summarize and

integrate NIDS alerts, we recall, [144, 145]. A more suitable and clear

approach to store NIDS alerts is given in [146] that is based upon the alert

parameters shown in Table 3.1.

Table.3.1: An example for the alert description table.

To summarize the alerts, CIDS exploits the idea that one alert suffices if

several hosts are attacking the same machine using the same attack signature.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

77

For this purpose, it merges all the alerts with the same combination

(destination IP, attack signature) into one alert. Our implementation uses

SNORT with MySQL. The summarization approach neglects the source IP

address because it can be spoofed. However, the final summarized table

would contain all information that describes the attack including the source

IP address. Table 3.2 shows the final alerts produced by our summarization

approach.

Table.3.2: The final alerts summarization table.

We note that alerts A1, A4, and A6 are summarized by S1 because they

refer to the same signature, their attacks target the same machine and the

attacker uses the same method three times. The alerts A2, A3, and A8 have

the same signature but with different signature details. The attackers fired

these attacks from two different host machines. These alerts are summarized

to alert S2 in Table 3.2. Finally, the attacks related to the alerts A5 and A7

have not been summarized because they target the same machine but their

signatures differ. Algorithm 3.1 shows the parsing and summarization

processes.

Algorithm 3.1: The parsing and summarization processes

01: Begin

02: Build Table T with rows= n //This table is similar to table 3.1.

03: Define:

 dest-ip=1, sig-id=2,

 i=1, // Index for rows of table T

alert-dscrp-strct = T(1)(signature-name, signature-class-id, signature-priority, score-ip,

ip-protocol, source-port, destination-port) // Is a structure contains one record of table T

with 7 columns of alert description (from 4 to 10 of Table 3.1),

summarized-T: // This table is similar to table 3.2.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

78

3.2 CIDS-VERT, the Full Virtualization Framework of CIDS

To define a defense strategy for several cloud deployment models i.e.,

private, public, and hybrid clouds, we have specialized the original

framework. This results in two frameworks: the original CIDS and CIDS-

VERT, its specialization. CIDS-VERT has been defined to improve the

scalability of CIDS because the experiments reported in Chapters 6 and 7

show that the P2P architecture of CIDS may hinder both scalability and

elasticity. Furthermore, while CIDS isolates task execution from the host OS,

most of its components are exposed to attacks because they run in the host

operating system. CIDS-VERT avoids all these shortcomings and achieves a

reasonable performance even in large clouds. This may promote the adoption

of CIDS in large systems such as hybrid or public clouds.

3.2.1 CIDS-VERT Architecture

While most CIDS-VERT components are similar to those of CIDS, See

Figure 3.2, its architecture is centralized with full virtualization, backup, and

04: While (Length(T) >1 and i < Length(T))

05: For j=i+1 to Length(T) do

06: If ((T(i, dest-ip) = T(j, dest-ip)) And (T(i, sig-id) =T(j, sig-id))

 And (T(i, alert-descrp-strct) = T(j, alert-descrp-strct)))Then

07: Add the i
th

 record to table summarized-T

08: Delete the i
th

 and the j
th

 records from table T, set i=1

09: Else

10: If ((T(i, dest-ip)=T(j, dest-ip)) And (T(i, sig-id)=T(j, sig-id))

 And (T(i, alert-descrp-strct)!=T(j, alert-descrp-strct))) Then

11: Merge the i
th

 and the j
th

 records of table T and add the resultant

merged record to table summarized-T

12: Delete the i
th

 and the j
th

 records from table T, set i=1

13: End If

14: End If

15: End For

16: i=i+1

17: End While

18: If (T is not Empty)

19: Add table T to table summarized-T

20: End IF

21: Return (summarized-T)

22: End

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

79

task scheduling facilities. We now briefly describe the main components and

facilities of the framework.

Figure.3.2: CIDS-VERT Architecture

Event collector: it collects logs, audit data, and sequence of user actions and

commands from both HIDS sensor and the guest operating system. It also

selects the most suitable management VM to analyze these audits and events.

Event Correlator: it correlates the user logs and signatures collected from

several sources according to the start and end time of the session and the

source IP address of the user. Then, it sends a final list of network and VMs

environments events to the event DB. This helps in detecting a suspected

behavior of a user that is distributed among several VMs. Since a behavior

deviation in one VM can be normal in another one, this also reduces the false

alarms rate.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

80

Behavior-based database: it is a profile history database for the behavior of

cloud users. It enables both CIDS and HIDS analyzers to compare the user

behaviour in the current session against the stored profile.

Knowledge-based database: it stores a set of rules and signatures that

describes known attacks. It describes a malicious behavior with a rule to be

matched against those in the database.

DDSGA Analyzer: it analyzes the user behaviors, e.g. sequence of

commands or actions, collected from several sources by applying the

DDSGA approach. Whenever it detects a masquerade attack, it alerts the

summarizer and reporter component.

HIDS Analyzer: it detects known trails left by attacks or predefined

sequences of actions that might represent an attack in the user behavior. It is

implemented by the OSSEC IDS tool that receives the user logs and

signatures from all VMs in the cloud and determines whether a rule in the

knowledge base is being broken. After that, it computes the probability that a

user action represents an attack, and communicates it to the summarizer and

reporter component.

NIDS Analyzer: it implemented by the SNORT IDS tool that analyses the

VM network traffic to detect known trails that might represent an attack. The

IDS can detect both network and DDoS attacks among Cloud zones and it

receives the network traffic among the cloud VMs by mirroring it from the

virtual switch. At first, SNORT determines whether a rule in the signature

database is being broken. Then, it communicates to the summarizer and

reporter component the probability that a user action represents an attack.

Summarizer & Reported component: It parses and summarizes the alerts

fired by the HIDS and NIDS analyzers and correlates them. We use the

IDMEF as a standard data format to summarize, integrate, and report the

alerts about suspicious events. The most obvious solution is that the data

channel from the intrusion detection analyzer to the manager that receives

the alarms uses IDMEF. Chapter 8 details our integration and correlation

approaches to integrate and summarize the alerts.

Management VMs: These VMs are reserved for all the components

previously described and only be accessed by the cloud administrators that

can manage all these components from one place. This also help to isolate

and protect the components provided that the management VMs themselves

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

81

are protected. To improve scalability and avoid a single point of failure, the

cloud runs several management VMs with distinct OS. These VMs are fully

interconnected to provide backup sources and to mutually exchange the

detection task to avoid overloading the active one, see Figure 3.3.

Figure.3.3: Data exchange among the management VMs.

The solid arrows in Figure 3.3 represent the audits sent to the

management VMs and the heartbeat message with two fields. The first one

defines the status of the active management VM to determine whether or not

it is live. If the event collector does not receive the heartbeat message from

the active management VM, it assumes that this VM is failed or is

overloaded and switches to another management VM. The second field

describes available resources in the active management VM e.g. processor

speed, cache, and main memory, to enable the event collector to choose a

management VM with proper resources to run the detection task. The dot

lines in Figure 3.3 represent the interactions that occur if the active

management VM fails or it is highly overloaded. All the idle management

VMs are frequently updated with the user audits from the active management

VM.

Hypervisor Layer: It manages the creation of virtual VMs, virtual

networks, and virtual SAN driver. Furthermore, it provides system security

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

82

functions such as Isolation, Inspection, and Interposition. CIDS-VERT can

work with different cloud environments, such as VMware cloud [56],

Microsoft private cloud [13], Open Stack [147], Eucalyptus [12]. In CIDS-

VERT deployment, we use the Microsoft windows server 2012 with its

Hypervisor and the Microsoft Private Cloud system.

3.2.2 CIDS-VERT-Testbed:

The testbed consists of HP c3000 Cloud blade with six nodes. The first

node is the head node that works as a front side interface for the cloud blade

and has a Quad core 2.3 GHz CPUs, 4 GB RAM, 80 GB Hard drive, and a

SmartArray P400 Controller for Storage Connect. The other five computing

nodes are configured as the CIDS-Testbed nodes and their VMs are

configured as those in the CIDS-Testbed. The only difference is that all

nodes run a Microsoft core windows server 2012 instead than a VMware

system. The head node runs a Microsoft GUI windows server 2012 with

Microsoft cloud services and Microsoft Hypervisor manager 2012. The

testbed also includes one 24 port Procurve Switch (10/100/1000 ports) for

data networks and another 24 port Procurve Switch (10/100 ports) for

console management.

3.3 Choosing the Proper Framework:

The size and the deployment model of the cloud system are the important

issues that help us to select the proper intrusion detection framework.

The original CIDS framework is the ideal solution for a small cloud or

private cloud behind the enterprise network firewall. Here, the management

and deployment are taken care by the enterprise. The security of data in a

private cloud is preserved by internal processes and data exchanged among

the cloud nodes can be protected without violating the user security policies

[148, 2]. This is actually what the CIDS framework needs. Private Cloud and

the other deployment models use a distinct mechanism for data availability

and service access. Most cloud deployment models leverage multiple copies

of files on multiple nodes and consider each node as a failure domain so that

server malfunctions do not crash the whole cloud nor result in data loss [148,

2]. The architecture of CIDS allows for backing up the data to avoid a single

point of failure and to match the cloud robustness requirements.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

83

The CIDS-VERT framework offers a security solution for large cloud

systems e.g., public and hybrid clouds because its scalability is much better

than that of CIDS. Furthermore, CIDS–VERT can be configured and

managed in a simpler way than CIDS, because the administrators can access

a central system backed up to other servers. This is important in public and

hybrid cloud where the providers need to deploy and monitor the security

solutions in a flexible way due to the large number of users. Even if CIDS-

VERT works with any deployment model because of its scalability and

controllability, it targets public and hybrid clouds while we use the original

CIDS in private clouds. This strategy can achieve the performance and low

network overhead of the Independent model that works with the original

CIDS but not with CIDS-VERT that is centralized. Furthermore, CIDS-

VERT may not be acceptable in a small or private cloud because it does not

optimize resource utilization due to the adoption of several management

VMs.

3.4 Attacks and Cloud Service Models Covered by CIDS

CIDS and CIDS-VERT satisfy the cloud IDS requirements mentioned in

Section 2.1.4 and deal with attacks against SaaS, PaaS and IaaS clouds.

Figure.3.4: Attacks and cloud service models covered by CIDS.

As shown in Figure 3.4, the proposed frameworks can deal with the

following attacks:

(1) Masquerading attacks:

This is a PaaS attack that impersonates a legitimate user to use service

resources maliciously. This is by far the most critical attack as its

exploitation is rather easy. CIDS and CIDS-VERT detect it through

DDSGA.

(2) Host-based attacks:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

84

Host based attacks may be a consequence of a masquerading attack. CIDS

and CIDS-VERT detect several host based attacks using the current HIDS

tools.

(3) Network-based attacks:

CIDS and CIDS-VERT detect network attacks by analyzing network packets

using NIDS tools.

(4) DDoS attacks:

We have built two deployments for CIDS-VERT, the Centralized and

Distributed, to detect the DDoS attacks. Chapter 8 describes the two

deployments and their experimental results.

3.5 The Correlation Models

In the following, we describe the three alternative correlation models to

correlate and exchange the audit and alerts between the IDS components in

the cloud system. These models are [142, 143]:

(A) Audit exchange.

(B) Independent.

(C) The Centralized-Backup.

 The first two models work with CIDS framework, while the third one with

CIDS-VERT.

(A) Audit exchange model

 In this model, nodes exchange their audit data so that each one has any

audit data for its current users. The detection phase depends on two

parameters:

(1) The alignment score computed in the CIDS detector component,

(2) Alerts fired by the HIDS component.

In this way, the detection overhead is balanced among nodes with no

single point of failure. The detection efficiency is high because the user audit

is concentrated in one place and the masquerader surviving is very short. As

a counterpart, this model introduces some overhead in the cloud network due

to the periodic exchange of audit data. The processing steps are:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

85

(B) The Independent Model

 Each cloud node evaluates its own user audits without interacting with

other nodes. The detection phase depends upon the same two parameters of

model A. Login usage patterns for a user are evaluated using both CIDS and

HIDS detectors inside a cloud node CN and by using the behavior-based and

signature-based of CN only. If the HIDS detector of CN fires an alert, the

algorithm will behave according to step 2 of model A for each user HIDS

instance firing. If the CIDS detector of CN fires an alert, the algorithm

checks the current login usage patterns against the audit data of the current

user in the other nodes. The user is marked as a masquerader unless one node

accepts the current pattern. Then, this model will behave according to step 2

of model A for each user CIDS instance firing. Algorithm 3.2 shows the

steps of model B.

The model advantages are:

 A very low overhead for the cloud network, as there is a data

exchange only if the score iDS is less than the previous define

threshold DSθ . The nodes exchange the test audit data (test_d)

produced by the user during the login session.

 A lower processing overhead for each cloud node than models A and

C, because each node executes the DDSGA alignment of the current

login session, only if iDS is less than
DSθ .

If user HIDS or CIDS instance fired Then // If this condition is satisfied, this

denotes that an attack has been detected (Host-based or masquerade attack).

 Alert all nodes that have VM instance(s) for that user to stop exchanging his

audit data.

 Send alerts to the scheduler node to do the following tasks:

a) Stop the current tasks related to this user from all his VMs. If the alert is

coming from HIDS detector then, stop only this malicious VM.

b) Prepare a summarized report to the cloud administrator contains some

information about the masqueraded user, the malicious VMs, and the

detected attack.

c) Apply the administrator action against this user by re-initializing his

malicious VM(s) or by Blocking or suspending his account.

 End if

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

86

The disadvantages are:

(1) A longer masquerader surviving than both models A and C because

the analysis requires a long time to check the audit data (test_d) in all

nodes.

(2) A lower hit rate and a higher false alarm rate than model C. Instead,

its hit and false alarm rates are similar to those of model A.

Algorithm 3.2: The analysis algorithm for the Independent model

(C) The Centralized-Backup Correlation Model

This model works with the CIDS-VERT framework where, users VMs

send their audit data to a reserved management VM that has a complete view

of audit data for all users to analyze and report the final alerts. The

management VM is backed up to some other VMs as explained in Section

3.2.1 to balance the detection overhead among the management VMs with no

single point of failure. This model achieves the best detection efficiency

because the user audit is concentrated in one place and there is not loss of the

audit data. The masquerader surviving is shorter than that in both model A

and B. The detection time is inversely proportional to the number of

01: Begin

02: Inputs: test audit data (test_d) produced by user (i) during the current login

session, behavior-base(behavr_d) stored for user (i) during the training phase

inside the current login cloud node, iDS is the DDSGA alignment Score for user i,

DSθ is the alignment threshold defined for user i, Not-Masq-flag = False.

03: Use DDSGA to compute iDS by aligning (test_d) against (behavr_d).

04: If iDS < DSθ Then

05: For each cloud node (CN) contains (behavr_d) of user i, do:

06: Use DDSGA to compute iDS for the i
th
 user in CN

07: If i DSDS Then

08: Not-Masq-flag = True

09: Exit the loop;

10: End if

11: End for

12: End If

13: If Not-Masq-flag = false or HIDS instance is fired Then

14: Run step 2 of model A for each user i IDS instance firing.

15: End If

16: End

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

87

management VMs because it reduces the processing overhead in the active

management VM. This speeds up the detection phase and protects the IDS

components from tampering by any attackers. On the other hand, the

network overhead increases with the number of management VMs.

Furthermore, the model requires several resources as it reserves some

management VMs for detection.

The experimental evaluation of the two frameworks and their

corresponding correlation models are detailed in Chapters 6 and 7.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

88

Chapter 4

Cloud Intrusion Detection Dataset (CIDD)

This chapter introduces the Cloud Intrusion Detection Dataset, CIDD

[149], the dataset we have defined to test and train an IDS and that will be

used in the thesis. The chapter discusses the major challenges to build a

cloud intrusion dataset. Furthermore, it introduces the Log Analyzer and

Correlator System (LACS) that has supported the building of CIDD by

parsing and analyzing user’s binary log files and correlating user audits data.

Finally, the chapter describes the distribution of attacks and masquerades in

CIDD and compares CIDD against other publicly available datasets.

4.1. Challenges to build a cloud dataset

We have detailed in Chapter 2, the deficiencies of current publically

available datasets which hinder their adoption to evaluate cloud IDSs.

Building a real intrusion dataset for the cloud systems is a complex task,

because it takes a long time to collect the training audits and to prepare the

scenarios for both training and testing phases. Furthermore, data collection

requires special tools to access and monitor the cloud infrastructure and

system that require proper authorization to preserve privacy and

confidentiality. These are major challenges in cloud systems for several

reasons:

(1) Lack of real data to study available solutions and models. Data are out

of reach and controlled under the rules of evidence, rather than being a

source of valuable information for research purposes. Most cloud

systems are commercial and the control of their infrastructures is very

difficult if it is not impossible. Private cloud systems cannot be

accessed by external users and this hinders the building and the

analysis of complete attack scenarios.

(2) It is difficult to collect real data about a malicious or a legal user if

audits are distributed across different environments. The heterogeneity

of the audit parameters increases the complexity of audit correlation.

The complexity is even larger for low level formats. It is also difficult

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

89

to build a summarized statistical profile for each user, because

categorizing a set of UNIX commands differs from categorizing

Windows events and applications.

(3) The huge size of the audit data for cloud systems (more than 20GB for

CIDD dataset) and the high number of users require huge computing

resources.

4.2 Cloud Intrusion Detection Dataset (CIDD)

To overcome the problems previously outlined, we have developed a Log

Analyzer and Correlator System (LACS) to parse and correlate user audits

from low level log files. We have applied LACS to logs from the DARPA

Intrusion Detection Evaluation Group of MIT Lincoln Laboratory [150]. The

logs and the TCP dump data are from the Eyrie Air Force Base network that

consists of two segments, representing the inside and outside of a

government installation. The outside segment consists of 10 machines

running Solaris, Linux, and SunOS, 1 SNMP monitor, 1 gateway, and 1 web

server. The inside segment consists of 35 machines with Windows NT,

Solaris, Linux, and SunOS, 1 inside gateway, and 1 inside sniffer. The

network has also 2 routers and 2 hubs. The log files focus mainly on the

network audit data. However, we have extracted the host and network audits

by parsing the log files collected from, respectively, one Windows NT

machine, one Unix Solaris machine, and the raw packet data collected

through TCP-dump so that CIDD considers both network and host audit

data. These data are correlated according to user IP address and audit times.

The following section describes the architecture of LACS.

4.2.1 LACS System

LACS parses the binary log files collected by Unix Basic Security

Module (BSM), the security, application and service log files of the

Windows event log system, and data in raw packets. In the following, we

briefly describe the component of LACS in Figure 4.1:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

90

Figure 4.1: The architecture of LACS system

A. Parsers components: LACS has 3 parser components for each

independent environment:

1- Solaris parser: The Solaris C2 audit daemon, e.g. the auditing capability

of BSM, writes binary event data to the local file system. Our parser converts

the audit events of this file into a readable text format and stores its output in

a local file while preserving the ordering of events. This file can be analyzed

by the log analyzer and correlator component. The parser extracts the

parameters shown in Figure 4.2: user id, user name, day, time, system calls,

path (for processes or files), login source (IP address or URL), session id,

login period, audit part, VM name, and return value (success or fail).

Figure 4.2: An example of CIDD Solaris auditing data

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

91

2- Windows parser: It converts into a human readable format the primary

binary/encoded Windows security event, the application, and the service log

files. It stores its output in a local file to be analyzed by the log analyzer and

correlator component. The parser extracts from the security event log files

the parameters in Figure 4.3: type (audit success or fail), date, time, event id,

source (security log in this case), audit category (e.g., system event, object

access, detailed tracking, privilege use, logon/logoff, account management),

user id, user name, VM name, audit action, and audit parameters (e.g., object

name, handle id, privileges). The parser extracts form the application and

service log files the information in Figure 4.4: source machine (IP address or

URL), user name, date, time, service or application name, source and

destination port, target.

Figure 4.3: An example of CIDD Windows auditing data

Figure 4.4: Examples of training data (sequences of mails and web services)

3- Network parser: It extracts user audits from the raw packets data files

collected by TCP-dump that contains information on the activities of the user

source machine. The parser extracts from the TCP-dump files the values in

Figure 4.5: date, time, duration, service/protocol name, source port,

destination port, source IP, destination IP. If the packet is contaminated by

an attack, then also the attack name is extracted.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

92

Figure 4.5: A snapshot of TCPdump data with labeled attacks

B. Log analyzer and correlator component: This is the core component

and its analysis includes the following steps :

(1) It correlates the user audits in host and network environments using user

IP and audit time. Then it links each audit to the corresponding user.

(2) It pairs user audits with a set of VMs according to their login sessions

time and the characteristic of the user task. During audit collection, each

user logs into the network in one or two different time shifts, one in the

morning and the other in afternoon or evening and sometimes both. It

also assigns user morning sessions to one VM and the other sessions to

another VM. Section.4.2.2 describes the distribution of users to the VMs.

(3) It marks malicious audit records according to attacks and masquerades

tables given by MIT group [150]. The marking is done according to

attack time, date, destination IP/URL and the name of victim user. It also

marks some audit records in a session with different time and/or different

source IP than the training audit data stored for the user.

(4) It produces the final tables with the marked audits for each individual

user with its assigned VMs. This step produces three tables namely,

Solaris, Windows, and network audit tables. Both the Solaris table and

the Windows one contain a sequence of user actions. The Network table

records the sequence of machines, network services and protocols

accessed by the user, and normal times and dates of accesses. These

tables enable any IDS to deduce the sequence of user audits in different

environments. Equation 4.1 correlates the audits of the three tables:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

93

 (4.1)

Where:

 PCmasq(Ui): Probability that Ui is a masquerader according to Ui

 behaviors in any cloud node. It considers the probability that

 the masquerader can be detected by the login IP(s).

 P(Ui): Probability that Ui is a masquerader according to Ui behaviors in

any cloud node. It does not include user IP behaviors.

 m: Number of IP(s) that Ui uses to login to the cloud.

 n: Number of cloud users who share the same IPj of Ui

 P(IPj): Probability that IPj reveals to be a masquerader.

Consider, as an example, a simple case where U1, U2 and U3 share IPs, IP1

and IP2. Also suppose that the probabilities that IP1, and IP2 could be used by

a masquerader are: P(IP1) = 0.4, and P(IP2) = 0.5, and U1, U2, and U3 reveal

to be masqueraders according to their behaviors in all the cloud nodes with

the following probabilities: P(U1)=0.4, P(U2)=0.3, and P(U3)= 0.6, and the

detection threshold θ =0.75. We apply the previous equation for each Ui. We

have that only U3 is a masquerader because:

PCmasq(U1)= 0.6769 < θ (not masquerader)

PCmasq(U2)= 0.5076 < θ (not masquerader)

PCmasq(U3)= 1.0153 > θ (masquerader)

C. The statistical component: It uses the previous tables to build host and

network based statistics. Host based statistics include: number of login

failures, logging times (morning, afternoon, evening, and nights), logging

source address(es), a list with:

(a) common commands and system calls used by the user (in case of

Unix Solaris system),

(b) a list of common services, applications, and security actions(in case

of Windows NT),

(c) VMs names used by each user.

1

1

()* ()
() ()

()

P U P IPm i j
P U P Uni iCmasq j P U

kk

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

94

Network based statistics are based on the IP address and include:

network services and protocols used, machines accessed, hours and days

when the IP becomes active, and list of failures.

4.2.2 CIDD Architecture

CIDD audit data consists of two parts. The first one is a collection of

Unix Solaris audits and their corresponding TCP dump data. The second part

includes Windows NT audits and their corresponding TCP dump data. As

any intrusion dataset, CIDD includes training and testing data for both parts

1 and 2. In training data of part 1, CIDD has 7 weeks (35 days) of Unix

Solaris audits and TCP dump data with labeled attacks which can be used to

train any IDS with a set of attack signatures. Figure 4.6 shows the

distribution of these labeled attacks. The UNIX audits of week 6 contains 21

real masquerade attacks that can be used to test any anomaly detection based

IDS. Figure 4.7 shows the distribution of these masquerade attacks in week 6

data.

Figure.4.6: Attacks distribution in the training data (Solaris BSM, Windows

Audits and TCP-dump data)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

95

Figure 4.7: Masquerade attacks in week 6 of Part1 and the two testing weeks

of part2

Most of audits of CIDD users are distributed across several VMs. Users

with less than 5 login sessions have been deleted. CIDD has 84 Solaris users

distributed into 4 VMs. Users are categorized according to the applications

of their host machines, see Figure 4.8, into:

 2 programmers sharing VM1 and VM2,

 1 secretary using VM3 and VM4,

 1 system administrator using VM3 and VM4,

 56 normal users using VM3 and VM4 to issue UNIX commands,

exchange mails, and internet navigation,

 22 advanced users that access VM1 and VM2 to run advanced

applications for some special tasks.

The testing data of part 1 includes 2 weeks (10 days) of Unix Solaris

audits and their corresponding TCP dump data for testing purpose. The data

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

96

include more than one hundred instances of attacks that are classified into

distinct categories such as Denial of Service (DoS), User to Root (U2R),

remote to user, surveillance probing and anomaly attacks, see Figure 4.9.

Figure 4.10 shows the distribution of these attacks in part1 testing data.

Figure 4.8: Users distribution in CIDD training part

Figure 4.9: Attacks distribution in CIDD testing part

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

97

Figure 4.10: Attacks distribution in testing data of part1 (Solaris BSM and

TCP-dump data)

The training data of part 2 includes 3 weeks (15 days) of Windows NT

audits and their corresponding TCP dump data with labeled attacks only in

the second week. Figure 4.6 shows the distribution of these labeled attacks.

CIDD describes 44 Windows NT users with a complete windows audit

data. Some of these users exist in part1 audits with the same names. Users

are distributed among VMs as in Figure 4.8: 5 in VM1, 32 in VM2, and 7

that share both VM1 and VM2.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

98

The testing data of part 2, describes 2 weeks (10 days) of Windows NT

audits and their corresponding TCP dump data for testing purpose. Part 2

testing data contains 38 real masquerade attacks in Windows NT audits.

Some of these attacks result from one or several U2R attacks, while others

are implemented through human masquerader action, see Figure 4.9. One

user of the inside network segment implements masquerade attacks, while

“outsider” are due to either users of the outside network or outside the

network that is considered. Figure 4.7 shows the distribution of these

masquerade attacks. Part 2 testing data has the same attack categories of part

1 and a further category, data attacks. Figure 4.11 shows the distribution of

these attacks in part2 testing data.

Figure 4.11: Attacks distribution in testing data of part2 (Windows audits

and TCP-dump data)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

99

The CIDD webpage [149] describes further details such as user statistic

tables, masquerade distributions, the simulated network of the auditing

experiments, attacks database and their categories, and snapshots for both

training and testing data. Table 4.1 compares CIDD against publicly

available datasets.

Table 4.1: Comparison of publicly available datasets

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

100

Chapter 5

Data-Driven Semi Global Alignment (DDSGA)

A masquerade attacker authenticates as a legal user after stealing or

cracking the user credentials or attacking the authentication service. Even it

does not leave trails in the target system, this attack may be discovered

through a masquerade detection process that matches the user active session

against a profile of the previous behaviour of the same user and that signals

any mismatching as an attack. Current profiling methods consider several

features such as command line commands, system calls, security events,

mouse movements, opened files names, opened windows title, and network

actions. As mentioned in Chapter 2, masquerade detection has not yet

achieved the level of accuracy and performance for practical deployment.

Accuracy may be even lower in systems with a massive amount of resources,

like grids and cloud systems, where a profile can be built only by correlating

several user activities in distinct VMs.

This chapter introduces the Data-Driven Semi Global Alignment,

DDSGA, the approach we adopt to efficiently detect masquerade attacks and

anomalous actions. It also describes the three main phases of DDSGA

namely, configuration, detection, and update. Then, it explains the

implementation and the experimental results of each phase. Lastly, it

compares DDSGA against other approaches, and highlights its

computational performance and detection accuracy.

5.1 DDSGA Approach Overview

DDSGA is a masquerade detection approach based upon the Enhanced-

SGA algorithm [125] described in Section 2.2.4. It aligns the user active

session sequence to the previous ones of the same user and it labels the

misalignment areas as anomalous. A masquerade attack is signaled if the

percentage of anomalous areas is larger than a dynamic, user dependent

threshold. DDSGA can tolerate small mutations in the user sequences with

small changes in the low level representation of user commands and it is

decomposed into a configuration phase, a detection phase and an update one.

The configuration phase, computes, for each user, the alignment parameters

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

101

to be used by both the detection and update phases. The detection phase

aligns the user current session to the signature sequence. The computational

performance of this phase is improved by two approaches namely the Top-

Matching Based Overlapping (TMBO) and the parallelized approach. In the

update phase, DDSGA extends both the user signatures and user lexicon list

with the new patterns to reconfigure the system parameters. Figure 5.1 shows

these phases and the modules that implement them that we discuss in the

following.

Figure 5.1: DDSGA Phases and modules

DDSGA Main Features and Improvements:

DDSGA improves both the computational and the security efficiency of

the Enhanced-SGA.

From a computational perspective, DDSGA improves the performance of

both the detection and the update through a parallel multithreading scheme

and a new Top-Matching Based Overlapping (TMBO) approach that

improves the Heuristic Aligning and saves computational resources. While

the Heuristic Aligning splits the signature sequence into a fixed overlapped

subsequences of size 2n, where n is the size of the test sequence, TMBO

simplifies the alignment through shorter overlapped subsequences. Besides

saving computational resources, this speeds up the detection and update

phases and consequently reduces the masquerader live time inside the

system.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

102

With respect to the accuracy of masquerade detection, DDSA introduces

distinct scoring parameters for each user, namely the gap penalties and the

overlapping length. The adoption of distinct scoring parameters for each user

improves the detection accuracy, the false positive and false negative rates

and increase the detection hit ratio with respect to the traditional and

enhanced SGA that use the same parameters for any user. This neglects

differences among the behaviours of distinct users and reduces the accuracy

of detection, because the alignment cannot tolerate even slight changes in the

user behaviour over time. Starting from the data of each user, the

configuration phase of DDSGA computes the scoring parameters that result

in the maximum alignment score for the considered user.

Furthermore, to improve the accuracy of the alignment, DDSGA

integrates binary and command group, two scoring systems suggested by

Coull et al., into two other scoring systems, restricted and free permutation.

The resulting systems tolerate permutations of previously observed patterns

with a low reduction of the score. To tolerate changes in the low-level

representation of commands with the same functionality, the scoring systems

classify user commands into several groups and align two commands in the

same group without reducing the alignment score. The DDSGA

configuration phase also creates a dynamic threshold for each user to be used

by both the detection phase and the update one. While Enhanced-SGA builds

this threshold through a snapshot of a user profile, DDSGA builds a more

sensitive and dynamic threshold by considering any data in the profile.

Furthermore, DDSGA runs two update modules: the inline and long term

modules. The inline module updates the user signature patterns, the user

lexicon list, and their corresponding command categories in a

reconfiguration phase. The long-term module updates the system with the

latest changes in the alignment parameters. It also updates the dynamic

threshold values, scoring parameters, and the overlapping length i.e., the

length of the overlapped signature subsequence according to maximum

number of inserted test gaps. The dynamic threshold, the scoring systems,

and the two update modules enable DDSGA to tolerate slight changes in the

user behaviour overtime. Table 5.1 briefly compares DDSGA and Enhanced-

SGA.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

103

Table 5.1: A comparison between DDSGA and Enhanced-SGA

 Enhanced-SGA DDSGA

Accuracy 1. Command grouping

and binary scoring

systems

2. Fixed and equal gab

insertion penalties for

all the users.

3. Compute the

threshold for each

user using snapshots

of user date.

4. Signature Update.

1. Free and restricted

permutation scoring

systems.

2. Define gab insertion

penalties for each user

independently, based on

user previous data.

3. Compute an optimal

threshold for each user.

4. Signature Update (inline

and long term).

Computational

Performance

Heuristic Aligning. 1. TMBO Approach.

2. Parallel computation.

In the following sections we detail the current implementation of DDSGA.

5.2 The Configuration Phase:

We briefly define the parameters that this phase computes for each user

and that are used by the following phases. The detailed calculation of each

parameter is described in the remainder of this section.

 Optimal gap penalties:

The optimal test gap penalty and the optimal signature gap penalty are paid

when inserting a gap into the test sequence and the signature one

respectively. While in Enhanced-SGA all the users share the same fixed

penalties, DDSGA computes two distinct penalties for each user according to

distinct user behaviours. In this way, DDSGA determines the smallest

penalties corresponding to the maximum alignment score.

 Mismatch Score:

DDSGA evaluates the mismatch score through the restricted permutation

scoring system and the free permutation one. These systems integrate the

command grouping and binary scoring systems defined in [125].

 Average optimal threshold :

DDSGA computes a distinct threshold value for each user according to the

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

104

changes in the user behavior. The threshold is used in both the detection and

update phases and its sensitivity affects the accuracy of both phases, as

discussed in the average threshold module.

 Maximum factor of test gaps (mftg):

This parameter relates the largest number of gaps inserted into the user test

sequences to the length of these sequences. DDSGA computes a distinct

parameter for each user and updates it in the update phase. The detection

phase uses the parameter to evaluate the maximum length of the overlapped

signature subsequences in the TMBO.

The configuration phase is implemented using the following five modules:

5.2.1 DDSGA Initialization Module:

To provide an independent set of test and signature sequences for the

configuration phase of each user, we split the user signatures into nt non-

overlapped-blocks each of length n and use them as test sequences to the

user. These sequences represent all given combinations of users signature

sequences and all the modules in the configuration phase use them to

compute the user alignment parameters. To define the signature sequences,

we divide the user signature sequence into a set of overlapped groups of

length m = 2n. In this way, the last n symbols of a block also appear as the

first n of the next one. ns, the number of signature subsequences is equal to

nt-1 groups to consider all possible adjacent pairs of the signature sequences

of size n. We have chosen a length 2n to overlap the signature sequence

because any particular alignment uses subsequences with a length that is, at

most, 2n. Any longer subsequence necessary scores poorly, because of the

number of gaps to be inserted. In fact, since the scoring alignment depends

upon the match between the test and the signature subsequences, the former

should be shorter than the latter. As a consequence, the signature sequence

for this phase consists of 2n command produced by overlapping the signature

sequence. Hence, there are nt-1 groups that are created as in Figure 5.2.

In the case of SEA, ns = 49 subsequences and a tested block consists of

100 commands because SEA marks each 100 command block as an intrusion

or a non-intrusion. Since SEA does not supply any information on which

commands in a block correspond to the intrusion, the correctness of larger or

smaller blocks cannot be checked. The dynamic average threshold for both

the detection and update phases is the average score of all the alignments

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

105

between each test sequence of length 100-command and the 49 overlapped

2n signature subsequences. A test sequence is not aligned with the signature

subsequence that contains the test sequence itself because this returns a

100% alignment score. We will detail this step in the average threshold

module.

Figure 5.2: The non-overlapped test sequences and the overlapped signature

subsequences

5.2.2 User’s Lexicon Categorization Module:

This module builds a lexicon for each user, i.e. list of lexical patterns

classified according to their functionality and that is used to tolerate changes

in the low level representation of a pattern. In the SEA dataset, these patterns

are UNIX commands. This module combines the user lexicon list and

command grouping approach introduced in [125].

Table 5.2: User 1 Lexicon List

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

106

Table 5.2 shows an example of a classification of user commands into

several categories according to their functionalities e.g., since a user can use

either cat or vi to write a file, the two commands can be aligned because both

belong to the same group, “Text processing". In the same way, grep can be

aligned with find because they both belong to "searching".

5.2.3 Scoring parameters module.

Starting from the test and signature subsequences of each user, this

module returns three parameters: optimal test gap penalty, optimal signature

gap penalty, and mismatch score. At first, the module inserts into the list

top_match_list all the test sequences with the top match score. This list

enables DDSGA to align the top match test sequences only rather than all the

nt sequences. To build the top_match_list, we select the highest match scores

for all the nt sequences. The match score MS of a test sequence is computed

as in Equation 5.1. Then, the top_match_list sequences are aligned to the ns

overlapped signature subsequences using any possible gap penalty, i.e. the

test gap penalty ranges from 1 to n, while the signature gap penalty ranges

from 1 to n. The mismatch score is 0 and the match score is +2.

11

ntn
MS Min(Noccur _ Itself (p),Noccur _ Seq (p))

i k i
ki

(5.1)

Where:

 n is the length of the test sequence.

 nt is number of test sequences.

 Noccur_Itself(i
p) is number of occurrence of pattern i in the current

evaluated sequence.

 Noccur_Seq k (i
p

) is number of occurrence of pattern i in test sequence k.

By computing each alignment separately, we produce several alignment

scores for each combination of the scoring parameters and select as the

optimal parameters those resulting in the maximum score. If several

alignments result in this score, we select the one with the smallest penalties

of inserting a gap into the signature subsequence and test one, respectively.

To justify this solution, consider that the highest alignment score denotes a

high level of alignment between the test and the signature subsequences and

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

107

SGA normally subtracts these penalties from the score. We have applied the

previous steps to each user in SEA dataset to define the corresponding

optimal penalties. Figure 5.3 and Table 5.3 show the penalties for user 1.

Figure 5.3: The best alignment score that corresponds to the optimal

combinations of gap penalties for user 1 in SEA Dataset

Table 5.3: Example of the Top Match Scores of User 1

The Mismatch-Score Evaluation Algorithm:

This algorithm computes the mismatch score parameter using the

restricted and the free permutation scoring systems as shown in Figures 5.4

and 5.5. Both systems integrate command grouping and binary scoring [125]

and are based on distinct assumption about mutations in the audit data.

Command grouping assumes that sequences of audit data mutate by

replacing some original symbols with functionally similar ones. Command

grouping assigns a static reward of +2 to exact matches and scores a

Max
alignment

score

Test sequence
index (i)

Signature gap

penalty

Test gap

penalty

Optimal
combination

154 2 99 95 -

154 5 100 95 -

154 8 97 100 -

154 13 97 99 ok

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

108

mismatch through the functional groups of the two commands. If a command

in the signature aligns with a mismatched command in the test sequence but

that belongs to the same group, the mismatch score is set to +1 rather than to

-1. The assumption on mutation of the binary scoring system follows the

results in [151] where mutation does not replace base symbols in the user

lexicon. In fact, these symbols are a strong indicator of a legal use, but the

original base symbols can be permuted in some fashion [125]. The binary

scoring system rewards exact matches by adding +2 to the alignment score.

A mismatch is scored to +1 if the mismatched command has previously

occurred in the user lexicon and to -1 otherwise. Both scoring systems

penalize the insertion of a gap into the signature sequence and into the test

one by, respectively, -3 and -2.

 (A) Restricted Permutation Scoring System:

It rewards a mismatched command in the test sequence if the two

commands belong to the same group. These groups are manually created

from a set of common UNIX commands in the signature sequences.

Furthermore, the mismatched command of the test sequence should have

previously occurred in the user lexicon. This tolerates various permutations

of previously observed patterns without reducing the score significantly.

Figure 5.4: The restricted permutation scoring system.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

109

(B) Free Permutation Scoring System:

This system is more tolerant than the previous one because it does not

require that the mismatched commands belong to the same group and it even

rewards a mismatched command provided that it belongs to the user lexicon.

This tolerates a larger number of permutations of the signature patterns

without reducing the score significantly.

Figure 5.5: The Free Permutation Scoring System.

5.2.4 Average Threshold Module.

This module computes a dynamic average threshold for each user to be

used in the detection phase and that may be updated in the update phase. In

the detection phase, if the alignment score is lower than the threshold, then

the behavior is classified as a masquerade attack. With respect to Enhanced-

SGA, this module considers all the user data to improve the sensitivity of the

threshold that, in turns, determines the one of the detection. The module uses

the same test and signature subsequences of the initialization module and it

can works with a test sequence of any length because, in practical

deployment user test session can be of any length.

At first, the module builds a trace-matrix, to record all alignment details

of the current user. We align each test sequence to all ns overlapped

signature subsequences and run the module twice, one for each scoring

systems to select the one to be used. The detection phase uses the output of

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

110

this module to compare the two scoring systems. These alignments use the

optimal scoring parameters for the current user. The module applies

Equation 5.2 to compute the average alignment of test sequence i,

avg_align_i, and the sub_average score for all previous alignment scores,

score_align_i, of test sequence i. In the equation, max_score_align_i is the

largest alignment score resulting from the alignment of sequence i to all ns

signature subsequences. Then, the module applies Equation 5.3 to compute

the detection_update_threshold, the overall average of the nt sub average

scores.

100

1

ns
avg _align_i ((score_ align_i / ns) / max_score_align_i)*

j
j

 (5.2)

1

nt
detection_update_threshold (avg _ align _ i) / nt

k
k

 (5.3)

To compute the optimal alignment path and number of test gaps (ntg) to

be inserted into test sequence i, we apply the trace backward algorithm

(TBA) to trace back the transitions to derive each optimal score. An example

is shown in Table 5.4.

Table 5.4: An Example for the Trace-Matrix

Test

Seq. ID

Length of Test
Seq. (lts)

Signature
Subseq. ID

Optimal
alignment

Number of
Test Gaps

(ntg)

Avg-align of
test Seq. i

(%)
1 100 1 27 65
1 100 2 33 60
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

1 100 49 77 22 70.31
2 100 1 37 57
2 100 2 53 43
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

2 100 49 67 31 69.72
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
50 100 1 122 9
50 100 2 134 7
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

50 100 49 102 11 73.75

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

111

The Trace Backward Algorithm (TBA):

Any dynamic programming algorithm can select the optimal alignment

path by tracing back through the optimal scores computed by SGA. We

implemented the TBA to build the backward-transition-matrix, see Figure

5.6, in a way that helps in filling the trace-matrix in Table 5.4 as previously

discussed. The alignment process also applies the TBA to extract the final

alignment path. The TBA traces back the transition-matrix according to the

labels that the alignment has inserted into this matrix. One of four labels may

be inserted: "M" if a match has occurred, "!M" if a mismatch has occurred,

"GS" or “GT” if a gap has been inserted into a signature subsequence or into

the test one. Figure 5.6 outlines the TBA and shows the transition-matrix and

the corresponding backward-transition-matrix to align the test sequence

"AWGHE" to the signature sequence "PAWHE".

 Test sequence: A W G H E

Signature sequence: A W - H E

Figure 5.6: The Transition and Backward-Transition matrices respectively

The thick arrows show the optimal path that leads to the maximum alignment score, the

thin ones show other proper paths that do not lead to the maximum alignment score.

5.2.5 Maximum Test Gap Module

We recall that the Enhanced-SGA Heuristic Aligning decomposes the

signature subsequence into 2n overlapped subsequences because if

subsequences of length n are aligned, the maximum number of gaps that can

be inserted into the test sequence is n for all users. By tracing the SGA

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

112

algorithm, we have noticed that the maximum number of gaps is much lower

than n, the length of the test sequence, and it differs for each user according

to the level of similarity among the subsequences in the user signature and to

the length of the test sequence. Even if the test sequence is long enough, the

number of gaps is at most half of the sequence length. This means that by

partitioning the signature sequence into 2n overlapped subsequences, the

Maximum Test Gap module can divide it as in Equation 5.4 to compute mftg,

the largest number of test gaps inserted into the user test sequences by the

average threshold module.

The Computational Enhancement (CE) for the session alignment of a

user can be computed according to Equation 5.5. We refer to the detection

phase for an example that explains this section.

5.3 The Detection Phase

We have run a complete alignment experiment based upon the test and

signature blocks of the SEA dataset to evaluate the alignment parameters and

the two scoring systems. The test blocks are the actual SEA testing data and

they differ from those described in the initialization module. To simplify a

nt
ntg

kL n Max *n
lts

kk

 (5.4)

Where:

 ntg is number of test gaps inserted to each test sequence,

 lts is the length of the test sequence,

 nt is number of the test sequences of the user, fifty in case of SEA,

CE = - * 100/(2*) %n mftg n (5.5)

Where, Maximum Factor of Test Gaps inserted into all user test sequences

(mftg) =

nt
ntg

kMax
lts

kk

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

113

comparison with other approaches, we use the ROC curve and the Maxion-

Townsend cost function [112] defined in Section 2.2.2.

Our experimentation focuses on the effects of the alignment parameters

on the false positive and false negative rates and on the hit ratio. This

experiment did not apply the maximum test gap module. False positives,

false negatives and hits are computed for each user, transformed into the

corresponding rates that are then summed and averaged over all 50 users.

Equations 5.6, 5.7, and 5.8 show the DDSGA metrics.

100

1

/ / *
nu

TotalFalsePositive fp n nu
k k

k

(5.6)

Where:

 fp = No. of false positive alarms,

 n = No. of non-intrusion command sequence blocks,

 nu = No. of users (50 in our case)

100

1

/ / *
nui

TotalFalseNegative fn ni nui
k k

k

 (5.7)

Where:

 fn = No. of false negatives,

 ni = No. of intrusion command sequence blocks,

 nui = No. of users who have at least one intrusion block

100TotalHitRatio TotalFalseNegative (5.8)

To plot the ROC curve, the experiment with the traditional SGA

algorithm have used distinct values of the alignment parameters to obtain

different false positive rates in the x-axis and the corresponding hit ratios in

y-axis. We also repeat the experiment with distinct values of some alignment

parameters such as reward for matches and rewards or penalties for

mismatches computed by the two scoring systems. Figure 5.7 shows the

ROC curve for the two scoring systems, the Enhanced-SGA scoring systems,

and other detection approaches, based upon the previous metrics.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

114

 Figure 5.7: ROC curve for our two scoring systems, SGA ones, and other

detection approaches

According to this figure, the restricted permutation system results in

higher hit ratio with corresponding low false positive rates. As the false

positives rate increases, the free permutation system achieves a higher hit

ratio than the restricted one because it can tolerate a large number of

mutations and deviations in user behaviours. According to this experiment,

we have adopted the restricted permutation system as a suitable scoring

system for all the phases of DDSGA.

Table 5.5 compares DDSGA using the restricted and the free permutation

scoring systems against the current masquerade detection approaches sorted

by Maxion-Townsend cost. The results for the various detection approaches,

including all ROC curve values, are published in the references shown in

Table 5.5 and are sorted by “Maxion Townsend cost” that is used to simplify

the comparison by considering both the false positive and hit ratio. We re-

implemented all Coull et all works in [124, 125] to compare it against

DDSGA.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

115

Table 5.5: A Comparison between Our Two Scoring Systems and the

Current Detection Approaches

Approach Name
Hit Ratio

%

False

Positive %

Maxion

T. Cost

DDSGA (Restricted Permutation) 83.3 3.4 37.1

DDSGA (Free Permutation) 80.5 3.8 42.3

SGA (Signature updating) [125] 68.6 1.9 42.8

SGA (Signature updating + Heuristic

Aligning) [125]

66.5 1.8 44.3

Naïve Bayes (With Update) [112] 61.5 1.3 46.3

SGA (Binary Scoring)[125] 60.3 2.9 57.1

Adaptive Naïve Bayes [123] 87.8 7.7 58.4

Recursive Data Mining [120] 62.3 3.7 59.9

Naïve Bayes (No Update) [112] 66.2 4.6 61.4

WRBF-NB [122] 83.1 7.7 63.1

Episode based Naïve Bayes [121] 77.6 7.7 68.6

Uniqueness [138] 39.4 1.4 69.0

Hybrid Markov [116] 49.3 3.2 69.9

SGA (Previous Scoring) [124] 75.8 7.7 70.4

Bayes 1-Step Markov [115] 69.3 6.7 70.9

IPAM [117] 41.1 2.7 75.1

SGA (Command Grouping) [125] 42.2 3.5 78.8

Sequence Matching [118] 36.8 3.7 85.4

Compression [114] 34.2 5.0 95.8

The Computational Enhancement Modules:

The computational complexity of SGA is rather large. As an example, it

requires about 500,000 operations to test one user session for masquerade

attacks in the SEA dataset, because the length of the signature sequence is

5000 while that of the test sequence is 100. The resulting overhead is

unacceptable in multiuser environments like cloud systems or in

computationally limited devices like wireless systems. To reduce this

overhead, we introduce two computational enhancements that concern,

respectively, the Top-Matching Based Overlapping (TMBO) module and the

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

116

parallelized detection module that are executed in each alignment session. In

the following, we outline in details these two modules.

5.3.1 The Top-Matching Based Overlapping Module

To align the session patterns to a set of overlapped subsequences of the

user signatures, this module uses the restricted permutation scoring system,

Maximum Factor of Test Gaps (mftg) in Equation 5.9, and the scoring

parameters of each user. As explained in Section 5.1, the TMBO improves

the Heuristic Aligning of the Enhanced-SGA. After splitting the signature

sequence into a set of overlapped blocks of length L, see Equation 5.4, it

chooses the subsequence with the highest match to be used in the alignment

process. In the worst case, all overlapped subsequences should be aligned as

they have the same highest match value. We have verified that on average,

the number of alignments is rather smaller because of the variation between

the overlapped signature subsequences. The evaluation of the proposed

TMBO approach mainly depends upon two parameters: (a) Number of

average alignments for the detection process, (b) The effect of the TMBO on

false alarm rates and hit ratio.

To evaluate our approach with respect to (a) we show through an

example how it reduces the alignment computations. As far as concerns (b),

we use the ROC curve and Maxion-Townsend. To evaluate TMBO, Figure

5.8 shows the user session patterns to be aligned to the signature patterns.

The configuration phase returns these values: signature_gap_penalty = 9,

test_gap_penalty = 5, optimal_score_sys = “Restricted Permutation”,

detection_update_threshold = 82.2%, and mftg (maximum factor of

test_gaps) = 33%.

The first step of TMBO computes the following length of the overlapped

subsequences according to Equation 5.9:

 * 10 33 /100 * 10 10 3.3 10 4 14L n mftg n (5.9)

With respect to the one in the initialization module, the current

overlapping runs with length L rather than 2n. Figure 5.8 shows the resulting

overlapped signature subsequences of size L = 14. The last subsequence, i.e.

subsequence 15, may be shorter than L, but it is still longer than the test

sequence.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

117

The second step computes the match corresponding to each subsequence

as shown in the front of each subsequence in Figure 5.8. We only consider

the matching of subsequence 1 because those for other subsequences are

similar. If we denote by Match(X, s), the minimum between the occurrences

of X in, respectively, a user session and in a subsequence, then Match

(subseq.1) =

(X in {A, B, C, D, E, F} (Match(X, subseq.1)) = (Min(3,1), Min(2,2), Min(1,2),

Min(1,2), Min(2,2), Min(1,2))= (1,2,1,1,2,1)=8

Figure 5.8: Overlapped Signature Subsequences of Size 14

The third step chooses the top match subsequences, e.g. subsequences 2

and 15 in the example, as the best signature subsequences to be aligned

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

118

against the test session patterns of the user. To evaluate the reduction of the

workload due to TMBO, consider the Number of Asymptotic Computations

(NAC) computed by Equation 5.10. In the previous example, TMBO reduces

the number of alignments from 3000 to 280 with a saving of 90.66%.

NAC = Avg_n_align * Sig_len * Test_len (5.10)

Where:

 Avg_n_align is the average number of alignments required for one

detection session over all existing users.

 Sig_len is the length of the overlapped signature subsequence.

 Test_len is the length of the test sequence).

To determine if the session patterns of the current user contain a

masquerader, the final step compares the highest scores of the previous two

alignments against a detection_update_threshold. As explained in the update

phase, if at least one of the previous eight alignments has a score larger than

or equal to the detection_update_threshold, then an inline update process

should be executed for the signature subsequence and the user lexicon.

The evaluation using the SEA dataset shows that TMBO reduces the

maximum number of alignments from 49 to an average of 5.13 alignments

per detection, a substantial improvement in detection scenarios. Table 5.6

shows the asymptotic computations for three detection approaches. The first

is our TMBO without the inline update module. The second one is the

Heuristic Aligning with signature update [125]. Finally, the third one is the

traditional SGA algorithm without the Heuristic Aligning or update feature.

The NAC per one detection session can be computed as in Equation 5.10. If

we considered that each of the fifty users in SEA dataset has one active

session in a multi users system, then Total_NAC = NAC * 50.

Table 5.6: TMBO approach in three detection approaches

Approach Name Avg-n-align NAC per 1 user NAC per 50
user

DDSGA with L = 145.73
5. 13

5. 13 * 145.73 *
100 = 74759.49

74759.49 * 50
= 3737974.5

SGA with Signature
length = 200

4.5
4.5 * 200 * 100 =
90000

90000 * 50 =
4500000

Traditional SGA with
Signature length = 200

49
49 * 200 * 100 =
980000

980000 * 50 =
49000000

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

119

To evaluate false alarm rates and hit ratios, we have tested TMBO using

the ROC curve and Maxion-Townsend score. Figure 5.9 and Table 5.7 show

that TMBO has a lower impact on the overall accuracy than other

approaches.

Figure 5.9: The impact of our TMBO approach on the system accuracy

Table 5.7: The Masquerade Detection Approaches against DDSGA with its
Two Scoring Systems

Approach Name Hit

Ratio %

False

Positive %

Maxion-T

Cost

DDSGA (Restricted Permutation,

Without Updating) 83.3 3.4 37.1

DDSGA (Restricted Permutation,

Without Updating) + TMBO 81.5 3.3 38.3

DDSGA (Free Permutation) 80.5 3.8 42.3

SGA (Signature updating) 68.6 1.9 42.8

SGA (Signature updating) + Heuristic 66.5 1.8 44.3

Naïve Bayes (With Updating) 61.5 1.3 46.3

SGA (Binary Scoring, No Updating) 60.3 2.9 57.1

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

120

5.3.2 The parallelized Detection Module

Since TMBO partitions the user signature into a set of overlapped

subsequences, we can parallelize the detection algorithm because it can align

the commands in the user test session to each top match signature

subsequence separately. In the example of Section 5.3.1, we can run in

parallel the threads to align subsequences 2 and 15. If a thread returns a

computed alignment score at least equal to detection_update_threshold, then

it sends a "No Masquerader" message and then runs an inline update of both

its signature subsequence and the lexicon of the current user. Instead, if the

alignment score is lower than the detection_update_threshold, the thread

raises a "Masquerader Detected" alert. Figure 5.10 shows the parallelized

detection module processes.

Figure 5.10: The processes of the parallelized detection module

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

121

We have run several experiments using the SEA dataset to evaluate how

the parallel version of the module influences the overall performance of

detection. The experiments have used an Intel Core 2 Duo Processor E4500

(2M Cache, 2.20 GHz) with 4 GB of memory and running Windows 7 SP1,

Machine “A”. Machine “B” is Intel Core i3-2330M (3M Cache, 2.30 GHz)

with 6 GB of memory and running Windows 7 SP1.

The results show that there are two operational modes of the module:

Full Parallelization Mode (FPM) and Semi Parallelization (SPM) one. The

module selects the most appropriate one according to the capabilities of the

underlying machine and to n_aligns, the number of alignments per detection.

It selects the FPM mode if the machine capabilities match n_aligns so that

the module achieves the best performance. This is the most common mode in

our experiments. An example is the detection sessions of user 7 where

n_aligns = 5, Figure 5.11 shows that if five thread are used then each thread

runs a distinct alignment and this minimizes the detection time.

The SPM mode is selected if the machine capabilities do not match the

required n_aligns. This results in a small performance degradation due to

inactive threads. The SPM mode is rarely selected in our experiments

because the fifty users of the SEA dataset results in a value of Avg_n_align,

equals to 5.13. Hence, on average, the parallelized detection module uses 6

threads to run a detection session. A SPM mode example is the detection

sessions of user 23 where n_aligns =9. Figure 5.12 shows that the shortest

detection time is reached when running 6 threads in machine “A” and 8

threads in machine “B”. In this case, 3 threads are idle in machine “A” and 1

in machine “B”.

5.4 The Update Phase

The update of the user signature patterns is critical because any IDS

should be automatically updated to the new legal behaviours of a user. This

update is implemented by two modules: the inline update module and the

long term update one.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

122

Figure 5.11: FPM and SPM modes for user 7 in Machines “A” and “B”

Figure 5.12: FPM and SPM modes for user 23 in Machines “A” and “B”

5.4.1 The inline update module

This module has two main tasks:

1) Finding areas in user signature subsequences to be updated and

augmented with the new user behavior patterns.

2) Update the user lexicon by inserting new commands.

In the detection phase, after each alignment, each parallel thread may

update both the user signature subsequences and the user lexicon. Three

cases are possible in the TBA, see Figure 5.13:

a) The test sequence pattern matches the corresponding signature

subsequence pattern,

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

123

b) A gap is inserted into either or both sequences

c) There is at least a mismatch between the patterns in the two sequences.

In case (a), no update is required because the alignment has properly

used the symbol in the proper subsequence to find the optimal alignment.

Also case (b) does not require an update because symbols that are aligned

with gaps are not similar and should be neglected. In case (c), we consider all

the mismatches within the current test sequence. Then, both the signature

subsequence and the user lexicon are updated under two conditions.

The first one states that we can insert into the user signatures only those

patterns that are free of masquerading records. This happens anytime the

overall_alignment_score for the current test sequence is larger than or equal

to the detection_update_threshold.

The second condition states that the current test pattern should have

previously appeared in the user lexicon or belongs to the same functional

group of the corresponding signature pattern.

The two conditions imply that the inline module updates the user lexicon

with the new pattern if it does not belong to the lexicon. It also extends the

pattern with the current signature subsequence and adds the resulting

subsequence to the user signatures without changing the original one. In

other words, if a pattern in the user lexicon or in the same functional group

of its corresponding signature pattern has participated in a conserved

alignment, then a new permutation of the behavior of the user has been

created. For instance, if the alignment score of the test sequence in Figure

5.13 is larger than or equal to the detection_update_threshold, then the

pattern 'E' at the end of this test sequence has a mismatch with 'A' at the end

of the signature subsequence. If ‘E’ exists in the user lexicon or belongs to

the same functional group of 'A', the signature subsequence is augmented so

that the position with 'A' matches with both 'A' or 'E'. If ’E’ does not belong

to the lexicon, it is also inserted into it. This simply embeds observed

variations in the signature sequence without destroying any information it

encodes. In this case, a new augmented subsequence (HEE) is inserted into

the user signature subsequences. If only the first condition is satisfied, only

the user lexicon is updated so that the following checks use the new pattern.

In fact, it is highly likely that a pattern that has appeared within a conserved,

high scoring alignment has been created by the legitimate user.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

124

Figure 5.13: The inline update steps

Besides improving the computational performance of system update, the

module also improves the signature update scheme of the Enhanced-SGA

[125] as following:

1) It uses the parameters, the threshold, and the scoring system returned

by the configuration phase.

2) It runs in parallel with the detection phase and starts as soon as the

alignment score is computed. Instead, the signature update scheme

runs independently after each detection process and it repeats the

backward tracing step.

3) It improves flexibility in the signature update by considering any

occurrence of commands permutations or functionality matching.

To evaluate how the inline update module reduces the false alarm rates

and improves the hit ratio, we have used the ROC curve and the Maxion-

Townsend score after applying the inline update module. Figure 5.14 and

Table 5.8 show that the inline update module reduces the false alarm rates

and increases the hit ratio. Therefore, it significantly improves the accuracy

with respect to other approaches.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

125

Figure 5.14: The impact of the inline update on the system accuracy

Table 5.8: Masquerade Detection Approaches against DDSGA with Its
Inline Update Module.

Approach Name Hit

Ratio %

False

Positive %

Maxion-

T Cost

DDSGA (Inline Update + TMBO

+ Restricted Permutation) 88.4 1.7 21.8

DDSGA (Restricted Permutation,

Without Updating) 83.3 3.4 37.1

DDSGA (Restricted Permutation,

Without Updating) + TMBO 81.5 3.3 38.3

DDSGA (Free Permutation) 80.5 3.8 42.3

SGA (Signature updating) 68.6 1.9 42.8

SGA (Signature updating) +

Heuristic

66.5 1.8 44.3

Naïve Bayes (With Updating) 61.5 1.3 46.3

SGA (Binary Scoring, No Updating) 60.3 2.9 57.1

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

126

5.4.2 The long term update module

This module reconfigures the system parameters through the outputs of

the inline update module. There are three strategies to run the module:

periodic, idle time, and threshold. The proper one is selected according to the

characteristic and requirements of the monitored system.

The periodic strategy runs the reconfiguration step with a fixed

frequency, i.e. 3 days or 1 week. To reduce the overhead, the idle time

strategy runs the reconfiguration step anytime the system is idle. This

solution is appropriate in highly overloaded systems that require an efficient

use of the network and computational resources. The threshold strategy runs

the reconfiguration step as soon as the number of test patterns inserted into

the signature sequences reaches a threshold that is distinct for each user and

frequently updated. This approach is highly efficient because it runs the

module only if the signature sequence is changed.

The DDSGA webpage [152] describes further details on, among others,

analysis results for each user in SEA dataset, output charts, and pseudo

algorithms. Chapter 6 and 7 describe an implementation of DDSGA to detect

masquerade attacks in the cloud systems using different auditing profiles.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

127

Chapter 6

Detecting Masqueraders through System Calls and

NetFlow Data

Masquerade attacks become a big challenge in cloud systems because, the

massive amount of system resources, alternative deployment models, and the

distribution of user audits and activities across several VMs with distinct

environments, strongly increase the complexity of their detection. Most of

the current approaches to detect these attacks suffer from severe limitations

when applied to cloud systems. As an example, they analyze user behaviors

just in one environment without correlating all activities of the same user in

host and network environments. Furthermore, they are not applicable to

alternative deployment models such as private, hybrid, and public clouds.

This chapter discusses three detection strategies [143]. The first strategy

analyzes sequences of correlated system calls audits from the operating

systems of the VMs, the second considers data from the network

environment and the last one integrates the first two strategies. To simplify

the testing and the evaluation of the three strategies, we used our CIDD

dataset introduced in Chapter 4 as a source for cloud audits data. Finally, the

chapter details our experiments to determine the optimal parameters for the

various strategies and describe the experiments we have implemented to

evaluate the computational performance and the detection accuracy of these

strategies.

6.1 Overview

All the three detection methods described in the following analyze the

audit data through DDSGA. The first method applies DDSGA to sequences

of user system calls from the host environment. The second one uses

NetFlow audits collected from the network environment. The third method

integrates the outputs of the first two methods through a neural network and

uses statistical information associated with active session e.g., the login

period, user’s source IP address, and login failure actions. To tune and

evaluate the three methods we have used the system calls and NetFlow data

in the CIDD dataset. DDSGA is applied to the user audits in CIDD in a fully

functional cloud system according to the distributed architecture of CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

128

Any approach that analyses the system calls result in a high degree of

information assurance because these calls reflect all system activities and

their monitoring is tightly integrated with the OS. This makes the monitoring

process more tamper-resistant to malicious updates of the information of

interest. As a counterpart, an analysis that considers all the system call

categories may result in a slow detection process and a high false alarm rates

with a low hit ratio. This is the reason why our analysis extracts specific

features from the system calls through our “Behaviours Triangle Model” that

is focused on calls related to file access and to process activities because they

are essential and unavoidable for any user. This simplifies the labeling of

abnormal behavior because these calls reflect any regularity of the user

behaviour in audit data more than other calls.

In the network environment, a NetFlow profile is built not for each user

but for each source IP address. This profile is based upon sequences of

network actions captured by sniffing tools. For each action, we record the

sequence of destination IPs that have been accessed successfully together

with the protocols used.

The three alternative implementation models described in Chapter 3,

Audit Exchange, Independent, and Centralized-Backup, are evaluated using

their corresponding CIDS and CIDS-VERT frameworks. These models help

in analyzing the behavior of the same user in distinct cloud nodes.

Furthermore, they improve the functionality of their frameworks to

efficiently cover attacks in distinct cloud deployment models.

6.2. Detecting Masquerades in Host Environment

This section describes masquerade detection based on the anomalous

analysis of system calls sequences and evaluates this strategy through the

UNIX audits of the CIDD dataset.

6.2.1 System Calls Feature Extraction

Several monitoring and audit strategies of OS activities are focused on

system calls. These calls can be roughly grouped into five major categories:

process control, file management, device management, information

maintenance, and communication [153].

While current IDSs analyze calls in all categories, our solution only

monitors two categories: file access and process activities. To explain this

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

129

decision, we briefly discuss the disadvantage of considering all categories of

system calls. First, an analysis that considers any call with its full parameters

and features often results in a slow detection process that produces very high

false alarm rates with low hit ratio. This is due to the large number of system

calls parameters and the large number of possible permutations of the calls.

Another problem is that the training patterns for most calls are specific to the

program versions so that the accuracy of detection changes anytime the

version changes. Another important reason is that the basic premise for

anomaly detection is the intrinsic regularity in the audit data that is

consistent with the normal behavior and distinct from the abnormal one. In

other words, the more regular the data, the better the performance of

anomaly detection [154]. We have focused on file access and process

execution because they are essential and unavoidable for any user and can

strongly reflect the user behaviour with more intrinsic regularity than other

activities. To analyze file access and process execution, our Behaviours

Triangle Model, builds a profile of system activity of each user and reflects

user behaviors in terms of three relationships, see Figure 6.1:

(a) User access a file,

(b) Process accesses a file,

(c) User invokes a process.

Figure 6.1: The Behaviours Triangle Model

The Behaviours Triangle Model classifies users into human and system

users. In turns, it partitions human users into local and server users according

to their nature. Local user activities are more complex and dynamic than

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

130

those of server users and include database administration, word processing,

web browsing, and miscellaneous activities such as command-prompt and

window manager interaction. The activities of server users are more related

to email services, file transfer, and web browsing. Unlike human users,

system users are dedicated to a few tasks and have specific privileges and are

likely to behave statically. These limited activities and privileges simplify the

detection of attempts to masquerade as a system user. DDSGA detects these

attempts through a lexical list with common files and processes accessed or

invoked by system users. Any pattern outside this list is a strong indication

of a masquerader. We separate human user activities from system user

processes and then check each user separately.

In multi user systems like cloud systems, activities of distinct users are

recognized in traces through the user ID paired with each system call. Using

these IDs, we can easily define the activities of each human user. Instead,

system users activities may interact with local and server users, but they

usually do not refer to a specific user. Hence, we can detect a masquerader

that is misusing the system user but without any information about the legal

user that originated the misuse. To this purpose a further detection process

should be run for all human users.

Figure 6.1 shows three training sessions for the three kinds of users,

according to the features extracted from the CIDD dataset. The uucp system

user can access to the /uccp directory, whereas the root user can access the

/ufs and /etc files. As soon as a masquerader compromises them, the program

tries to access files in other system directories such as /lib or /user. By

exploiting the interactions between system users and human processes, a

masquerader can escalate his/her access privileges to acquire some human

user privileges. Both users uccp and root execute the last two masquerades in

the sessions in Figure 6.2 but it is not known if they affected one or more of

the human users, e.g., users 2060 or 2140. DDSGA detects these

masquerades by checking the system users’ profiles. If the detection rate is

smaller than the detection threshold, DDSGA checks all the human users to

discover if any of them were impersonated by that masquerader to use the

privileges of the system users. The next section details how DDSGA detects

masquerade attacks in UNIX system call traces.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

131

Figure 6.2: Three training sessions with the extracted features for three

types of users

Figures 6.1 and 6.2 show that we build a user profile based on the

sequence of patterns of the files the user has accessed and of the process

being invoked. The arcs of the triangle define three relationships:

(a) A user accesses a file: it includes the file access patterns that

correspond to a given task. These access patterns represent a profile of

the normal user behavior. Therefore, any deviation in the current

pattern with respect to this profile will be considered as an anomalous.

(b) A process accesses a file: this relationship defines how the process

accesses a file, a masquerader may use the user process privileges to

access important files. The analysis of the sequences of the files that

the process accesses may result in a highly accurate detection with

respect to the files the user accesses, because this relationship involves

a fixed and well defined list of the files each process can access.

(c) A user invokes a process: while the previous analyses of system calls

[sys-call-model, Behav-Monitor, and Detect-Buffer] consider the list

of all the processes that each program forks or executes, our analysis

focuses on the sequence of processes the user has invoked and the

Local User
= = = = = =

Session Head: Session-ID, User-ID, SourceIP, Period, LoginFailure?, Real-Masquerade?
368-VM2 , 2140, 194.007.248.153, Evening, 0, 1
Session Contents: (Path, Return-Value)
 (/export/home/janes/.hushlogin, 0), (/opt/local/bin/tcsh, 0), (/usr/lib/fs/ufs/quota, 0),
(/usr/bin/cat, 0), (/usr/bin/rm, 1), (/usr/bin/vi, 0), (/usr/bin/su, 1), (/usr/ucb/whoami, 0),
(/usr/bin/hostname, 0), (/opt/local/lib/solaris/specs, 1) …...

Server user
= = = = = =

102-VM4, 2060, 172.016.112.207, Afternoon, 0, 0
(/opt/local/bin/tcsh, 0), (/usr/lib/fs/ufs/quota, 0), (/usr/bin/cat, 0, 0), (/var/mail/lucyj, 0),
(/usr/bin/ftp, 0), (/usr/bin/lynx, 0), (/usr/lib/sendmail, 0) …..…

System Users
= = = = = = = =

68-VM1, uucp, 127.0.0.1, Afternoon, 0, 1
(/usr/bin/sh, 0), (/usr/bin/date, 0), (/usr/lib/uucp/uusched, 0), (/usr/lib/uuxqt, 1), (/usr/
bin/touch, 1), (/usr/bin/date, 0), (/usr/lib/uucp/uusched, 0), (/usr/lib/uucp/uuxqt, 0) ……

73-VM1, root, 127.0.0.1, Morning, 0, 1
(/usr/lib/fs/ufs/ufsdump, 0), (/etc/dumpdates, 0), (/usr/ucb/whoami, 1)........

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

132

programs being executed. The main idea is that each user has a

characteristic working set of accessed files and a list of favorite

programs. We record the sequences of these programs and consider as

anomalous the case where either the process does not follow the

normal sequence or a test process or program does not appear in these

sequences. The analysis neglects forked processes, because they are

highly predictable and the HIDS component can easily detect a

process that should not have been forked.

Figures 6.3, 6.4, and 6.5 show, respectively, the distributions of the

access patterns and of the executed programs for the three user categories.

Figure 6.3: The Local User with ID “2140” in CIDD.

Figure 6.4: The Server User with ID “2060” in CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

133

Figure 6.5: The System User with ID “UUCP” in CIDD.

The previous figures show that both the behaviours of server and system

users are highly predictable. Hence, any deviation in these behaviours may

be more accurately detected than those for local users. We also notice that

the programs that are executed can be more reliably predicted and the

corresponding access patterns improve the detection process.

6.2.2 Applying DDSGA to Correlated System Calls

DDSGA [DDSGA] can work efficiently with any sequence of patterns

regardless of the running environment. To detect masquerades in UNIX

audits, DDSGA computes the best alignment score by aligning the active

session sequence e.g., the access patterns and executed processes as in Figure

6.2, to the previous sequences of the same user. The implementation of

DDSGA is updated because originally it was applied to the simulated SEA

dataset [136] with overlapped sessions of fixed length. Instead, the CIDD

dataset is distributed among the cloud VMs and has non-overlapped non-

fixed length real time sessions. To this purpose, we have to discover the best

Sliding Window Size (SWS) for each test session and to build a reasonable

scoring system according to the extracted features of UNIX audits. Both the

detection and update phases of DDSGA do not change if CIDD is

considered, because they use the new parameters returned by the

configuration phase. In the detection phase, we test three correlation models,

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

134

Independent, Audit Exchange and Centralized-Backup to correlate the

behaviour of the same user in distinct cloud nodes. We detail these issues and

discuss the effect of correlation in the following subsections.

6.2.2.1 Choosing the Best Sliding Window Size (SWS)

The dynamic or Sliding Window Size (SWS) determines the length of the

test sequence in the active session or, in other words, it determines when the

detection phase should start the detection process. The SWS affects this

process and helps in improving the system call modeling methods. Previous

work [154] has chosen the optimal size with reference to an information

theoretic framework that applies one of two approaches based on the training

data. The first one uses entropy modeling and it considers data regularity.

The second approach fully exploits the context dependency of the optimal

size and estimates it according to the specific system calls in the training

subsequences. The latter approach models the complete set of system call

traces and it is not suitable in our framework that is focused on a subset of

call traces (access patterns and the invoked processes). Furthermore, it uses

the sparse Markov transducers [155] while DDSGA uses a more flexible

alignment technique. We have estimated the SWS factor using four

approaches:

(a) Minimum Conditional Entropy (MCE),

(b) Test Session Length (TSL),

(c) Test Session Length with Sensitive Action (TSLSA),

(d) Average Signature Session Length (ASSL).

We have evaluated each approach through two main measures, the

detection accuracy using the Receiver Operator Characteristic (ROC) curves

[113] described in Chapter 2 and the masquerader live time length. After

highlighting the four approaches, we detail their evaluation.

(a) The Minimum Conditional Entropy (MCE):

Conditional entropy, see Equation 6.1, measures the regularity of the

training data for each user using alternative SWS values and choose the one

with the lowest entropy that also corresponds to the most regular data. The

definition of conditional entropy is recalled in Equation 6.1.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

135

Where P(x, y) is the joint probability of x and y, and P(x|y) is the conditional

probability of x given y.

To apply the entropy to our model, we introduce the following definitions:

 X= S: the set of system call patterns (access patterns and invoked

processes).

 Y= S SWS−1 : the set of system calls patterns sequences of length SWS-1.

 S SWS : A sequence of length SWS.

 A: the set of all sequences in the training data.

 N (S SWS) : The number of times the sequence S SWS appears in A.

 N(A): The total number of sequences in the training data.

If we define the joint probability P(x,y) as following:

The conditional entropy in Equation 6.1 for a window size SWS is:

The conditional probability P(x|y) is the prediction of this entropy model

and it means that the probability of system call ‘x’ at a position (SWS) in the

training sequences is estimated from y, the previous (SWS-1) system calls. To

compute the prediction for each user training data, we consider each (SWS-1)

sequence of system call patterns in the training data of user U and keep

counts of the following system calls.

Then, P(x|y) the prediction for system call ‘x’ given a sequence ‘y’ that

includes the (SWS-1) preceding system calls is simply p/t where, ‘p’ is the

count of system call ‘x’ in the sequences such as ’y’ and t is the total count of

system call ‘x’ in the sequences that consider even the calls after the SWS-1

position.

If a sequence S SWS does not occur in the system call patterns sequences,

P (SSWS)=0 . Therefore, we can set as in Equation 6.3 the conditional

entropy of Equation 6.2 for a window size SWS to denote that at least

one S SWS sequence occurs in ‘A’, the set of all sequences in the training data.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

136

Equation 6.3 computes the conditional entropy H SWS (x|y) for the system

call patterns sequences of each user using a window size SWS. The most

suitable windows size for each user is the one that corresponds to the

minimum entropy and the more regular data.

To compute the conditional entropy for each user data, we use the cross

validation in [154] for the training sequences of each user extracted from the

CIDD dataset. We train the prediction models with one part of the training

data and apply Equation 6.3 to compute the entropy over the second part of

this data. Then, we repeat the computation after swapping the two parts. The

total entropy is the sum of both entropies. Figure 6.6 shows the conditional

entropy for three users, each of a distinct kind.

Figure 6.6: The conditional entropy under different SWS values for local user

“2140”, server user “2060”, and system user “UUCP”.

Notice that the curves for server and system users do not have a specific

minimum due to the high data regularity for these users. We have noticed

that the lower the entropy, the more regular the data and the better the

performance of detection. The accuracy and masquerader live time resulting

when adopting the conditional entropy model are acceptable for server and

system users because of their highly regular data. This solution does not

achieve the same performance for local users whose data are less regular.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

137

(b) Test Session Length (TSL):

It sets SWS to the length of the active test session. This approach achieves

the best accuracy among all the approaches because the resulting size makes

it possible to compare the active test session against the previous training

sequences. However, the masquerader live time is longer than in the other

approaches.

(c) Test Session Length with Sensitive Action (TSLSA):

The SWS is set to the length of the active test session but the detection

process can start at any time a sensitive action occurs. Sensitive actions are a

set of sensitive file access patterns or of invocation to programs predefined in

the DDSGA database. An attacker exploits these patterns or these

invocations to misuse cloud resources. Table 6.1 shows some sensitive files

and programs in the DDSGA database. The approach achieves suitable

detection accuracy and a shortest masquerader live time for all user

categories except the system users. This may due to the fact that usually

these users access sensitive files and execute sensitive commands to support

operating system functionalities. As an example, when a user logs in, the

operating system checks the /etc/passwd file.

Table 6.1: Examples for sensitive files and programs

File/Program Pattern Pattern task

File /etc/passwd Records users encrypted password

File /usr/adm/saveacct Records accounting information

File /usr/adm/wtmp Records all logins and logouts

File /etc/hosts List of IP hosts and host names

Program /bin/passwd Changes user password

Program /bin/yppasswd Changes NIS password

Program /etc/ttymon Monitors terminal ports

Program /sbin/fdisk Formats hard disk

Program /bin/chmod Changes file permissions

(d) Average Signature Session Length (ASSL):

The SWS is set to the average length of training sessions or to the length

of the current session if it is shorter than the average one. ASSL increases

both the accuracy and the masquerader live time for users with close training

session lengths.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

138

We evaluate and compare the detection accuracy of each of the four

approaches for local, server, and system users through the ROC curves in

Figures 6.7, 6.8, and 6.9 respectively. Each curve graphs the false positive

rate versus the detection rate. We have also built the chart of the masquerader

live time that shows some masqueraded sessions from the training data for

the three users. To get distinct false positive rates in the ROC curve, we have

changed some of the DDSGA parameters such as the detection threshold and

the scoring parameters.

Figure 6.7: The ROC for the three sliding window selection methods for

local user "2140" in CIDD.

Figure 6.8: The ROC for the three sliding window selection methods for

server user "2060" in CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

139

Figure 6.9: The ROC curve for the three SWS approaches for system user

"UUCP" in CIDD.

We have applied DDSGA using the Centralized-Backup model with the

lexical and return checks as detailed in the next section. Other correlation

models result in the same conclusions. In the ROC curves, the best detection

achieves the highest detection rate, minimum false positive rate, and smallest

Maxion-Townsend cost [112]. Table 6.2 summarizes the comparison.

Table 6.2: A comparison between the best detection outputs for the previous

four SWS approaches sorted by user category and Maxion-Townsend cost

SWS

Approach

User

Category

False

Positive %

Hit % Maxion-

Town Cost

TSL Local 2.2 92.24 20.96

TSLSA Local 3.1 90.49 28.11

ASSL Local 3.2 84.01 35.19

MCE Local 3.4 80.83 39.57

TSL Server 2.2 95.74 17.46

MCE Server 2.6 94.61 20.99

TSLSA Server 2.73 90.71 25.67

ASSL Server 2.8 88.98 27.82

TSL System 0.6 98.94 4.66

MCE System 0.8 97.31 7.49

ASSL System 0.8 96.27 8.53

TSLSA System 1.05 91.62 14.68

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

140

As shown in Figure 6.10 shows that both the SWS and the characteristic

of the user activities affect the masquerader live time. As an example, system

user sessions are the longest one, because they reflect some operating system

activities. Instead, server user sessions are among the shortest ones, because

each reflects a small set of activities e.g., sending an email or transferring a

file. The length of a local user session changes according to the user

behaviour.

Figure 6.10: The masquerader live time in seconds for local, server, and

system users in some attached sessions

 According to the output of our comparison, we use TSLSA for local

users, because of the low regularity of their data and MCE for both server

and system users that have highly regular data.

6.2.2.2 Scoring System

The input of the DDSGA is a tuple with n+1 fields where “n” is the

length of the session

{X (U, S, P, F, M, T), y1(r1), y2(r2)... yn(rn)}

Where,

 yi is the input parameter, a file or process name.

 ri: the return parameter of the executed pattern, is zero if the

pattern was successfully and one otherwise

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

141

 X is the session ID followed by its input parameters,

 U: the current user id.

 S: the login source IP address.

 P: the login period,

 F: a Boolean value to define whether there is a login failure in

the session.

 M: a Boolean value to define if the session has a masquerade

or not.

 T: the detection threshold for the session user.

S, P, and F are the input of the neural network described in Section 6.4

For example, a valid tuple is:

{713-VM1 (2143, 135.013.216.191,”Afternoon”, 0, 0, 0.72),

/usr/lib/fs/ufs/(0), /usr/ucb/whoami(1), …..}.

DDSGA computes the detection score for the session and compares it

against the threshold to determine whether the session is a masquerade.

Then, it compares this score against “M” to compute the false alarms and hit

ratio.

We have modified the DDSGA scoring system to work with the extracted

features of the “Behaviours Triangle Model”, see Figure 6.11. The system

rewards a mismatched pattern in the test sequence in two cases: If the test

pattern has previously appeared in the user lexicon or if the access or

executed pattern was successful.

The first case tolerates various permutations of previously observed

patterns without reducing the detection score significantly. In the second case

the scoring system rewards successful action and penalizes failed one,

because we noticed that most of masqueraded patterns include failure

attempts since a masquerader usually lacks some knowledge of the victim

file system. The next section highlights the evaluation of the scoring system

in terms of security and complexity for the three correlation models.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

142

Figure 6.11: A flowchart for the modified DDSGA scoring system.

6.2.3 The Independent, Audit Exchange, and Centralized-Backup

Models

We have developed three correlation models of a user behavior for

different deployment models namely, Audit Exchange, Independent, and

Centralized-Backup. The first two models work with the original CIDS

framework and both are detailed in [142]. The third one works with the

improved framework, CIDS-VERT. Section 6.2.4 discusses the experimental

results of the first two models using the CIDS-Testbed and of the third model

using the CIDS-VERT-Testbed. In the following, we outline the three models

and refer to [142] for further details.

(A) Audit Exchange Model

Here nodes exchange their audit data so that each one stores any audit

data for any of its current users. Nodes also exchange:

(1) The alignment score computed by the CIDS detector component.

(2) The alerts fired by the HIDS component.

This balances the detection overhead among nodes with no single point

of failure. The detection efficiency is high because the user audit is

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

143

concentrated in one node and the masquerader surviving is much shorter than

in model B, see Figures 6.13 and 6.14. As a counterpart, the model needs a

fast periodic update and the exchange of the audit data that increases the

cloud network overhead and hinders scalability. Furthermore, in highly

overloaded networks some audit data may be lost in the exchange see Figure

6.15.

(B) The Independent Model: The detection phase of this model uses the

same two parameters of model A. A cloud node CN evaluates login usage

patterns of a user U using both CIDS and HIDS detectors and by using the

behavior-based and signature-based of CN without interacting with other

nodes. If the CIDS detector of CN fires an alert, the current login usage

patterns are checked against the audit data of U in the other nodes until one

of them accepts the current pattern. If no node related to U accepts the

pattern, the current login session is marked as a masquerade attack. The

model advantages are:

(1) It does not require a periodic update of user audit data in each node.

The regular periodic backup for VMs data is similar to that of other

models,

(2) A very low overhead for the cloud network, as data is exchanged only

if the detection score is less than the threshold. In this case, nodes

exchange the test audit data of the login session, see Figure 6.15,

(3) High detection efficiency in terms of hit and the false alarm rates

close to that of model A, see Figure 6.13.

(4) A lower processing overhead than the other models, because each

node executes the DDSGA alignment only if the detection score is

less than the threshold. The detection time is directly proportional to

NN, the number of nodes that have audits for user U. See Figure 6.16.

As a counterpart, the surviving of a masquerader is longer than in models

A and C because as CN increases it also increases the time to analyze the

audit data in all nodes, see Figure 6.14. Hence, this model does not scale to

large clouds.

(C) The Centralized-Backup Correlation Model

In this model, users VMs send their audit data to a reserved management

VM that has a complete view of any user audit data to analyze and report the

final alerts. The management VM is backed up to some other VMs as

explained in Section 3.2.1 to balance the detection overhead among the

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

144

management VMs with no single point of failure. This model achieves the

best detection efficiency because the user audit is concentrated in one place

and no audit data may be lost. The masquerader surviving is very short

comparing to model A and B, see Figures 6.13 and 6.14 with low network

overhead. The detection time is inversely proportional to the number of

management VMs that reduce the processing overhead in the active

management VM. This speeds up the detection phase and protects the IDS

components from tampering by any attacker. On the other hand, the network

overhead increases with the number of management VMs, see Figures 6.15

and 6.16. Furthermore, the model requires several resources as it reserves

some management VMs for detection.

6.2.4 A Comparison of the Three Models

We have applied DDSGA to all users in the CIDD dataset and focused

our evaluation on local users with a large deviation in their behaviours. The

experiments compare the three models in terms of four values:

A. Accuracy and efficiency using both the ROC curve and Maxion-

Townsend cost.

B. Average masquerader live time per session,

C. Average transmitted data per session during the detection time,

D. Average detection time per session.

(A) The accuracy and efficiency

To evaluate the accuracy and efficiency of the models, we focus on the

effects of the two DDSGA alignment parameters computed for each user i.e.,

the detection threshold and the scoring system rewards and penalties, on the

detection accuracy. The false positives, false negatives and hit ratios are

computed for each user and then transformed into the corresponding rates

that are summed and averaged over all users. Equations 6.4, 6.5, and 6.6

show the metrics used by DDSGA.

 (6.4)

Where:

 fp = No. of false positive alarms,

 n = No. of non-intrusion sessions,

 nu = No. of users in CIDD dataset (84 in our case)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

145

 (6.5)

Where:

 fn = No. of false negatives,

 ni = No. of intrusion command sequence blocks,

 nui = No. of users who have at least one intrusion block

 (6.6)

Figure 6.12 shows the masquerades distribution in the test sessions for

some CIDD users and the detection threshold that DDSGA computes for

each user in the training phase.

Figure 6.12: DDSGA threshold and masquerades distribution in test sessions

of CIDD users 2139 and 2142

To plot the ROC curve, we use distinct values of the alignment

parameters that result in false positive rates in the x-axis and the

corresponding hit ratios in y-axis. Figure 6.13 shows the ROC curves for

each model with the scoring system, the Centralized-Backup model without

the scoring system, and the No-Correlation model with the scoring system.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

146

Figure 6.13: The ROC curve for the three correlation models with and

without the scoring system.

Table 6.3: The best accuracy of the three Correlation Models sorted by

Maxion-Townsend cost

Correlation Model False Positive

%

Hit % Maxion-Town

Cost

Centralized-Backup model with return

and Lexical Check

2.32 94.24 19.68

Independent model with return and

lexical check 2.42 92.44 22.08

Audit Exchange model with return and

lexical check

2.49 92.09 22.85

Centralized-Backup model without the

scoring system (without check) 2.61 88.99 26.67

No Correlation Centralized-Backup

model with return and lexical check 2.92 74. 60 42.92

Figure 6.13 and Table 6.3 show that the Centralized-Backup model with

the scoring system results in the highest hit ratio with the corresponding

lowest false positive rates. The ability of the scoring system in tolerating a

large number of mutations and deviations in user behaviours increases the hit

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

147

ratio by about 5.25% and reduces Maxion-Townsend cost by 6.99. The

correlation of the user audits in all the cloud VMs is mandatory to build a

consistent profile and it improves the hit ratio by about 19.64% and reduces

Maxion-Townsend cost by 23.24%.

(B) Average Masquerader live Time

We compute the average masquerader live time over all sessions for the

three correlation models. In the Centralized-Backup model, a larger number

of management VMs reduces the computational overhead and, consequently

the live time as well. As a counterpart, it increases the cloud network

overhead. Therefore, we experimentally determined the optimal number of

management VMs. Figure 6.14 shows that the shortest live time is achieved

if two management VMs are used.

Figure 6.14: Average Masquerader live Time per session in the three

correlation models

(C) Average Network Overload per session.

We compute the overhead on the cloud network in terms of the average

amount of data that each model transmits in a session. According to the

considered model, the VM(s) that runs the detection task can send user audits

or current active session to the other VMs. Figure 6.15 confirms that the

Independent model is the most lightweight one and that the network

overhead of the Centralized-Backup model is directly proportional to the

number of management VMs.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

148

Figure 6.15: Average transmitted data per session in bytes in the three

implementation models

(D) Average detection time per session

The average detection time is affected by the machine capabilities and

available processing resources. The size of the test session, the

corresponding training sessions, and number of user VMs in the cloud

system are further important factors. Figure 6.16 shows that the detection

time of the Independent model for a user who has audits distributed among

three VMs depends upon NN, the number of cloud nodes running these VMs.

In this way, the Independent model distributes the training audits among the

cloud nodes and each node independently runs the detection process using

some training records. The shortest detection time is achieved if the detection

score in the first node is larger than the detection threshold, and this time

increases as NN increases. The 3VMs audits label of the independent model

in Figure 6.16 means that user audits are distributed across three nodes, each

with one VM for that user. By comparing the 3-VM columns against the

other models, we notice that the improvement due to the Independent

decreases as NN increases. If NN is equal to 3, this model results in the worst

detection time. Therefore, this model is ideal with a small number of users

and VMs and it cannot be adopted in large cloud such as public or hybrid

ones. On the other hand, the Centralized-Backup model has a reasonable

detection time that may be reduced by increasing the number of management

VMs. Hence, the model is more elastic and scalable and it may be adopted in

large clouds.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

149

Figure 6.16: Average detection time per session in milliseconds in the

three models

The previous experiments show that in the CIDS framework, the

Independent model outperforms the Audit Exchange. The performance and

the accuracy of the Independent model are acceptable in small and private

cloud networks. Instead, the Centralized-Backup model works efficiently

with CIDS-VERT in large clouds such as public and hybrid ones.

6.3. Detecting Masquerade in Network Environment Based on

NetFlow Data Analysis

 While current detection strategies directly monitor the hosts and IDS

components to gather and process host data, a cloud system being massively

distributed and interconnected requires a network centric approach to

masquerade detection [130]. This approach preserves the privacy as it only

needs statistical information on the network traffic and it can replace user

identifiers, source and destination IP addresses with encrypted or anonymous

values. A NetFlow analysis, e.g., an analysis of the network activities of a

user, can generate a unique and useful user network profile to detect potential

masqueraders whenever the host data is not accessible or legal/ethical

restrictions related to the user privacy apply [130, 35]. Furthermore, while

some organizations do not routinely collect host audits on all users, by

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

150

default any organization collects statistical information on network traffic for

network administration, monitoring and troubleshooting. As a counterpart, a

NetFlow analysis classifies network activities through their source IP

address. Therefore, if several users share the same address e.g., users log to

the same VM or remotely access their cloud VMs through the same server,

the network activity profile will reflect the activity of the server or of the VM

connected to this source IP address rather than the activity of a single user.

This is the reason why our analysis detects the masquerade IP source

address.

We propose three approaches to capture the NetFlow data namely, the log

server, the inside-outside workstations, and the physical\virtual switch

monitoring. The data of the log server approach consist of mail or FTP server

logs. The log server pairs the source IP address with its NetFlow traffic

captured by the sniffer tool and it determines the start and end of user

sessions. The inside-outside workstations approach considers two nodes

located, respectively, on the inside and on the outside of a router and uses a

sniffer tool to capture data that crosses the router through any TCP/IP

connection between the two nodes. In the physical\virtual switch monitoring,

a network IDS sensor like Snort is installed in one physical node or in a VM

that is connected to a physical switch port or to a promiscuous port on a

virtual switch where all traffic is mirrored. In our CID-VERT framework,

virtual network traffic is forwarded to a management VM(s) where Snort

analyzes it and gets the required NetFlow data. In the CIDS framework,

network traffic is forwarded to one physical host that runs SNORT and it is

attached to the auditor system to capture the network audits for user sessions

as in Chapter 3.

6.3.1 Feature Extraction from NetFlow data in the cloud Network.

Our goal is to use sequences of the destination IP addresses of the

machines a user accesses and the name of the corresponding protocol in the

same way host-based masquerade detection uses system call access patterns.

The correlator component of both CIDS and CIDS-VERT frameworks

defines the start and the end of user sessions as in the log server approach.

After that, the auditor system in CIDS or the event correlator in CIDS-VERT

filters the NetFlow data of the user host session according to the user source

IP address. The NetFlow session length is equal to the host session length

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

151

computed by one of the four SWS approaches in Section 6.2.2.1. Figures

6.17 and 6.18 show the distribution of the destination IP addresses in the

network activity profiles of two source IP addresses that correspond to local

and server user sessions, respectively. In general, system users do not use the

network environment because their activities are more related to some

operating system tasks. These two figures show that server user sessions are

more regular than local users ones because their destination IP addresses are

more specific and consistent than the corresponding ones in local user

sessions. In addition, server users implement their tasks through just a few

protocols e.g., “FTP” to transfer files and “SMTP” to send emails, while the

network activities of local users use a larger number of protocols. We also

notice that NetFlow data is less regular than system call patterns because the

consistency of user network activities is lower than that of host activities. In

addition, a network activity profile reflects the behaviour of a source IP

address that may be shared among several users. This may reduce both the

regularity and the consistency of data in the network activity profile that in

turn, reduces the accuracy of detection. Therefore, we modify the DDSGA

scoring system, see Section 6.3.2, to be more flexible and take into account

these features of NetFlow data.

Figure 6.17: The distribution of NetFlow destination IP addresses in local

user sessions (user ID 2143 in CIDD)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

152

Figure 6.18: The distribution of NetFlow destination IP addresses in server

user sessions (user ID 2059 in CIDD)

DDSGA is applied to NetFlow data that are tuples of the form:

{X (U, S, DT, M, T), y1(p1,d1), y2(p2,d2)... yn(pn, dn)}.

Where “n” is number of content patterns in the session and X is the session

ID with the following input parameters:

 U: the current user id.

 S: the user source IP address.

 DT: the date and time of the session in the form (Week Day Time).

 M: a Boolean that defines if the session has a masquerade or not.

 T: the detection threshold for the session user.

 yi: a session content pattern where pn is the protocol name and di the

destination address.

For example, a valid tuple is:

{3112-VM3 (2143, 135.013.216.191, W4, D3, 8:56:47, 0, 0.64), (telnet,

172.016.112.050), (domain/u, 172.016.112.020)}.

Again, DDSGA computes the detection score and determines whether the

session has a masquerade patterns. Then, it checks “M” to compute the false

alarms and hit ratio. Figure 6.19 shows two training sessions with the

extracted NetFlow features for a local user and a server one.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

153

Figure 6.19: Two training sessions with the extracted NetFlow features

for local user 2143 and server user 2059

6.3.2 The NetFlow Scoring System

 The scoring system for NetFlow data, see Figure 6.20, has been defined

by modifying the DDSGA scoring system.

Figure 6.20: A flowchart for the modified NetFlow scoring system.

Local User
= = = = = =
Session Head:
SessionID, UserID, SourceIP, Week, Day, Time, Real-Masquerade?
3112-VM3, 2143, 135.013.216.191, W4, D3, 08:46:27, 0
Session Contents: (Protocol Name, Destination IP)
(telnet,172.016.112.050),(domain/u,172.016.112.020),(smtp,172.016.113.105),
(smtp,172.016.112.194),(domain/u,172.016.112.020),(ftp,172.016.114.148),
(smtp,172.016.113.084),(finger,172.016.114.168),(http,172.016.112.050),..........

Server user
= = = = = =
Session Head:
SessionID, UserID, SourceIP, Week, Day, Time, Real-Masquerade?
2702-VM3, 2059, 172.016.114.169, W5, D2, 11:37:22, 0
Session Contents: (Protocol Name, Destination IP)
(telnet, 195.073.151.050),(smtp, 196.227.033.189),(smtp, 208.225.121.198),
(ftp, 187.187.187.187),(ftp, 209.001.120.050) ,(http, 198.068.020.079),...............

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

154

The system rewards a mismatched destination IP pattern in the test

sequence in two cases: the protocol name has previously appeared in the

protocol list of the source IP in the test sequence or the destination IP has

previously appeared in destination-IP list of the source IP. The first case

tolerates permutations of observed patterns of the combination (destination

IP and protocol name) without reducing the detection score significantly. In

fact, the destination IP and protocol name may be unrelated, because a user

may access the same destination with distinct protocols for distinct tasks.

Also the second case tolerates various permutations of previously observed

patterns because a user may access a set of destinations in distinct orders. We

have applied DDSGA to the NetFlow data for each source IP sessions in

CIDD as described in Section 6.2.2 using the Centralized-Backup model of

CIDS-VERT. Figure 6.21 and Table 6.4 show the detection accuracy of

DDSGA in terms of both the ROC curve and Maxion-Townsend cost

respectively.

Figure 6.21: The ROC curve for the DDSGA approach on the NetFlow

audits with and without the scoring system

Table 6.4: The best accuracy of the DDSGA approach on the NetFlow audits

with and without the scoring system sorted by Maxion-Townsend cost

Approach False

Positive %

Hit % Maxion-

Town Cost

DDSGA with NetFlow scoring system 6.05 83.05 53.253

DDSGA without NetFlow scoring system 6.39 72.89 65.487

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

155

Figure 6.21 and Table 6.4 show that the NetFlow scoring system results

in the highest hit ratio with corresponding lowest false positive rates. The

scoring system increases the hit ratio by about 10.16% and reduces Maxion-

Townsend cost by 12.234.

6.4. A Neural Network Model to Integrate the Host and

Network Detection Outputs

The integration of host and NetFlow detections through a Threshold

Logic Unit (TLU) [42], see Figure 6.22, improves the accuracy and the

efficiency of the detection. The TLU works for each user independently to be

adapted to the consistency of the user behaviour. A Group of TLUs consist of

a complete neural network model for all users in the CIDD dataset. The TLU

has 3 layers: one input layer of dimension n= 4 inputs, an hidden layer with 1

summing junction neuron, and an output layer with 1 neuron connected to an

activation function that depends upon the TLU operational mode. The

detection mode uses a threshold function which returns 0 if the sum of the

input is less than a threshold (tj), i.e., if there is a masquerade attack in

session s. Otherwise, the function returns 1. In learning mode, the neural

network uses the sigmoid function to range the outputs between 0 and 1 to

adapt with the training phase and the weight adjustments, see Section 6.4.2

Figure 6.22: The neural network model in the training mode for one user

6.4.1 The Detection Mode of the TLU.

The mathematical model for the TLU output for a session s of user j is Y sj as

defined in Equation 6.7:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

156

Y sj=F (X sj) , X sj={DDSGANetScore , S , P , E } (6.7)

where F is a non-linear activation function implemented by the TLU. This

function is denoted by φ(.) and it acts as a squashing function, such that the

output of a TLU belongs to a given range. In detection mode, the neural

network uses the Threshold Function as a transformation function. X sj is the

TLU input parameters of session s of user j. The input parameters are:

 DDSGANetScore : the overall detection score for the active user session

according to user audits in both host and NetFlow data,

 S: The login source IP address,

 P: The login period,

 E: A Boolean value to signal any login error/failure in the active

session.

The last three parameters are collect from the host audits as in Section

6.2.2.2. An example of a valid input record is:

{0.31, 172.016.114.169, Morning, 0}.

We use Equations 6.8 and 6.9 to compute the DDSGANetScore parameter.

 (6.8)

 = (6.9)

Where:

 PCmasq(Uj): the probability that the current active session of Uj has a

masquerade patterns according to Uj behaviors in all cloud VMs. It

includes the probability that the masquerader can be detected by the

behaviour of its login IP(s).

 P(Uj): the probability that the current active host session of Uj has a

masquerade behaviour according to Uj behaviors in all cloud VMs as

computed as in Section 6.2.2. This probability does not include user

IP behaviors.

 m: the number of IP(s) that Uj uses to login to the cloud.

 n: the number of cloud users who share the same IPa of Uj

 k: an index for the current user who shares the same IP of Uj.

 a: an index for the current IP address of Uj.

 P(IPa): the probability that IPa reveals to be a masquerader as

computed in Section 6.3.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

157

Consider the case where U1, U2 and U3 share IP1 and IP2 and the

probabilities that IP1 and IP2 could be used by a masquerader are: P(IP1) =

0.4, and P(IP2) = 0.5. The probabilities that U1, U2, and U3 reveal to be

masqueraders according to their behaviors in all the cloud VMs are:

P(U1)=0.4, P(U2)=0.3, and P(U3)= 0.6, and the detection threshold θj = 0.75.

We apply the previous equations to compute PCmasq(Uj) for each Uj to

determine which one is a real masquerader according to both the

corresponding host and network audits.

= ((0.4*0.4) / (0.4+0.3+0.6) + (0.4*0.5) / (0.4+0.3+0.6)) + 0.4 =

0.6769 < θj (not masquerader)

= 0.75 - 0.6769 = 0.0731.

= ((0.3*0.4) / (0.4+0.3+0.6) + (0.3*0.5) / (0.4+0.3+0.6)) + 0.3 =

0.5076 < θj (not masquerader)

= 0.75 - 0.5076= 0.2424.

= ((0.6*0.4) / (0.4+0.3+0.6) + (0.6*0.5) / (0.4+0.3+0.6)) + 0.6 =

1.0153 > θj (masquerader)

= 0.75 - 1.0153 = - 0.2653.

6.4.2 The Training Mode of the TLU.

While DDSGA uses unsupervised learning, all TLUs are trained using a

supervised learning algorithm. Since the TLU contains only one hidden layer

with one neuron, a simple algorithm such as the Generalized Delta Procedure

(GDP) [42], simplifies the learning process that occurs off-line during the

training phase to compute the input weights for each user independently.

The GDP computes the error i.e., the distance between the desired

response and the actual one, and backward propagates a fraction of it through

the network. Each neuron uses this fraction to tune its weights and threshold

values to reduce the network error for the same input. This procedure is

repeated until the individual or total errors in the responses become smaller

than a specified value. At this point, the learning ends and we can use the

neural network to produce responses to new input data.

To find the weight change rule, we exploit that the sigmoid function is

differentiable. If there is an error for the given input, the weights are adjusted

according to Equation 6.10:

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

158

Wij ← Wij + C * ej * f(1-f) * Xij (6.10)

Where,

 Wij: The weight of input i to the hidden neuron j.

 C: A constant of learning. We take C to be universally 1.

 ej: The error distance. ej = dj - f, dj is the desired result from the

training set (0 or 1).

 f: The actual result from the TLU with the sigmoid function, and

f(input) = 1 / (1+e
-input

), f (1– f) → 0, where f → 0 or f → 1. This

means that the weight change can occur only within ‘fuzzy’ region

surrounding the hyper plane near the point f = 0.5.

 Xij: The input i to the hidden neuron j.

The training also tunes the threshold parameter tj. By applying the

concept of Augmented Vectors [156], we add a new input to the TLU, Tn+1,

and a corresponding weight, Wn+1. Tn+1 always takes on a value 1 and Wn+1 is

adjusted as the other weights. The threshold value tj is fixed at 0. After the

training, we remove Tn+1 and set tj to the value of Wn+1.

The weights and threshold values in the TLU are randomly initialized but

the weight of DDSGANetScore is always the largest one because it mostly

affects the TLU. The initial weight vector is: {0.85, 0.05, 0.05, 0.05}. Figure

6.23 shows how the learning iterations affects the error distance for local

user 2143 using 48 samples of training sessions.

Figure 6.23: The effect of learning iterations on the error distance

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

159

6.4.3 Performance Evaluation of the Integrated Approach.

We compare the accuracy and the average detection time per session for

the three detection approaches: neural network, network, and host based

using the Centralized-Backup model with two management VMs. Figure

6.24 confirms that the neural network model results in the longest average

detection time per session because, it integrates the outputs of other

detections. However, it results in a better accuracy than the other models as

shown in Figure 6.25 and Table 6.5.

Figure 6.24: Average detection time per session in milliseconds in host,

network, and the neural network models.

Figure 6.25: The ROC curve for the DDSGA approach using network, host,

and neural network approaches

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

160

Table 6.5: The best accuracy of the three detection approaches sorted by

Maxion-Townsend cost

Approach False Positive % Hit % Maxion-Town Cost

Neural Network Model 1.59 98.07 11.49

DDSGA within Host system 2.32 94.24 19.68

DDSGA using NetFlow 6.05 83.04 53.25

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

161

Chapter 7

Detecting Masqueraders through Security Events and

NetFlow Data

This chapter applies the detection strategies of Chapter 6 to different

audit data and distinct operating system [157]. The experiments results that

this chapter presents confirm those of Chapter 6. The chapter ends with a

comparison between its strategies and the ones introduced in Chapter 6.

7.1 Overview

The modeling of user audits is a big challenge in clouds because they

support distinct guest operating systems each with its own logging facilities

that result in alternative users audits. As possible examples, we recall the

Unix Syslog [158] process, the Windows System, Security, or Application

event logs [33] and the open source OpenBSM [159] library in both

FreeBSD and Mac OS X. Our solution focuses on those audits that almost

any operating system produces, namely system calls and security events.

While Chapter 6 has experimentally proved that DDSGA can achieve a high

performance and accurate detection if applied to sequence of system call

audits integrated with audits of a user network activity, this chapter evaluates

the performance of strategies that apply DDSGA to sequence of security

events audits from the host environment integrated with the NetFlow audits

from the network environment based on CIDD dataset. We use the

“Behaviours Triangle Model” introduced in Chapter 6 to model a consistent

user profile in the host environment based on features extracted from the

security events. Then, we build a NetFlow profile for each source IP address

in terms of sequences of network actions captured by sniffing network

communications as in Chapter 6. DDSGA computes two detection outputs by

comparing the active log sessions in the host and the network environments

against the corresponding profile. A neural network produces the final output

as in Chapter 6. We also have considered the two intrusion detection

frameworks, CIDS and CIDS-VERT. We evaluate the efficiency and the

computational performance of the host based and of the network based

detection in isolation and then the one of their integration.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

162

7.2 Detecting Masquerades Based on Security Events Analysis

This section considers the detection in the host environment based on the

security events of the host OS.

7.2.1 Feature Extraction from Security Events in Cloud VMs.

The guest operating systems of the VMs offer an efficient and highly

configurable auditing system. An analysis of the corresponding audit data

can simplify the detection of several threats against clouds. Here we consider

the Windows Event Log Service that records events with information about

hardware, software and system components in three logs: application, system

and security [33]. Events in the application log are logged by programs and

selected by the developers of these programs. The system log contains events

logged by Windows system components, e.g. by drivers. The security log

records events on valid and invalid logon attempts and on resource usage,

such as file operation and process invocation. This log stores most of the

information that defines the user behaviours. We extract from the security

log six types of audits namely, Privilege Use, Account Management, System

Event, Logon/Logoff, Detailed Track, and Object Access. Each of these

audits has a group of audit actions. Among them, we focus on the sequence

of user actions; i.e., accessed objects and invoked processes.

Figure 7.1: Extracted feature from security events

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

163

As shown in Figure 7.1, we extract:

(1) The sequence of files or directories opened by the user from the

“Object Accessed” audit category.

(2) The sequence of process created or invoked by the user from the

“Detailed Track” audit category.

(3) The name of the trusted login processes registered by the system from

the “System Event” audit category.

We record the beginning and the end of each user session using the time

of each successful logon event as defined through both the “Logon/Logoff”

and the “System Event” categories. The Logon/Logoff audit category helps

in defining valid and invalid logon attempts to define masquerade attacks. As

described in Section 7.2.2.1, the actions extracted from the “Privilege Use”

and “Account Management” categories are sensitive actions and their

execution fires the detection process.

The feature extraction process is applied to the windows audits of CIDD,

which is distributed among the operating systems of distinct cloud VMs. By

extracting specific features rather than considering all those of security

events, we achieve two advantages. First of all, this reduces the false alarm

rates and improves the hit ratio because it reduces the number of log events

and it focuses on those that characterize user behaviours. The reduced

number of events and of their corresponding arguments also simplifies the

DDSGA alignment as it reduces the permutations of these events.

Furthermore, this solution speeds up the detection process and reduces the

computational overhead by comparing the active session patterns to a few

events. This is important in highly overloaded, multi user systems such as

clouds. The regularity of the features extracted from the user audits and the

consistency of the user normal behaviors help to distinguish normal

behaviors from abnormal ones. Chapter 6 has introduced a “Behaviours

Triangle Model” to build a distinct activity profile for each cloud user based

on sequences of system calls for file\directory accesses and process

execution activities. Using the same idea, we build a user profile in terms of

three relationships based upon security events:

 User accesses a file\directory. This relation includes the file\directory

access patterns.

 Process accesses a file\directory. This relation defines how process

accesses a file\directory.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

164

 User invokes a process. This relation defines the sequence of

processes the user invokes. As in Chapter 6, we neglect forked

processes.

As in Chapter 6, we distinguish human users CIDD data from system

users data. In turn, human users are categorized into local and server users.

We separate human user activities from system users ones through the user

ID and then we check each user separately. Figure 7.2 shows an example of

the features extracted from the Windows security events in CIDD.

Figure 7.2: A user session and its extracted features from Windows security

events

DDSGA detects if any legal user was impersonated by a masquerader as

in Chapter 6. Section 7.2.2 details how DDSGA detects masquerade attacks

through sequences of features extracted from the Windows security events.

As shown in Figures 7.1 and 7.4, we build the user profile in terms of the

sequence of files the user accesses and of invoked processes. Figures 7.3, 7.4

and 7.5 show the distribution and regularity of the access patterns and of the

invoked processes for, respectively, local, server, and system users.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

165

Figure 7.3: The distribution of objects (files and directories) in local user

with ID 500 in CIDD.

Figure 7.4: The distribution of objects (files and directories) in server user

with ID 1031 in CIDD.

Figure 7.5: The distribution of objects (files and directories) in system user

with ID “SYSTEM” in CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

166

Figures 7.3 - 7.5 show that the behavior of server and system users are

highly predictable. As a consequence, deviations in the behaviours of these

users will be detected in a more accurate way than for local users. Since the

invoked processes are more consistent and predictable than the access

patterns, their integration with these patterns can improve detection.

7.2.2 Detecting Masquerade in Windows VMs

To adapt the three phases of DDSGA to Windows security audits in

CIDD, Chapter 6 has defined three parameters, namely: the Sliding Window

Size (SWS), the scoring system, and the correlation model. The detection

phase applies either the Independent or the Centralized-Backup one,

according to the characteristics of the cloud system.

7.2.2.1 Choosing the Best Sliding Window Size

In Chapter 6, we have estimated the SWS factor through four

approaches. Among them, the most efficient ones are the MCE and the

TSLSA. We apply MCE to compute the regularity of the training data using

an entropy model described in Chapter 6. We adapt this approach for both

server and system users because their training data are much regular than

those of local users, while we use the TSLSA approach to adapt the dynamic

activities of the local user. The two approaches are evaluated through the

detection accuracy using the Receiver Operator Characteristic (ROC) curves

[113] and the masquerader live time. We highlight the two approaches in the

following.

(a) The Minimum Conditional Entropy (MCE):

This approach is based upon conditional entropy [39] and it measures the

regularity of the training data for each user using different SWS values to

choose the one that results in more regular data with corresponding lower

entropy. Figure 7.6 shows the conditional entropy, see Chapter 6, for three

kinds of users in the CIDD dataset, i.e., local, server, and system users

respectively. The server and system user curves in Figure 7.6 have more than

one minimum due to the high data regularity for these users. A lower entropy

indicates more regular data and a better detection performance.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

167

Figure 7.6: Conditional entropy under different SWS for a local user, a server

user and a system one.

The results in Figures 7.7 and 7.8 confirm those of Chapter 6 where the

accuracy and masquerader live time of the conditional entropy model are

acceptable for server and system users due to their highly regular data.

Instead, the performance of this model is not satisfactory for local users that

have a much lower regularity.

(b) Test Session Length with Sensitive Action (TSLSA):

The TSLSA approach sets the SWS to the length of the active test session

but detection can start anytime the user executes a sensitive action. These

actions depend upon the OS and type of audits and include the privileged use

of system resources and changes to the user account. We consider them

because an attacker always tries to exploit critical resources to misuse system

resources or to steal some details of a user account. Table 7.1 shows some

examples of sensitive actions in Windows audits of CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

168

Table 7.1: Examples of sensitive actions

TSLSA achieves an acceptable accuracy and a shorter masquerade live

time than MCE for all categories but for system users that usually trigger

sensitive actions to carry out some operating system functions. We evaluate

the performance of MCE and TSLSA for the three user categories through

the ROC curve in Figure 7.7. We apply the DDSGA approach in the case of

the Centralized-Backup model with the lexical and return checks of the

scoring system detailed in Sections 7.2.2.2 and 7.2.2.3. However, the

adoption of the Independent model results in the same conclusion.

Figure 7.7: The ROC for the three sliding window selection methods for a

local, a server, and a system user in CIDD.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

169

The best detection results are those with the highest hit ratio, minimum

false positive rate in the ROC curve and the smallest Maxion-Townsend cost

[Maxion-Cost]. Table 7.2 summarizes the results.

Table 7.2: A comparison of the two SWS approaches for local, server and

system users

SWS

Approach

User

Category

False

Positive %

Hit % Maxion-

Town Cost

TSLSA Local 4.44 91.24 35.43

MCE Local 5.14 86.04 44.83

MCE Server 3.91 94.91 28.54

TSLSA Server 4.13 92.42 32.36

MCE System 3.19 96.54 22.60

TSLSA System 3.97 91.24 32.58

To evaluate the live time of a masquerader in the two approaches, can be

evaluated through the chart in Figure 7.8 that show the time for some

masquerade sessions in the training data of users in the three categories.

Figure 7.8: Masquerader live times for local, server, and system users

Figure 7.8 shows that the live time of a masquerader is related to both the

approach to determine the SWS and the characteristic of the user activities;

e.g., sessions of system users are longer than those of other users as they

represent some operating system activities. The frequent sensitive actions

triggered by system users reduce the accuracy of TSLSA. MCE reduces the

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

170

masquerade live time because of the highly predictable and regular data of

system user sessions. Server users rarely trigger sensitive actions and their

sessions are among the shortest ones. In this way, TSLSA results in a shorter

live time of a masquerader than MCE. The length of a local user session

changes according to the user behaviours and the regularity of these sessions

is very low. This reduces the accuracy of MCE with respect to TSLSA.

7.2.2.2 Scoring System

The input record of DDSGA is similar to the one in Chapter 6:

{X (U, S, P, F, M, T), y1(r1), y2(r2)... yn(rn)}

Where,

 X: the session ID followed by its input parameters,

 U: the current user id.

 S: the login source IP address.

 P: the login period,

 F: a Boolean value to define whether there is a login

 failure in the session.

 M: a Boolean value to define if the session has a

 masquerade or not.

 T: the detection threshold for the session user.

 yi: the input parameter i.e., a file or process name.

 ri: the return parameter of the executed pattern, is zero if the

pattern was successfully and one otherwise.

 n: the number of patterns in the session.

S, P, and F are the input of the neural network described in Section 7.4

As an example, a valid record is:

{253-VM1 (500, 172.16.12.1, ”Morning”, 0,0,0.62), \KnownDlls\user32.dll

(0), \KnownDlls\ole32.dll (0), systray.exe(0), …..}.

DDSGA computes the detection score for each session and compares it

against “T” to determine whether it has a masquerade patterns. Then, it

compares this decision against “M” to compute the false alarms and hit ratio.

Figure 7.9 shows how the scoring system in Chapter 6 is modified according

to the extracted features.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

171

Figure 7.9: A flowchart for the modified DDSGA scoring system.

As in Chapter 6, the scoring system may reward a mismatched pattern in

the test sequence to tolerate some permutations of previously observed

patterns without reducing the detection score significantly. The next section

highlights the security and the computational evaluation of the scoring

system in the two correlation models.

7.2.2.3 The Independent and Centralized-Backup Models

With reference to distinct cloud deployment models, Chapter 6 has

defined and evaluated three correlation models namely, Audit Exchange,

Independent, and Centralized-Backup. In [142, 143] we have proved

experimentally that the last two models are the most efficient ones. The first

two models work with the original CIDS framework while the third one

works with CIDS-VERT. This section evaluates the Independent and

Centralized-Backup models using the testbeds described in Chapter 3.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

172

In the Independent model, detection achieves a satisfactory efficiency

and both the processing and network overheads are lower than those in the

Centralized Backup model. This results in a lower detection time, see

Figures 7.10, 7.12, and 7.13. As a counterpart, a masquerader survives for a

longer time than in Centralized-Backup because of the time to check the

audit data in all cloud nodes, see Figure 7.11. Furthermore, the Independent

model does not scale to clouds with a large number of VMs and users.

Due to its centralized storage of user audits, the Centralized Backup

achieves the best detection efficiency. Furthermore, no audit data is lost and

the masquerader surviving is very short, see Figures 7.10 and 7.11. Figures

7.12 and 7.13 show that, both the network overhead and detection time are

acceptable. As a counterpart, this is a resource intensive model that speeds up

the detection phase and protects the IDS components from attackers by

reserving some management VMs.

7.2.2.4 Evaluation of the Correlation Models

We focus our evaluation on local users because, as previously noticed,

the large deviation in their behaviours reduces the detection accuracy. We

consider the four main factors mentioned in Chapter 6 namely: (A) The

accuracy and efficiency using both the ROC curve and Maxion-Townsend

cost, (B) Average live time of a masquerader session, (C) Average

transmitted data per detection session, and (D) Average detection time per

session.

(A) The Accuracy and Efficiency

Using the same approach of Chapter 6, we evaluate the accuracy and

efficiency of the two correlation models. We focus on the effects of the

alignment parameters that the DDSGA computes for each user, namely the

detection threshold, the scoring system rewards and the penalties on the

accuracy parameters i.e., false positive, false negative rates, and the hit ratio.

Figure 7.10 shows the ROC curves for the two models in the cases of the

scoring system, the Centralized-Backup model without the scoring system,

and the No-Correlation model with the scoring system.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

173

Figure 7.10: ROC curves for the three correlation models

Table 7.3: The best accuracy of the three correlation Models

Correlation Model False

Positive %

Hit % Maxion-

Town Cost

Centralized-Backup model with

return and Lexical Check 4.54 91.06 36.21

Independent model with return and

lexical check 5.11 90.03 40.63

Centralized-Backup model without

the scoring system (without check) 4.84 88.92 40.15

No Correlation Centralized-Backup

model with return and lexical check 6.01 82.99 53.07

As shown in Figure 7.10 and Table 7.3, the Centralized-Backup model

with the scoring system results in the best hit ratio with the corresponding

lowest false positive rates. The scoring system increases the hit ratio by

about 2.14% and reduces Maxion-Townsend cost by 3.94. The correlation

among audits of the same user is the key element of detection in cloud

systems as it improves the hit ratio by about 8.07% and reduces the Maxion-

Townsend cost by 16.86.

(B) Average Masquerader Live Time

We compute this time over all masquerade sessions for the two

correlation models after determining in an experimental way the optimal

number of management VMs in the Centralized Backup model. As shown in

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

174

Figure 7.11, this model achieves the shortest masquerader live time when

using three management VMs.

Figure 7.11: Average masquerader live time per session in the three

correlation models

(C) Average Network Overload per session.

These experiments have evaluated the network overhead of the two

correlation models in terms of the average data transmitted to analyze one

session. According to the correlation model, the VM(s) that runs the

detection task can send to the other VMs the user audits or the active session

data. As shown in Figure 7.12, the Independent model is the lightest one.

This figure also confirms that the network overhead of Centralized-Backup

increases with the number of management VMs.

Figure 7.12: Average transmitted data per session in the three models

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

175

(D) Average detection time per session

The average DDSGA detection time is affected by the available

processing resources, the size of the test session, the corresponding training

sessions, and number of user VMs. Figure 7.13 shows that the average

detection time of the Independent model when the user audits are distributed

across three VMs depends upon NN, the number of cloud nodes running

these VMs. In fact, the Independent model distributes the training audits

across the nodes and each node independently runs the detection process

using a few records. The detection time is minimized if the detection score in

the first node is larger than the detection threshold, and this time increases as

NN increases. The 3VMs audits label of the independent model in Figure

7.13 means that user audits are distributed across three nodes, each running

one user VM. Therefore, we can compare the 3-VM columns against the

other correlation models and notice that the Independent model achieves a

noticeable improvement. This improvement is reduced as the NN increases

to 3 and becomes larger than in all other models. Therefore, this correlation

model is ideal with a small number of users and VMs and it cannot be

adopted in large cloud such as public or hybrid ones. On the other hand, the

Centralized-Backup model has a reasonable detection time that may be

reduced by increasing the number of management VMs. Hence, the model

may be adopted in large cloud because it is more elastic and scalable.

Figure 7.13: Average detection time per session in the three models

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

176

7.3 Detecting Masquerade Based on NetFlow Data Analysis

Chapter 6 outlined the advantages of network centric approaches and

proposed three approaches to capture the NetFlow data of interest. We

describe how these approaches are applied to the cases of interest.

7.3.1 Feature Extraction from NetFlow data.

Chapter 6 has described how both CIDS and CIDS-VERT frameworks

use the correlator components to define the beginning and the end of the user

sessions outside the local system and to filter the NetFlow data

corresponding to the user host session according to the source IP address. In

the case of Windows audits, the distribution of NetFlow data for each of

three CIDD user categories supports the same conclusion in Chapter 6 about

the NetFlow features as summarized below:

 System and server user sessions are more regular than those of local

users because their destination IP addresses are more specific and

consistent.

 NetFlow data are less regular than security events, because user

network activities have a lower consistency than user host ones. The

sharing of the source IP among several users may further decrease

data consistency and regularity in the network profile together with

the accuracy of detection.

The DDSGA scoring system takes into account all these features as

detailed in both [143] and Section 6.3.2.

7.3.2 The NetFlow Scoring System Evaluation

We have evaluated the DDSGA approach through the NetFlow data

corresponding to the sessions of each source IP in CIDD as in Section 7.2.2.2

using the Centralized-Backup model of the CIDS-VERT framework.

Figure 7.14 and Table 7.4 show the detection accuracy of DDSGA over the

NetFlow data in terms of both the ROC curve and Maxion-Townsend cost.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

177

Figure 7.14: ROC curve for DDSGA on the NetFlow audits

Table 7.4: The best accuracy of the DDSGA approach on the NetFlow audits

Approach False

Positive %

Hit % Maxion-Town

Cost

DDSGA with NetFlow scoring system 5.61 88.41 45.25

DDSGA without NetFlow scoring system 5.7 82.51 51.69

As shown in Figure 7.14 and Table 7.4, the NetFlow scoring system

improves the hit ratio by 5.9% and reduces Maxion-Townsend cost by 6.44.

7.4 Integrating Host and Network Detections using A Neural

Network Model

 To improve the accuracy and efficiency of detection, we implement an

integrated approach that uses the neural network model of Chapter 6 and

considers both host and NetFlow audits. The detection and training modes of

the neural network model are adjusted as in Sections 6.4.1 and 6.4.2

respectively.

We compare the accuracy and the average detection time per session of

the three detection approaches: the host based, the network based, and the

integrated one, i.e. the neural network, using the Centralized-Backup model

with three management VMs. As shown in Figure 7.15 and Table 7.5, the

integrated approach results in the highest accuracy. As counterpart, Figure

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

178

7.16 confirms that it also results in the longest average detection time per

session because it needs the outputs of the other approaches.

Figure 7.15: The ROC curve for the three approaches

Table 7.5: The best accuracy of the three detection approaches

Approach False Positive % Hit % Maxion-Town Cost

Neural Network Model 3.35 96.08 24.02

DDSGA within Host system 4.54 91.06 36.18

DDSGA using NetFlow 5.61 88.41 45.25

Figure 7.16: Average detection time per session for the three approaches.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

179

7.5. A Comparison between the Two Detection Approaches

In the following, we compare our proposed masquerade detection

solution, denoted as Security Events (SE) and the one we introduced in

Chapter 6 and that is based on the integration between the System Calls (SC)

and the NetFlow. Since both SE and SC are among the most important audit

sources to build a user profile to detect several kinds of attacks, a comparison

can highlight some important issues in these approaches. In particular, we are

interested in how parameters such as the number of training records and the

consistency of both system calls and security events audit influence, among

others, the detection accuracy and time, the masquerade live time, and the

related overheads. Table 7.6 highlights the comparison between the proposed

detection approaches through SE and SC for the local user category and

using the Centralized-Backup model of CIDS-VERT framework.

Table 7.6: Masquerade detection through system calls and security events

Table 7.6 shows that the SC audits results in a better accuracy than the

SE one. The reason is that SC audits have large number of training records, 6

weeks of audits in CIDD. This helps in training both the update phase of

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

180

DDSGA and the neural network model. Instead, the SE audits have only 2

weeks of training audits. The analysis of the SC audits results in a better

accuracy than the SE one, because SC audits reflect all system activities.

Furthermore, they provide some basic statistical information about user

network activities that can be integrated with information on the user

behaviours in the NetFlow audits. In turn, this simplifies the integration

process. Furthermore, as shown by the conditional entropy in Table 7.6, SC

audits are more regular than the SE one. This helps in recognizing a user

normal behaviour and improves the accuracy of detection.

Table 7.6 also shows that the session length corresponding to the SWS

value is directly proportional to masquerade live time, network overhead,

number of management VMs, and detection time. The SC audits have shorter

session length than the SE one and, consequently, they may reduce

masquerade live time, network overhead, management VMs, and detection

time. Both NetFlow audits and the statistical information of the SE sessions

are more consistent than the corresponding ones of the SC. This increases the

accuracy of detection in the NetFlow of SE audits by 5.36% with respect to

that of SC audits. As a result, the hit ratio of the neural network model

increases from its corresponding host ratio by 5.02%, with respect to 3.83%

of the SE. The False Positive rate is reduced by 1.19%, with respect to 0.72%

of the SE. However, the SC NetFlow audits contain more training records

than the SE one, but the consistency of these audits is much lower than in the

SE NetFlow audits. This is due to the number of users that share the same IP

addresses that is much larger in the SC NetFlow audits than in the SE

NetFlow audits.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

181

Chapter 8

Efficient IDS Deployments through a Hierarchical

Architecture

 This chapter focuses on signature based analysis techniques that, in

general may result in a best accuracy than behaviour based ones. The chapter

introduces a hierarchical architecture [CIDS-2Deployments] of CIDS-VERT

framework that supports two deployments, Distributed and Centralized, and

it outlines their architectures, components, and relative advantages.

Furthermore, it discusses how to correlate and summarize distinct HIDS and

NIDS alerts. Finally, the chapter experimentally evaluates the accuracy of the

proposed deployments to confirm the improvements with respect to current

IDSs.

8.1 THE HIERARCHICAL ARCHITECTURE OF OUR CLOUD IDS

As discussed in Section 1.9, a cloud defense strategy has to satisfy some

further requirements with respect to traditional ones. In particular, it should:

(1) Be distributed and scalable.

(2) Avoid single points of failure.

(3) Correlate the user behaviours in distinct environments.

(4) Integrate different service models.

This section briefly outlines the hierarchical structure of the proposed

cloud IDS [CIDS-2Deployments] together with its implementation models.

The IDS can detect attacks in several classes, e.g. masquerade, host,

network, and DDoS against all cloud models through signature based

techniques and behavior based ones.

This chapter evaluates the detection accuracy of the IDS using two

deployment models, Centralized and Distributed, based on the CIDS-VERT

framework that provides high scalability and resilience for large clouds.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

182

Figure.8.1: The hierarchical architecture of the proposed cloud IDS

Figure 8.1 shows the hierarchical architecture of the proposed IDS. The six

layers are described in the following:

1) Infrastructure Layer:

It defines the cloud physical specifications. In the considered case, the

CID-VERT testbed consists of an HP C3000 Cloud blade with six nodes.

One head node works as a front side interface and has a Quad core 2.3 GHz

CPUs, 4 GB RAM, 80 GB Hard drive, and a SmartArray P400 Controller for

Storage Connect. Each of the remaining nodes consists of: Quad core 2.8

GHz CPUs, 16 GB RAM, 80 GB Hard drive, and a Gigabit Ethernet. The

head node runs Microsoft GUI windows server 2012 with Microsoft cloud

services and Microsoft Hypervisor manager 2012, while each other node

runs Microsoft core windows server 2012. CID-VERT also includes a 24

port Procurve Switch (10/100/1000 ports) for data networks and another 24

port Procurve Switch (10/100 ports) for console management.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

183

2) The Hypervisor and Cloud Service Layer:

Besides managing the virtual VMs, virtual switches, and virtual SAN

driver, it provides system security functions such as Isolation, Inspection,

and Interposition. The IDS can support different frameworks such as

VMware cloud [56], Microsoft private cloud [13], Open Stack [147],

Eucalyptus [12]. In the testbed, this layer contains several components such

as Microsoft windows server 2012 with its Hypervisor and Microsoft cloud

software and tools.

3) Virtualization Layer:

It maps the VMs onto the physical cores. To provide a full heterogeneous

environment, each testbed node hosts 3 VMs that runs, respectively,

Windows XP Professional SP3, UNIX (Solaris) and Linux (Centos). Each

VM is assigned one core of the Quad core and 3 GB RAM. Each VM runs a

HIDS sensor and an event collector component to collect events and logs

from the VM operating system and forward them to a centralized

management VM to analyze them through DDSGA [DDSGA] and HIDS

analyzers. Some VMs run a NIDS component as a sensor or a server based

on the applied deployment. One VM runs the CPU Death Ping [50], LOIC

[49], and the Metasploit [46] library. Section 8.4.1 explains the attack

scenario in our experiments.

4) Intrusion Detection Layer:

This layer runs the main three IDS components: the HIDS, the NIDS and

DDSGA. In the experiments, the HIDS is OSSEC [61] and the NIDS is

Snort. This layer also defines the Centralized deployment model and the

Distributed one. Section 8.2 outlines the deployments of all the IDS

components in the VMs.

5) Alert Integration and Reporting Layer:

It integrates and correlates the alerts from host and network IDSs. To

provide a standard, coherent representation of alerts and describe the

relationship between simple and complex alerts, it uses the IDMEF Message

format [76] described in Section 2.1.3. To simplify the handling of attacks, it

also highlights the critical alerts. Sections 8.3.1 and 8.3.2 detail the

integration and correlation processes.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

184

6) Web Interface Layer:

It offers a central location to admin and to manage the IDS components,

as it runs the management VM and it handles the web pages to visualize the

IDS charts and dashboards, see Section 8.4.3.

8.2 THE DISTRIBUTED AND CENTRALIZED DEPLOYMENTS

To evaluate our IDS in a realistic setting, we have partitioned the cloud

into two virtual zones, VZ1 and VZ2, to distribute the DDoS Zombies into

two distinct virtual cloud networks. The VMs are connected to virtual

switches through virtual NIC cards, see Figures 8.2 and 8.4. In turn, virtual

switches are connected to physical switch ports through the port mirroring

facilities of the Hypervisor layer. Zone VZ1 includes node0 and node2, each

running three VMs with distinct operating systems. A further VM on node2

runs the Metasploit and LOIC attack libraries. Zone VZ2 includes node1,

node3, and node4, each hosting 3 VMs as in VZ1. In the following, we

describe the two proposed deployments and outline in Section 8.4 the

experiments using the two deployment options.

8.2.1 The Distributed Deployment

As implied by its name, this model distributes the detection overhead

among several cloud VMs. The final decision correlates the outputs of the

IDS sensors in these VMs.

In each virtual zone, the HIDS and NIDS components are distributed

among the corresponding VMs. The HIDS consists of two main components,

an agent and a server. The agent is a sensor that collects events from the VM

operating system and forwards them to the server component in a VM in the

zone. Agents are installed in all VMs except those running the HIDS servers.

An HIDS server analyzes the collected events and exchanges its alerts with

the server in the second zone so that the administrator can collect all the

alerts from any server. The NIDS component works as a server that monitors

the traffic through the virtual switch. It communicates its detection score to

the NIDS server in the second zone that correlates the scores to take the final

decision about network attacks. To avoid a single point of failure, the VM

that hosts the HIDS and NIDS servers is backed up by a VM in another node

in the same zone. This VM acts as a hot spare of the active one because a

copy of the status of the active server is updated in the backup VM through

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

185

heartbeat messages. CIDS-VERT framework in Chapter 3 refers to the

“Management VMs” that runs the NIDS and HIDS servers and its

corresponding backup VMs.

Figure 8.2: The distributed deployment

As shown in Figure 8.2, VM0, hosted in cloud node0 of VZ1, is the active

management VM that runs both the Snort and the OSSEC servers and it is

backed up to VM6 in node2. The Snort server is connected to a promiscuous

port on the virtual switch to mirror all traffic. The OSSIC server is connected

to all OSSEC agents in the other VMs. In the same way, VM4, hosted in

node1 of VZ2, runs the OSSEC and Snort servers and is backed up by VM10

hosted in node2. The signature databases in both VM0 and VM4 are

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

186

simultaneously updated and the two VMs exchange the notification alarms.

Furthermore, the final detection score correlates the scores of each Snort

server.

8.2.1.1 DDoS Detection scenario using the Distributed Deployment

In an attack, several VMs in distinct virtual cloud zones may behave as

DDoS zombies and generate a stream of packets towards victim machines.

To detect DDoS attacks in the distributed deployment, each Snort server

matches the incoming traffic in each zone against pre-defined rules to take

appropriate responses, i.e., drop packet and trigger an alert. The Snort servers

exchange three parameters through the CIDS-VERT communication facility

namely: the detection scores, the notification alerts, and the new signature

rules. An update of the signature database as in [49] may enable Snort to

detect the DDoS attacks by the LOIC and CPU Death Ping libraries. As an

example, the following rules detect specific behaviors for each protocol [49]:

(a) The UDP traffic at specific ports is analyzed and the number of

opened connections in a short time interval is compared against a

threshold. While the UDP protocol is stateless, it is possible to define

and track a UDP connection according to the change in the timeout

field of each UDP packet [160, 49].

(b) The TCP rule checks whether an ACK TCP flag is set and check the

packets size.

(c) The HTTP rule is similar to the TCP one but it checks the packet

contents, rather than the size.

When each Snort server has computed its detection score, the Voting Score

(VS), i.e. the final decision, integrates the scores as in Equation 8.1.

 …………………………… (8.1)

Where:

 V(a): Voting of alert a. It is the percentage of IDSs that have sent this

alert.

 F: A flag to denote if c, the number of packets of a given type, a host

may send in a given interval, is larger than a threshold t,

F

Figure 8.3 shows the DDoS detection scenario in this deployment.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

187

Figure 8.3: The DDoS detection flowchart in distributed deployment

8.2.1.2 Evaluation of the Distributed Deployment

This deployment:

(a) Distributes the computational overhead among several cloud VMs.

(b) Reduces the network overhead because it does not forward events to a

central location.

(c) Avoid a single point of failure due to backup VM.

As a counterpart, the integration of the outputs of several IDSs increases the

detection time and reduces the accuracy with respect to a centralized

deployment.

8.2.2 The Centralized Deployment

It uses the same components of the other model and it does not change

the HIDS functionalities. Instead, it forwards all network packets to a

centralized database to be analyzed by one Snort server. This changes both

how the servers analyze and collect the packets and the handling of backups

for both the centralized database and the Snort server. As far as concerns the

first change, we recall that Snort can run in three modes: sniffer, packet

logger, and detection. In the distributed deployment, all Snort servers run in

the detection mode. Instead, in the centralized deployment, the servers run in

packet logger mode and log the packets to a centralized database. The VM

hosting this database is backed up by another VM in the other zone to avoid

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

188

a single point of failure. Each server is connected to the central database and

to the backup VM and it runs in the detection mode to match the packets

against Snort rules. Each server communicates its alerts to those in the other

zone.

Figure 8.4: The centralized deployment

As shown in Figure 8.4, VMs 2 and 9 host, respectively, the centralized

database and the backup one. VM0 runs the active Snort server in VZ1 while

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

189

VM7 runs the backup one. In the same way, VM4 runs the active Snort server

in VZ2 and VM10 runs the backup one. Just one server analyzes the packets

in the database and exchanges the heartbeat messages with its backup. The

dashed and the solid lines in the figure connect the IDSs to, respectively, the

active centralized database and the backup one.

8.2.2.1 DDoS Detection scenario using the Distributed Deployment

The centralized deployment can easily detect DDoS attacks, because it

collects in a single location the packets and network events to match them

against rules in the central database. This improves the detection accuracy

and enables the administrator to monitor the cloud from a central

management VM. Figure 8.5 shows the DDoS attack detection scenario in

the centralized deployment option.

Figure 8.5: The DDoS detection flowchart in centralized deployment

8.2.2.2 Evaluation of the Centralized deployment

This deployment is characterized by a central analysis that reduces the

detection time and increases accuracy. Furthermore, backup VMs increase

the overall reliability. The counterpart is the large overhead due to both the

central VM and the cloud network that forwards all packets to this VM.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

190

8.3 ALERTS INTEGRATION, CORRELATION, AND RISK ASSESSMENT

8.3.1 Alerts Integration:

This layer collects alerts from several detectors and integrates them

through a normalization process and a prioritization one.

 The normalization process:

It formats any detector alert into the IDMEF protocol to simplify their

analysis and correlation in the next layer. To this purpose, it extracts

information from the alert fields with different names and data formats and

represents this information in a consistent and common format. Further

information may be added to the normalized alert based on details on the

data source or on fields in the original alert, e.g., impact severity and sub-

event id. Examples of the formatted fields are: the source and target

addresses, sub-event id (sid), analyzer, time, priority, classification, and some

additional information.

 The prioritization process:

To handle the prioritization systems of distinct detectors, this process maps

alert priorities into a single range from 0 to n, where n is defined by system

administrators. Consider, as an example, that Snort alerts have a maximum

priority of 3 while OSSEC alerts have maximum priority of 12.

The following examples explain both processes in the cases of the “ICMP

PING NMAP” attack and OSSEC with SSHD “brute force” attack. The

original alert information is in bold font in the normalized alert:

Snort Alert:

1998-06-05:11:12.452605 [**] [122:5:0] (portscan) ICMP PING

NMAP [**] [Classification: Attempted Information

Leak][Priority: 3] {ICMP} 192.168.0.1 -> 192.168.0.10

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

191

Normalized OSSEC Alert in IDMEF format

<?xml version="1.0" ?> <IDMEF-Message version="1.0"> <Alert

ident="12773"> <Analyzer analyzerid="OSSEC00" model="OSSEC"

</Analyzer> <CreateTime ntpstamp= "0xb9225b23.

0x9113836a">1998-06-05T11:55:15Z</CreateTime>

<Source><Node> <Address category= "ipv4-addr">

<address>192.168.137.1 </address></Address></Node></Source>

<Target> <Node> <Address category="ipv4-

addr"><address>192.168.137.10 </address> </Address>

</Node></Target> <Classification origin="vendor-specific">

<name>msg= SSHD brute force trying to get access to the

system </name> </Classification> <Classification

origin="vendor-specific"> <name>sid=5710 </name>

</Classification> <Classification origin="vendor-specific">

<name>class= ssh-failed </name> </Classification>

<Classification origin="vendor-specific">

<name>priority=10</name> </Classification> <Assessment>

<Impact severity="high" /> </Assessment> <AdditionalData

meaning="sig_rev" type="string">5</AdditionalData> </Alert>

</IDMEF-Message>

Normalized Snort Alert in IDMEF format:

<?xml version="1.0" ?> <IDMEF-Message version="1.0"> <Alert

ident="12773"> <Analyzer analyzerid="snort00" model="snort"

</Analyzer> <CreateTime ntpstamp="0xb9225b23.

0x9113836a">1998-06-05T11:55:15Z</CreateTime> <Source><Node>

<Address category="ipv4-addr"> <address>192.168.137.1

</address></Address></Node></Source> <Target><Node> <Address

category="ipv4-

addr"><address>192.168.137.10</address></Address>

</Node></Target> <Classification origin="vendor-specific">

<name>msg=ICMP PING NMAP</name> </Classification>

<Classification origin="vendor-specific"> <name>

sid=384</name> </Classification> <Classification

origin="vendor-specific"> <name> class= Attempted

Information Leak </name> </Classification> <Classification

origin= "vendor-specific"> <name>priority=3</name>

</Classification> <Assessment> <Impact severity="high" />

</Assessment><AdditionalData meaning="sig_rev" type="string"

>5</AdditionalData> <AdditionalData meaning="Packet Payload"

type="string">

2A2A2020202000AAEA020097A4020075DA</AdditionalData> </Alert>

</IDMEF-Message> OSSEC Alert:

Received From: (csd-wiki) 141.142.234.100->/var/log/secure

Rule: 5712 fired (level 10) -> "SSHD brute force trying to

get access to the system."

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

192

8.3.2 Alerts Correlation and Summarization:

It correlates a large number of normalized alerts from different detectors

to highlight the few critical ones. It looks for evidences of an alert to

discover if it signals a true attack and then it correlates the related alerts.

Alerts are logically related if they denote the same attack signature, have the

same source and destination addresses, and are close in time. These alerts

may also denote a step of a multi-stage or compound attack [161] that

consists of several steps by the same attacker. The correlation process:

(a) Reduces false positives alerts.

(b) Summarizes the huge number of alerts to the cloud administrator.

(c) Deals efficiently with multi-stages attacks.

The correlation engine is implemented by OSSIM [62] described in

Section 1.10. OSSIM uses a tree of logical conditions (rules) or AND/OR

tree, see Figure 8.6.

Figure 8.6: An example for a correlation tree

The correlation stops if the root parent rule at level 1 is not matched.

Otherwise, the engine considers the various levels and repeats the matching

till the end of the tree. The implementation performs ANDING between

levels and ORING between level's nodes or Childs. Furthermore, it computes

a reliability value in each level to determine the final risk as detailed in

Section 8.3.3.

We show now two correlation examples. In the first one, the correlation

helps to detect a brute force attack against an SSH Server [62]. Here, the

alerts are produced by several instances of the same analyzer, i.e., Snort. In

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

193

the second example, distinct analyzers, i.e., OSSEC and Snort, produce the

alerts and the correlation helps to detect the Reverse Shell attack.

 Example 1: The engine builds a four levels tree to detect the brute force

attack against an SSH Server, see Figure 8.7. As an example of the childs

of the tree, we show the rule that is the left child of level 2.

Where:

 plugin_id: A unique numerical identifier of the tool that provides

these events.

 plugin_sid: A numerical identifier of the sub-events within the tool

(plugin).

 type: type of the rule.

 name: describes what the system expects to collect to satisfy this rule.

 occurrence :Number of events matching rule conditions.

 time_out: Waiting time before the rule expires.

 from and to : Source IP and Destination IP.

 sensor: the firing sensor of the event.

 Reliability: is used to compute the risk value, see Section 8.3.3.

Figure 8.7 shows the four levels of the correlation tree:

 Level 1: A root rule that will be matched by an authentication failed

alert. After updating the reliability value and computing the risk, the

correlation engine jumps to the next level.

 Level 2: Two rules with two possible actions. The left rule is matched by

a successful authentication alert. The correlation engine updates the

reliability value, computes the risk, and then stops. Instead, the second

right child rule is matched by the reception of ten authentication failure

alerts. The engine updates the reliability value and computes the risk and

jumps to level 3. Then, it will evaluate both level 3 and 4 in the same

way and finally fires an alarm.

<rule type="detector" name="SSH Successful

Authentication (After 1 failed)" reliability="1"

occurrence="1" from="1:SRC_IP" to="1:DST_IP"

port_from="ANY" time_out="15" port_to="ANY"

plugin_id="4003" plugin_sid="7,8"/>

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

194

Figure 8.7: Four levels of the correlation tree to detect a brute force attack.

 Example 2: To detect the Reverse Shell attack, the engine correlates the

alerts from both OSSEC and Snort. This is a multi-stages attack

implemented as in the scenario in Figure 8.8 [161]:

Figure 8.8: The Reverse Shell attack scenario

In this scenario, the appropriate IDS, i.e., OSSEC or Snort, fires an alert

for each step of the attack. While an analysis of individual alerts may be

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

195

useless, their correlation conveys useful information. The engine applies

both the normalization and prioritization processes. The final correlation tree

has four levels:

 Level 1 root rule: This rule is matched by scanning and fingerprinting

alerts from Snort system. Then, the engine updates the reliability value

and computes the risk before passing to level 2.

 Level 2: This rule is matched by suspicious ftp logins alerts from

OSSEC. After updating the reliability value and computing the risk, the

engine jumps to level 3.

 Level 3: This rule is matched by a file uploading alert from OSSEC.

After updating the reliability value and computing the risk, the engine

jumps to level 4.

 Level 4: This rule is matched by a Snort alert that denotes the activation

and access shell using reverse TCP. After updating the reliability and risk

values, the engine fires an alarm.

8.3.3 Risk Assessment:

 This value estimates the risk for the cloud asset based on the alerts that

have been fired. It is computed at each correlation level through Equation

8.2:

RISK = (Asset * Priority * Reliability)/NF…………………………… (8.2)

Where:

 Asset denotes the value of the resource under attack and it ranges from 0

to A, the maximum for the assessment. The user set this value when

configuring the IDS.

 Priority ranges between (0-P) where P is the maximum priority value

and it denotes how dangerous the alert is. This value is set by the firing

IDS and it is prioritized as in Section 8.3.1.

 Reliability (0-R) is the probability that the attack defined in a correlation

level is real. It changes in each level as detailed in section 8.3.2.

 NF is a normalized factor based on A, P, R and maximum risk value

(M), where NF = (A * P * R) / M

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

196

Risk Assessment Methodology:

Risk is computed when matching the alerts from each IDS in the cloud

against the rules in each level. The computation is repeated at each level.

Once an alert matches a rule, its reliability value will be changed according

to the weight of each rule based on the attack signature. When the risk value

is at least one, an alarm will be fired. Figure 8.9 shows the correlation and

risk assessment processes with N correlation levels. Each level has different

number of rules.

Figure 8.9: The correlation and risk assessment flowchart

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

197

To show how each correlation level computes the risk value, we consider

the tree in Example 1 of Section 8.3.2 to detect the “SSH Brute Force”

attack. [62]:

 First Level: This rule is matched by one SSH Authentication failure.

A rule is matched if all the elements of an alert match those of the current

rule. If this rule is satisfied, the reliability value is set to zero, while the alert

priority and asset values are 4 and 5, respectively. Hence, the risk value will

be zero.

Second Level: These rules are matched if 11 SSH authentication failure

alerts are received in less than 40 seconds. The first alert matches one rule in

this level and the other 10 match another rule of this level.

If the previous rules are satisfied, the reliability value is set to 2, while

the alert priority and asset values are 4 and 5, respectively. Hence, the risk

value is (2*4*5)/25 = 1.6. If no further alerts that satisfy this attack are

received, the correlation process ends and the engine fires an alarm because

the risk is larger than one. Otherwise, the engine will jump to the next level.

In the same way, the third level rules set the reliability and risk values to,

respectively, 4 and (4*4*5)/25 = 3.2 and the fourth level rules set the

reliability to 7, and the risk value to (7*4*5)/25 = 5.6. Finally, the engine

finishes and an alarm is fired because the risk is larger than one.

<rule type="detector" name="SSH Successful Authentication

(After 1 failed) "reliability="1" occurrence="1"

from="1:SRC_IP" to="1:DST_IP" port_from="ANY" time_out="15"

port_to="ANY" plugin_id="a" plugin_sid="7,8"/>

<rule type="detector" name="SSH Authentication failure (10

times)" reliability="2" occurrence="10" from="1:SRC_IP"

to="1:DST_IP"port_from="ANY" time_out="40" port_to="ANY"

plugin_id="4003" plugin_sid="1,2,3,6,9"sticky="true"/>

<rule type="detector" name="SSH Authentication failure"

reliability="0" occurrence="1" from="ANY" to="ANY"

port_from="ANY" port_to="ANY" plugin_id="4003"

plugin_sid="1,2,3,6,9"/>

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

198

8.4. EXPERIMENTAL RESULTS

8.4.1 Attack Scenario

To evaluate the detection accuracy of the proposed IDS, we run an attack

scenario through the Metasploit library. We also consider a DDoS attacks

scenario that uses both the LOIC and CPU death ping libraries

independently.

Figure 8.10 explains these scenarios where the Metasploit library

installed in VZ1 attacks VM6 in the same zone and VMs 11 and 14 in VZ2. In

the DDoS scenario, both LOIC and CPU death ping libraries have some

agents distributed in VM8 in VZ1 and in VMs 5, 11, and 14 in VZ2. Each

agent attacks one VM in each zone. Consequently, the agents of VM8 attacks

VM6 and VM3, and the agents of VM5 attack VM3 and VM6. The agents of

VM11 attack VM12 and the VM with the Metasploit library. Finally, the

agents of VM14 attack VM12 and the VM with Metasploit library. LOIC

floods the system by TCP and UDP packets, while CPU Death Ping floods

by ICMP packets and HTTP requests.

Figure 8.10: The host, network, and DDoS attacks scenarios

8.4.2 Performance Evaluation for the Two Deployments

This section evaluates the proposed IDS by analyzing the traffic of each

Snort sensor in the Centralized VMs, VZ1, and VZ2. Furthermore, it

evaluates the accuracy and the computational performance of the Centralized

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

199

and Distributed deployments. Figure 8.11 shows the spikes of the DDOS

attacks resulted by the TCP floods of LOIC and the HTTP floods of the CPU

Death PING library. Figure 8.12 shows the spikes of the DDOS attacks due

to the UDP floods of LOIC and the ICMP floods of the CPU Death PING

library. Both libraries run the attacks for 10 minutes. Each graph is splitted

into four parts to show the network traffic in different situations. In part A,

the cloud system acts in normal mode, and the system replies to legal packets

without any problem. In part B the flooding attack starts and the traffic rate

increases. Consequently, the cloud system can no longer respond to its users.

In part C, the IDS starts to handle the attack and blocks the illegal packets.

Finally, in part D, the traffic rate returns to normal again.

Figure 8.11: The DDOS by TCP and HTTP floods

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

200

Figure 8.12: The DDoS by UDP and ICMP floods

The two deployments are compared in terms of detection accuracy and

computation time over 20,000 data packets. Figure 8.13 shows that the

Centralized deployment signals a higher number, 34.3%, of true alerts than

the Distributed one. This is due to the centralized decision on detection.

However, Figure 8.14 shows that the Distributed deployment has a lower

computation time, 28.8%, than the Centralized one because it distributes the

detection overhead among several sensors and drops any packet that matches

a rule without any further analysis.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

201

Figure 8.13: Number of true alerts

Figure 8.14: The computation time

8.4.3 HIDS and NIDS detection outputs

The Web Interface layer offers a visual tool to manage and admin the

IDS components and to display the detected attacks. Figure 8.15 shows a

snapshot of some detected attacks with their corresponding risk values after

correlating the alerts from OSSIC and Snort IDSs. We use the attack libraries

of VM “192.168.137.223” and other VMs as in Section 8.3.1 to attack the

cloud.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

202

Figure 8.15: A snapshot of detected host and network attacks

Figure 8.16 shows the top 5 alerts with high risk value fired by both

OSSEC and Snort IDSs in distinct cloud locations. Figure 8.17 shows the top

10 VMs that signaled multiple alerts.

Figure 8.16: The top 5 alerts with high risk value fired by OSSEC and Snort.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

203

Figure 8.17: The top 10 VMs with multiple alerts in the cloud system.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

204

Conclusion

Cloud Computing is a new term that denotes the use of IT services and

resources that are accessed on a service basis provided by enterprises and

that their users access via the internet.

Even if there is a large consensus on the benefits of cloud computing,

concerns are being raised about the security issues introduced through the

adoption of this model and to the lack of control by the cloud users on some

architectural levels. The effectiveness and efficiency of traditional protection

mechanisms are being reconsidered as the characteristics of this innovative

computing model and the control on shared resources widely differ from

those of traditional architectures. Cloud computing environments are easy

targets for intruders and pose new risks and threats to an organization

because of their service and operational models, the underlying technologies,

and their distributed nature. In particular, some kind of sharing is intrinsic to

cloud computing and cannot be avoided. In turns, this blurs the traditional

distinction between private and shared resources.

In principle, IDSs are among the efficient security mechanisms that can

handle most of the threats of cloud computing. However, several deficiencies

of current IDSs technologies and solutions hinder their adoption in a cloud.

This thesis has proposed and developed a cloud based intrusion detection

system that satisfies the cloud requirements and deals with several classes of

attacks against all cloud deployment models.

The architecture of the proposed IDS is fully distributed to provide a

scalable and elastic solution and avoid a single point of failure. Furthermore,

the IDS isolates the user tasks from cloud nodes and achieves a high

coverage of attacks by integrating both knowledge and behaviour based

techniques. The IDS adapts with distinct cloud computing environments and

it collects and correlates the user behaviours from the cloud VMs and

integrates the alerts from different IDSs into a single report.

We have introduced two frameworks of the proposed IDS to support

distinct cloud deployment models namely, the Cloud based Intrusion

Detection System, CIDS, and its full virtual version, CIDS-VERT. CIDS

P2P architecture hinders scalability but it achieves a high performance and

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

205

low network overhead in small or private clouds. Instead, the better

scalability and controllability of CIDS-VERT makes it the ideal solution for

hybrid and public clouds. Furthermore, the management and the

configuration of CIDS–VERT are rather simpler than those of CIDS.

To efficiently correlate the behaviour of the same user in distinct cloud

nodes, we have proposed, developed and evaluated three alternative models

that define the exchange of audit data and of alerts between the IDS

components. The first two models, Audit Exchange and Independent, work

with CIDS framework, while the third, the Centralized-Backup works with

CIDS-VERT.

Three are the main contributions of this thesis, namely:

(1) CIDD, a cloud intrusion detection dataset.

(2) The behaviour based detection.

(3) The signature based detection

The first contribution has defined a cloud intrusion detection dataset,

CIDD, the first dataset that can support the training and the evaluation of any

cloud IDS. Current datasets are not suitable for these purposes because they

neglect the typical behaviours of a cloud user and lack real attack patterns.

CIDD solves these deficiencies and provides the complete audit parameters

to support the detection of more than hundred instances of attacks and

masquerades. CIDD consists of both knowledge and behavior based audit

data and has real instances of host and network based attacks and

masquerades. CIDD provides complete audit parameters from heterogeneous

environments e.g., Windows, UNIX, and NetFlow, to evaluate the

effectiveness of detection techniques. The comparison in Chapter 4 confirms

the larger efficiency of CIDD with respect to current datasets. To build

CIDD, we have developed a log analyzer and correlator system to parse and

analyze the host based log files and network packets.

The second contribution of the thesis is the definition of the Data-Driven

Semi-Global Alignment, DDSGA, approach and of three behavior based

detection strategies. DDSGA is focused on the detection of anomalous user

behaviour generated by masquerade attacks. Masquerading is by far one of

the most critical attacks because once the attacker logs in successfully to a

cloud, he/she can maliciously control the huge amount of resources it

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

206

includes. DDSGA improves both the security efficiency and the

computational performance of SGA, a fast detection technique with low false

positive rate that has not yet achieved the accuracy and performance for

practical deployment. DDSGA aligns the sequence of the current user

session to the previous ones of the same user and the presence of several

misalignments is a strong indicator of a masquerade attack.

From the security efficiency perspective, DDSGA supports a more

accurate modeling of distinct users as it introduces distinct parameters to

model their behaviours. DDSGA can tolerate changes in the low-level

representation of the commands functionality through two scoring systems

that categorize user commands to align distinct commands in the same class

without reducing the alignment score. Furthermore, to tolerate changes in the

user behavior, DDSGA updates the signatures that describe this behavior

according to the current user behavior All these features result in a strong

reduction in false positive and missing alarm rates and as well as an increase

in the detection hit ratio. According to our experiments, DDSGA achieves a

better performance than SGA. As an example, it improves the hit ratio by

about 21.9% and reduces Maxion-Townsend cost by 22.5%.

From the computational perspective, DDSGA simplifies the alignment

by dividing the signature sequence into a smaller set of overlapped

subsequences. Furthermore, it speeds up the detection and the update

processes by running them in parallel.

A main reason of the low performances of current detection approaches

is that they do not correlate the behaviour of a user in distinct environments,

host and network, and in distinct cloud nodes. To solve this issue we have

developed three detection strategies. The first strategy applies DDSGA to

sequences of correlated audits from the VMs operating systems. We have

evaluated this strategy on two distinct kinds of audits, system calls and

security events. The second strategy analyzes NetFlow data from the

network environment. The third strategy correlates the user behavior in host

and network environments by integrating the other two strategies through a

neural network. In this way, we convert masquerade detection from a binary

problem to a classification or machine learning one. The evaluation has

considered the three alternative correlation models mentioned before through

both CIDS and CIDS-VERT frameworks based on CIDD data.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

207

Chapter 6 has defined two extensions of DDSGA to detect masquerade

attacks through, respectively, system call sequences and NetFlow data. We

build a consistent profile of system calls through a “Behaviours Triangle

Model” that focuses on system calls to implement file operations and process

activities. A consistent NetFlow profile is built for each source IP address in

terms of the sequences of nodes that are accessed and the protocols that are

used. To efficiently correlate the user behaviour, we have evaluated the

three correlation models i.e., Audit Exchange, Independent, and Centralized-

Backup, using both CIDS and CIDS-VERT frameworks. Empirically, we

have verified that correlation strongly improves the hit ratio by about

19.64% and reduces the Maxion-Townsend cost by 23.24. These

experiments also show that the Independent model works much better with

CIDS than the Audit Exchange model. This model is the ideal solution for

small and private clouds as it achieves good accuracy and computational

performance with low network overhead and short masquerade live time.

Instead, the Centralized-Backup model works efficiently with CIDS-VERT

in large clouds with good accuracy and computational performance, low

network overhead and short masquerade live time.

After tuning and optimizing the correlation of user behaviour in each of

the two detection subsystems, we have correlated the subsystem by

integrated their results through a neural network. This results in the best

overall accuracy, 98.07%, with respect to 94.24% of the host based and

83.04% of NetFlow based detection. As expected, it also results in the largest

detection time, and the largest survival time of a masquerader because it

waits for the results of both subsystems.

The experiments results of Chapter 7 concerns two subsystems that

detect masquerade attacks through, respectively, sequences of security events

and NetFlow audits. Consistent host based user profiles and NetFlow data

profile for each source IP address are built as in Chapter 6. DDSGA

compares the active log sessions in both host and network environments

against the corresponding profile and computes the detection outputs for

each subsystem. Then, it integrates these outputs using a neural network. As

in Chapter 6, the proposed neural network model results in the best accuracy,

96.08%, with respect to 91.06% of host based and 88.41% of NetFlow based.

The correlation improves the hit ratio by about 8.07% and reduces Maxion-

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

208

Townsend cost by 16.86. The experimental results further confirm the

conclusion of Chapter 6 that the independent model is ideal for small and

private cloud networks while big clouds like hybrid and public ones should

prefer the Centralized-Backup one.

Finally, the third contribution is related to signature based detection. We

introduce a hierarchical architecture that overcomes some limitations of

current IDSs and supports two deployments, a Distributed and a Centralized

one for the proposed IDS. The deployments use host based and network

based IDSs that exploit signature based analysis techniques. The Distributed

deployment distributes the computational overhead among several cloud

VMs and reduces the network overhead while avoiding a single point of

failure. However, its accuracy is lower than the one of the Centralized

deployment. The latter also has a shorter detection time and a large overhead

for the central VM and the cloud network. According to our experiments, the

Centralized deployment improves the detection rate and also signals a higher

number, 34.3%, of true alerts than the Distributed deployment. However, the

Distributed deployment has a better detection time, 28.8%, than the

Centralized one. For an efficient detection, we have integrated and correlated

the HIDS and NIDS alerts through IMDEF. This helps in detecting multi-

stage or compound attacks and reduces both false alarms and the number of

alerts from HIDS and NIDS.

The diagram in Figure 1 resumes the work in this thesis to define,

implement, and evaluate a general, efficient, and accurate cloud IDS that can

be adopted in a very large number of clouds and that covers alternative

deployment models.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

209

Figure 1: The Proposed Cloud IDS Components Diagram

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

210

As far as concern the possible developments of this thesis, we plan to

integrate the behaviour based detection of DDSGA with current signature

based detection techniques. DDSGA can detect anomalous behaviours for

both users and hosts in a network. Hence, if the hosts or their users have a

profile of normal behaviours, DDSGA can compare it against anomalous

actions to block an anomalous user or host. We have introduced a similar

analysis based on the masquerade actions in system calls and NetFlow in

Chapter 6 and another one based on the security event and NetFlow in

Chapter 7. The anomalous actions that can be detected for DDoS include,

among others, sending packets with a suspect total length or a number of

packets with a total length larger than normal threshold in a specific time

range. Another possible development concerns the adoption of alternative

machine learning approaches to train our IDS and to maintain the validity of

the proposed IDS over the system’s life time. It would also be interesting to

develop an adaptive control strategy for managing and evaluating cloud

system performance and resilience under normal and abnormal conditions

Finally, we plan to extend our IDS system to provide autonomous

capabilities particularly autonomous response and self-resilience and to

provide a security measure to evaluate vulnerabilities and risks in a system as

an essential milestone to build trust in cloud environments. In [165, 166 and

167], we have introduced a mechanism to build a security measure based on

the assessment of the risks and the criticality of the security events.

Furthermore, self-resilience is supported by, (a) preventing altering or

modification of security events in the data storage, (b) avoiding single point

of failure by replicating the intrusion detection components. The auto

response actions are based on a set of polices defined by the system

administrator. Lastly, we have built an early warning and forecasting model

to predict host and network anomalies using a Hidden Markov Model and

Holt Winter forecasting Algorithm [168].

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

211

References

[1] “Top Threats to Cloud Computing”, Cloud Security Alliance,

http://www.cloudsecurityalliance.org/csaguide.pdf, Version 1.0 (2010)

[2] "Security Guidance for Critical Areas of Focus in Cloud Computing", Cloud Security

Alliance, http://www.cloudsecurityalliance.org/guidance/csaguide.pdf

[3] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “DDSGA: A Data-Driven Semi-

Global Alignment Approach for Detecting Masquerade Attacks”, in IEEE Transactions

on Dependable and Secure Computing, under review in September 2012.

[4] Foster, I.; Yong Zhao; Raicu, I.; Lu, S., "Cloud Computing and Grid Computing 360-

Degree Compared", Grid Computing Environments Workshop, 2008. GCE '08, vol.,

no., pp.1-10, 12-16 Nov. 2008

[5] http://wso2.com/cloud/stratos/

[6] “Windows Azure System” http://www.microsoft.com/windowsazure/windowsazure/

[7] Google App Engine, http://code.google.com/appengine/, 2008.

[8] Ali E. El-Desoky, Hisham A., Abdulrahman A. Azab, "A Pure Peer-to-Peer Desktop

Grid Framework with Efficient Fault Tolerance", ICCES 24, Nov. 2007.

[9] Abdulrahman A. Azab, Hisham A Kholidy, "An Adaptive Decentralized Scheduling

Mechanism for Peer-to-Peer Desktop Grids", (The 2008 International Conference on

Computer Engineering & Systems) 25-27 Nov, 2008

[10] Abdulrahman Azab, Hein Meling, "Broker Overlay for Decentralized Grid

Management", JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,

January 31, 2010.

[11] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2, 2008.

[12] Eucalyptus, http://eucalyptus.cs.ucsb.edu/, 2008.

[13] Microsoft Private cloud, http://www.microsoft.com/en-us/server-cloud/private-

cloud/default.asp

[14] J. Brodkin. “Gartner: Seven cloud-computing security risks”,

http://www.networkworld.com/news/2008/070208-cloud.html, 2008.

[15] ”Nubifer Cloud Portal”, http://www.nubifer.com/SaaS-pass-hass-cloud-products/top-

tier-cloud-platforms.html

[16] “Ubuntu Cloud Portal”, http://cloud.ubuntu.com/2010/12/announcing-ubuntu-cloud-

portal/

[17] Hisham A. Kholidy," HIMAN-GP: A Grid Engine Portal for controlling access to

HIMAN Grid Middleware with performance evaluation using processes algebra", 2nd

International Conference on Computer Technology and Development (ICCTD 2010),

2-4 Nov 2010.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

212

[18] Akshay Luther, Rajkumar Buyya, Rajiv Ranjan, and Srikumar Venugopal, "GridCrypt:

High Performance Symmetric Key Cryptography Using Enterprise Grids ", Laurence

Yang and Minyi Guo (editors), Wiley Press, New Jersey, USA. Fall 2004.

[19] Mostafa-Sami M. Mostafa, Safia H Deif, Hisham A Kholidy, "ULTRA GRIDSEC:

Peer-to-Peer Computational Grid Middleware Security Using High Performance

Symmetric Key Cryptography", the 5
th

 International Conference on Information

Technology-New Generations, Las Vegas, Nevada, USA, 7- 9 April 2008.

[20] Hisham A Kholidy, Abdulrahman A. Azab, Safia H Deif, "Enhanced 'ULTRA

GRIDSEC': Enhancing High Performance Symmetric Key Cryptography Schema

Using Pure Peer-to-Peer Computational Grid Middleware (HIMAN)" in the Third

International Conference on Pervasive Computing and Applications, 06-08 Oct 2008.

[21] Hisham A. Kholidy, Khaled S. Alghathbar, "Adapting and accelerating the stream

Cipher algorithm "RC4" using "Ultra Gridsec" and "HIMAN" and use it to secure

HIMAN Data", The Journal of Information Assurance and Security, JIAS/2009/SI4-

008, Atlanta, USA, July 30, 2009. URL:

http://www.softcomputing.net/jias/jias2009.html

[22] G. Popek, R. Goldberg. “Formal Requirements for Virtualizable Third Generation

Architectures”, Communications of the ACM. Volume 17, number 7, pages 412-421,

1974.

[23] J. Sugerman, V. Ganesh, L. Beng-Hong. Virtualizing I/O Devices on VMware

Workstation’s Hosted Virtual Machine Monitor. Proceedings of the USENIX Annual

Technical Conference, 2001.

[24] N. Kelem, R. Feiertag. “A Separation Model for Virtual Machine Monitors”, Research

in Security and Privacy. Proceedings of the IEEE Computer Society Symposium,

pages 78-86, 1991.

[25] T. Garfinkel, M. Rosenblum. “A Virtual Machine Introspection Based Architecture for

Intrusion Detection”, Proceedings of the Network and Distributed System Security

Symposium NDSS, 2003.

[26] http://blogs.msdn.com/b/virtual_pc_guy/archive/2006/07/10/661958.aspx

[27] http://download.microsoft.com/download/A/C/A/ACA22617-4FB8-45AD-BAEC-

591A8E794A14/2Architecture_Future.ppt

[28] http://www.virtualbox.org/wiki/VirtualBox

[29] “Hosted Xen Project (HXen) “, http://blog.xen.org/index.php/2009/04/01/hosted-xen-

project-kxen-available/

[30] http://www.vmware.com/products/vsphere/esxi-and-esx/index.html

[31] http://www.xen.org/

[32] “System Calls Definition”, http://en.wikipedia.org/wiki/System_call

[33] “Event Log Service”, http://support.microsoft.com/kb/308427

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

213

[34] “NetFlow Definition”, http://en.wikipedia.org/wiki/NetFlow

[35] Austin Whisnant, Sid Faber, "Network Profiling Using Flow", TECHNICAL

REPORT, CMU/SEI-2012-TR-006, August 2012.

[36] NetFlow/FloMA: Pointers and Software Provided by SWITCH. - One of the most

comprehensive list including all the open source and research works

[37] http://www.vmware.com/company/news/releases/vmw-cloud-infrastructure-

071211.html

[38] http://blogs.manageengine.com/netflowanalyzer/2011/03/11/netflow-vs-sflow/

[39] “Entropy” http://en.wikipedia.org/wiki/Entropy

[40] “Conditional Entropy” http://en.wikipedia.org/wiki/Conditional_entropy

[41] F. C. Hoppensteadt and E. M. Izhikevich, Weakly connected neural networks,

Springer, (1997), p. 4. ISBN 978-0-387-94948-2.

[42] http://www.seeingwithc.org/topic5html.html

[43] http://technet.microsoft.com/en-us/library/cc959354.aspx

[44] http://en.wikipedia.org/wiki/Attack (computing)

[45] Gruschka, N.; Jensen, M.;,"Attack Surfaces: A Taxonomy for Attacks on Cloud

Services," Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on,

vol.,no., pp. 276-279, 5-10 July 2010, doi: 10.1109/CLOUD.2010.23

[46] http://www.metasploit.com/

[47] Stein, Lincoln. The World Wide Web Security FAQ, Version 3.1.2, February 4, 2002.

http://www.s3.org/security/faq/ - visited on October 1, 2002.

[48] Zaroo, P.; “A survey of DDoS attacks and some DDoS defense mechanisms”,

Advanced Information Assurance (CS 626), 2002

[49] Montoro, R.; “LOIC DDoS Analysis and Detection”, URL:

http://blog.spiderlabs.com/2011/01/loic-ddos-analysis-and-detection.html, 2011,

Accessed December 1, 2011

[50] “CPU DEATHE PING Attack”, http://www.hackerbradri.com/2012/08/cpu-death-

ping-20.html

[51] “NESSUS System”, http://www.tenable.com/products/nessus

[52] Aboosaleh Mohammad Sharifi, Saeed K. Amirgholipour1, Mehdi Alirezanejad2,

Baharak Shakeri Aski, and Mohammad Ghiami "Availability challenge of cloud

system under DDoS attack", Indian Journal of Science and Technology, Vol. 5 No. 6

(June 2012) ISSN: 0974- 6846

[53] Anjali Sardana and Ramesh Joshi, “An auto responsive honeypot architecture for

dynamic resource allocation and QoS adaptation in DDoS attacked networks”, Journal

of Computer and Communications, July 2009, Vol. 32, P 121384-1399.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

214

[54] Aman Bakshi, Yogesh B. Dujodwala, "Securing Cloud from DDoS Attacks Using

Intrusion Detection System in Virtual Machine", Proceedings of the 2010 Second

International Conference on Communication Software and Networks(ICCSN '10), P

260-264

[55] Weir, J.; “Building a Debian\Snort based IDS”, URL: http://www.snort.org/docs,

2011. Accessed November 28, 2011

[56] VMware cloud, http://www.vmware.com/solutions/cloud-computing/index.html

[57] Chi-Chun Lo, Chun-Chieh Huang and Ku, J, “A Cooperative Intrusion Detection

System Framework for Cloud Computing Networks”. In 2010 39th International

Conference on Parallel Processing Workshops.

[58] http://www.citrix.com/products/xenserver/overview.html

[59] David Chappell, "THE MICROSOFT PRIVATE CLOUD", A Technical Overview

Report, August, 2011.

[60] "VMware Workstation 9.0 Release Notes", September 2012.

http://www.vmware.com/support/ws90/doc/workstation-90-release-notes.html.

[61] “OSSEC System”, http://www.ossec.net/main/

[62] OSSIM Manual, http://www.alienvault.com/documentation/index.html

[63] Rebecca Bace and Peter Mell, "NIST Special Publication on Intrusion Detection

Systems", National Institute of Standards and Technology, 16 August 2001.

[64] Herve Debar, Marc Dacier, Andreas Wespi, “Towards a taxonomy of intrusion-

detection systems”, Computer Networks, Volume 31, Issue 8, 23 April 1999, Pages

805-822, ISSN 1389-1286, DOI: 10.1016/S1389-1286(98)00017-6.

[65] Shahaboddin Shamshirband1, Nor Badrul Anuar, Miss Laiha Mat Kiah, and Ahmed

Patel, "An Appraisal and Design of Multi Agent Systems Based on Cooperative

Wireless Intrusion Detection Computational Intelligence Techniques", the science and

technology of sensors and biosensors journal (Sensors ISSN 1424-8220).

[66] Elshoush, H.T.; Osman, I.M. Alert correlation in collaborative intelligent intrusion

detection systems—A survey. Applied Soft Computing 2011, 11, 4349-4365.

[67] Blasco, J.; Orfila, A.; Ribagorda, A. In Improving Network Intrusion Detection by

Means of Domain-Aware Genetic Programming, ARES '10 International Conference

on Availability, Reliability, and Security, 2010, 2010; 2010; pp. 327-332.

[68] Phillip A. Porras and Alfonso Valdes_ Live traffic analysis of tcp/ip gateways, Proc.

ISOC Symposium on Network and Distributed SystemSecurity (NDSS’98) (San

Diego, CA, March 1998) (Internet Society).

[69] Teresa Lunt and R. Jagannathan, “A prototype real-time intrusion detection expert

system”, Proc. Symposium on Security and Privacy (Oakland, CA, April 1988) 59-66.

[70] Naji Habra, Baudouin Le Charlier, Aziz Mounji, and Isabelle Mathieu, “Asax:

Software architecture and rule-based language for universal audit trail analysis”, in

Proc. of 2nd European Symposium on Research in Computer Security (ESORICS),

Toulouse, France, November 1992, LCNS 648, Springer-Verlag, Berlin, Germany.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

215

[71] Phillip Porras and Richard Kemmerer, “Penetration state transition analysis - A rule-

based intrusion detection approach”, Proc. 8th Annual Computer Security Applications

Conference 220-229 (IEEE Computer Society press, IEEE Computer Society press,

November 1992)

[72] Paul Helman and Gunar Liepins, Statistical foundations of audit trail analysis for the

detection of computer misuse, IEEE Transactions on Software Engineering, 19

September 1993, 886-901.

[73] Herve Debar, Monique Becker, and Didier Siboni, “A neural network component for

an intrusion detection system”, Proc. 1992 IEEE Computer Society Symposium on

Research in Security and Privacy, Oakland, CA, May 1992

[74] Thomas Spyrou and John Darzentas, “Intention modeling: Approximating computer

user intentions for detection and prediction of intrusions”, In S.K. Katsikas and D.

Gritzalis, editors, Information Systems Security (Samos, Greece, May 1996) 319-335,

(Chapman and Hall).

[75] Paul Spirakis, Sokratis Katsikas, Dimitris Gritzalis, Francois Allegre, John Darzentas,

Claude Gigante, Dimitris Karagiannis, P. Kess, Heiki Putkonen, and Thomas Spyrou,

“SECURENET: A network-oriented intelligent intrusion prevention and detection

system”, Network Security Journal, 1994.

[76] Debar, H., Curry, D., Feinstein, B.: “The Intrusion Detection Message Exchange

Format”, Internet Draft Technical Report, IETF Intrusion Detection Exchange Format

Working Group (July 2004).

[77] Roschke, S., Cheng, F., Meinel, “Intrusion Detection in the Cloud”, The 8th

International Conference on Dependable, Autonomic and Secure Computing (DASC-

09) Chengdu, China, December 12-14, 2009

[78] Karen Scarfone and Peter Mell, “Guide to Intrusion Detection and Prevention Systems

(IDPS)”, National Institute of Standards and Technology, Special Publication 800-94,

Feb. 2007.

[79] “Cisco Guard XT System“ http://www.cisco.com/en/US/products/ps5894/index.html

[80] “SAMHAIN IDS”, http://www.la-samhna.de/samhain/

[81] “OSIRIS IDS” http://osiris.shmoo.com/index.html

[82] “eEYE RetinaIDS” http://www.visus-it.com/eeye.php

[83] http://www.symantec.com/connect/articles/introduction-distributed-intrusion-

detection-systems

[84] Jansen W., “Intrusion detection with mobile agents”, Computer Communications 25

(15): 1392-1401, 2002.

[85] Jansen W., Karygiannis, T. 1999, “Mobile agents and security”. Special Publication

800-19, National Institute of Standards and Technology (NIST)

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

216

[86] Porras, A. Ph.; Neumann, P. G.: EMERALD: Event Monitoring Enabling Responses to

Anomalous Live Disturbances, Proc. of the National Information Systems Security

Conference, Oct. 6, 1997, Baltimore, Maryland.

[87] Brett C. Tjaden, Lonnie R. Welch, Shawn D. Ostermann, David Chelberg, et. al,

"INBOUNDS: The Integrated Network-Based Ohio University Network Detective

Service", 4th World Multiconference on Systemics, Cybernetics and Informatics (SCI

2000) and 6th International Conference on Information Systems Analysis and

Synthesis (ISAS 2000), Orlando, Florida, July 23-26, 2000.

[88] Harold S. Javitz, Alfonso Valdes, “The NIDES Statistical Component Description and

Justification”, in SRI Technical Report, 1994

[89] Lin J., Wang X., Jajodia S. Abstraction-Based Misuse Detection: High-Level

Specifications and Adaptable Strategies. csfw, p. 190, 11th IEEE Computer Security

Foundations Workshop (1998).

[90] Smaha, S. E.; Winslow, J.: Misuse detection tools, Computer Security Journal

10(1994)1, Spring, 39 - 49.

[91] Christoph, G. G.; Jackson, K. A.; Neumann, M. C.; Siciliano, Ch. L. B.; Simmonds, D.

D.; Stallings, C. A.; Thompson, J. L.: UNICORN: Misuse Detection for UNICOS,

Proc. of the Supercomputing '95, San Diego, CA.

[92] Jeffrey M. Bradshaw, “An Introduction to Software Agents,” In Jeffrey M. Bradshaw,

editor, Software Agents, Chapter 1. AAAI Press/The MIT Press, 1997.

[93] W Jansen, P Mell, T Karygiannis, Marks, "Applying Mobile Agents to Intrusion

Detection and Response (1999)", National Institute of Standards and Technology

Interim Report – 6416

[94] Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar, Sayed Gholam Hassan Tabatabaei,

“Distributed Instrusion Detection in Clouds Using Mobile Agents”, Third International

Conference on Advanced Engineering Computing and Application in Sciences,

October 11-16, 2009 - Sliema, Malta

[95] Scerri, Paul and Vincent, Régis and Mailler, Roger, booktitle "Coordination of Large-

Scale Multiagent Systems", Springer US, isbn: 978-0-387-27972-5, p. 231-254,

http://dx.doi.org/10.1007/0-387-27972-5_11, note:10.1007/0-387-27972-5_11, 2006.

[96] Ricardo Leite, Fabiano Oliveira, Constantino Ribeiro, Jauvane Oliveira, Bruno

Schulze and Edmundo.Madeira, “Functionalities in Grid Computing with Active

Services”, 1st International Workshop on Middleware for Grid Computing, June 2003,

Rio de Janeiro, Brazil.

[97] TALNAR Vanish, BASU Sujoy, KUMAR Raj, “An Environment for Enabling

Interactive Grids”, In IEEE INTERNATIONAL SYMPOSIUM ON HIGH

PERFORMANCE DISTRIBUTED COMPUTING, 12, 2003, Seattle, Washington,

USA. Proceedings Washington: IEEE Computer Society, 2003. p. 184-195.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

217

[98] O. Choon and A. Samsudin, “Grid-based intrusion detection system,” in Proc. 9th

Asia-Pacific Conference on Communications, vol. 3, pp. 1028-1032, September 21-

24,2003.

[99] S. Kenny and B. Coghlan, “Towards a grid-wide intrusion detection system,” in Proc.

European Grid. Conference (EGC2005), pp. 275-284, Amsterdam, Netherlands,

February 2005.

[100] F-Y. Leu, Fang-Yie Leu, Jia-Chun Lin, Ming-Chang Li, Chao-Tung Yang, and Po-

Chi Shih, “Integrating Grid with Intrusion Detection”, Proc. Int’l Conf. Advanced

Information Networking and Applications (AINA 05), vol. 1, IEEE CS Press, March,

2005, pp. 304–309

[101] M. Tolba, M. Abdel-Wahab, and I. Taha, and A. Al-Shishtawy, “GIDA: Toward

enabling grid intrusion detection systems”, in Proc. 5th IEEE/ACM Int. Symp. on

Cluster Computing and the Grid (CCGrid2005), Cardiff, UK, May 9-12, 2005.

[102] Fang-Yie L., Jia-Chun L., Ming-Chang L., and Chao-Tung Y., “A Performance-

Based Grid Intrusion Detection System,” in Proc. 29th Annual IEEE International

Computer Software and Applications Conference (COMPSAC2005), pp. 525-530,

July 26-38, 2005.

[103] Guofu Feng, Xiaoshe Dong, Weizhe Liu, Ying Chu, and Junyang Li, “GHIDS:

Defending Computational Grids against Misusing of Shared Resource”, Proc. Asia-

Pacific Conf. Services Computing (APSCC 06), IEEE CS Press, December, 2006, pp.

526–533.

[104] Schulter, A.; Navarro, F.; Koch, F.; Westphall, C.B., “Intrusion Detection for

Computational Grids”, Proc. 2nd Int’l Conf. New Technologies, Mobility, and

Security, IEEE Press, November, 2008, pp. 1–5.

[105] Vieira, K.; Schulter, A.; Westphall, C.B.; Westphall, C.M.;, "Intrusion Detection for

Grid and Cloud Computing," IT Professional, vol.12, no.4, pp.38-43, July-Aug. 2010.

[106] Hisham A. Kholidy, "A Study for Access Control flow Analysis with a proposed Job

analyzer component based on Stack inspection methodology", 10th International

Conference on Intelligent System Design and Applications (ISDA 2010), 29 Nov -2

Dec 2010.

[107] “Condor System”, http://www.cs.wisc.edu/condor/

[108] “Globus System”, http://www.globus.org/

[109] Dan S. Wallach, Edward W. Felten, “Understanding Java Stack Inspection”, In IEEE

Symposium on Security and Privacy,p 2-5,1998.

[110] A. H. Phyo and S. M. Furnell. A detection-oriented classification of insider and

misuse. In Proceedings of the Third Security Conference, 2004.

[111] Lee, W. and Stolfo, S. Data mining approaches for intrusion detection. In Proc.7th

USENIX Security Symposium, 1998.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

218

[112] Maxion, R. A., and Townsend, T. N. 2002. Masquerade Detection Using Truncated

Command Lines. In Proceedings of the International Conference on Dependable

Systems and Networks, Washington, D.C., June 2002, 219-228.

[113] Brown, Christopher D.; and Davis, Herbert T. (2006); Receiver operating

characteristic curves and related decision measures: a tutorial, Chemometrics and

Intelligent Laboratory Systems, 80:24–38.

[114] Schonlau, M., DuMouchel, W., Ju, W., Karr, A. F., Theus, M., and Vardi, Y. 2001.

Computer Intrusion: Detecting Masquerades. Statistical Science 16(1), 58-74.

[115] Dumouchel, W. (1999). Computer intrusion detection based on Bayes Factors for

comparing command transition probabilities. Technical report 91, National Institute

of Statistical Sciences. Available at www.niss.org/downloadabletechreports.html.

[116] Ju, W. and Vardi, Y. (1999). A hybrid high-order Markov chain model for computer

intrusion detection. Technical report 92, National Institute Statist. Sci. Available at

www.niss.org/downloadabletechreports.html.

[117] Davison, B. D. and Hirsh, H. (1998). Predicting sequences of user actions. In

Predicting the Future: AI Approaches to Time Series Problems. Technical report WS-

98-07 (Proceedings of AAAI-98/ICML-98 Workshop) 5–12. AAAI Press, Madison,

WI.

[118] Lane, T. and Brodley, C. E. (1998). Approaches to online learning and concept drift

for user identification in computer security. Proceedings, The Fourth International

Conference ofKnowledge Discovery and Data Mining, August 27–31, New York.

259–263.

[119] Burges Christopher JC. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery 1998;2(2):121e67.

[120] Szymanski, B., and Zhang, Y. 2004. Recursive Data Mining for Masquerade

Detection and Author Identification. In Proceedings of the 5th IEEE System, Man

and Cybernetics Information Assurance Workshop, West Point, June 2004, 424-431.

[121] Dash, S.K., Reddy, K.S., Pujari, A.K.: Episode based masquerade detection. Lecture

Notes in Computer Science, vol. 3803. Springer, Berlin, pp. 251–262 (2005)

[122] Alok Sharma, Kuldip K. Paliwal. Detecting masquerades using a combination of

Naïve Bayes and weighted RBF approach. Journal in Computer Virology, 3(3):237-

245, 2007

[123] Subrat Kumar Dash, Krupa Sagar Reddy, Arun K. Pujari: Adaptive Naive Bayes

method for masquerade detection. Security and Communication Networks 4(4): 410-

417 (2011)

[124] Coull, S. E., Branch, J. W., Szymanski, B. K., and Breimer, E. A. 2003. Intrusion

Detection: A Bioinformatics Approach. In Proceedings of the 19th Annual Computer

Security Applications Conference, Las Vegas, NV, December 2003, 24-33.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

219

[125] Scott E. Coull, Joel W. Branch, Boleslaw K. Szymanski, Eric A. Breimer. 2008.

“Sequence alignment for masquerade detection”. Journal of Computational Statistics

& Data Analysis. 52, 8 (April 2008), 4116-4131. DOI=10.1016/j.csda.2008.01.022

http://dx.doi.org/10.1016/j.csda.2008.01.022

[126] A. Garg, R. Rahalkar, S. Upadhyaya, K. Kwiat, "Profiling Users in GUI Based

Systems for Masquerade Detection", Proceedings of the 2006 IEEE Workshop on

Information Assurance, pp.48-54.

[127] Imsand, E., Hamilton, J. GUI Usage Analysis for Masquerade Detection. in the 2007

IEEE Workshop on Information Assurance. June 20-22, West Point, NY, USA. Pages

270-277

[128] A. Wespi, M. Dacier, and H. Debar, "Intrusion Detection Using Variable-Length

Audit Trail Patterns," in Recent Advances in Intrusion Detection - Lecture Notes in

Computer Science, vol. 1907, pp. 110-129, Springer-Verlag, 2000.

[129] C. Marceau, "Characterizing the behavior of a program using multiple-length N-

grams," in the 2000 workshop on New security paradigms, (Ballycotton, County

Cork, Ireland), pp. 101-110.

[130] Chris Strasburg, Sandeep Krishnan, Karin Dorman, Samik Basu, Johnny S. Wong,

"Masquerade Detection in Network Environments", Proceedings of the 2010 10th

IEEE/IPSJ International Symposium on Applications and the Internet, 2010.

[131] Aubrat Kumar, Sanjay Rawat, G. Vijaya Kumari, and Arun K. Pujari, "Masquerade

Detection Using IA Network", CPSec 2005.

[132] Allen, J.: maintaining knowledge about temporal intervals. Communications of the

ACM, 26, (1983) 832-843

[133] Smith, T. F., and Waterman, M. S. 1981. Identification of Common Molecular

Subsequences. Journal of Molecular Biology 147, 195-197.

[134] Maximiliano Bertacchini and Pablo Fierens. A Survey on Masquerader Detection

Approaches. In Proceedings of Congreso Iberoamericano de Seguridad Inform´atica,

pages 46-60, Montevideo, Uruguay. Universidad de la Rep´ublica de Uruguay, 2008.

ISBN: 978-9974-0-0593-8.

[135] Malek Ben Salem, Shlomo Hershkop, Salvatore J. Stolfo. "A Survey of Insider

Attack Detection Research" in Insider Attack and Cyber Security: Beyond the

Hacker, Springer, 2008

[136] “Schonlau webpage”, http://www.schonlau.net/intrusion.html

[137] Greenberg, S.: Using unix: Collected traces of 168 users. Research Report 88/333/45,

Department of Computer Science, University of Calgary, Alberta, Canada (1988),

Saul Greenberg's homepage: http://pages.cpsc.ucalgary.ca/~saul/

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

220

[138] Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In:

In Proceedings of the 20th National Information Systems Security Conference. (1997)

366-380

[139] RUU dataset: http://sneakers.cs.columbia.edu/ids/RUU/data/”

[140] Posadas, R., Mex-Perera, J.C., Monroy, R., Nolazco-Flores, J.A.: Hybrid method for

detecting masqueraders using session folding and hidden markov models. In

Gelbukh, A.F., Garcia, C.A.R., eds.: MICAI. Volume 4293 of Lecture Notes in

Computer Science., Springer (2006) 622-631

[141] Maxion, R. A. 2003. Masquerade Detection using Enriched Command Lines. In

International Conference on Dependable Systems (DSN-03). San Francisco, CA, June

2003, 5-14.

[142] Hisham A. Kholidy, Fabrizio Baiardi, "CIDS: A framework for Intrusion Detection in

Cloud Systems", The 9th International Conf. on Information Technology: New

Generations (ITNG), Las Vegas, Nevada, USA, 2012

[143] http://www.di.unipi.it/~hkholidy/projects/cids/

[144] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “Detecting Masquerades in

Clouds through System calls and NetFlow Data Analysis”, Ready for submission to

the IEEE Transactions on Dependable and Secure Computing Journal.

[145] D. Andersson, M. Fong, and A. Valdes, “Heterogeneous Sensor Correlation: A Case

Study of Live Traffic Analysis,” Third Ann. IEEE Information Assurance Workshop,

Jun. 2002.

[146] A. Valdes and K. Skinner, “An Approach to Sensor Correlation,”Proc. Recent

Advances in Intrusion Detection, Oct. 2000.

[147] Fredrik Valeur, Giovanni Vigna and Richard A. Kemmerer, “A Comprehensive

Approach to Intrusion”, IEEE Transactions on Dependable and Secure Computing,

Jul. 2004

[148] “Open Stack System”, http://www.openstack.org/

[149] http://blog.eukhost.com/webhosting/what-is-the-difference-between-public-clouds-

and-a-private-cloud/

[150] Hisham A. Kholidy, Fabrizio Baiardi, "CIDD: A Cloud Intrusion Detection Dataset

for Cloud Computing and Masquerade Attacks", the 9th International Conference on

Information Technology: New Generations (ITNG), Las Vegas, Nevada, USA, 2012.

http://www.di.unipi.it/~hkholidy/projects/cidd/

[151] "DARPA Intrusion Detection System Group",

[152] http://www.ll.mit.edu/mission/ communications/ist/corpora/ideval/data/index.html

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

221

[153] Wang, K., and Stolfo, S. J. 2003. One Class Training for Masquerade Detection. In

Proc. of the 3rd IEEE Conference Data Mining Workshop on Data Mining for

Computer Security, Florida, November 2003

[154] “DDSGA Approach”, http://www.di.unipi.it/~hkholidy/projects/DDSGA/

[155] N. Nguyen, P. Reiher, and G. Kuenning, “Detecting Insider Threats by Monitoring

System Call Activity”, Proceedings of the 2003 IEEE Workshop on Information

Assurance, NY June 2001.

[156] E. Eskin, W. Lee, and S. J. Stolfo. Modeling system calls for intrusion detection with

dynamic window sizes. In Proceedings of DARPA Information Survivability

Conference and Exposition II (DISCEX II), Anaheim, CA, 2001.

[157] E. Eskin,W. N. Grundy, and Y. Singer. Protein family classification using sparse

markov transducers. In Proceedings of the Eighth International Conference on

Intelligent Systems for Molecular Biology, Menlo Park, CA, 2000. AAAI Press.

[158] “Augmented Matrix”, http://en.wikipedia.org/wiki/Augmented_matrix

[159] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “Detecting Masquerades in

Clouds through Security Events and NetFlow Data Analysis”, in Journal of Computer

Science and Technology (JCST), under review in December 2012.

[160] “System Log Files”, http://en.wikipedia.org/wiki/Syslog

[161] “Open BSM System”, http://en.wikipedia.org/wiki/OpenBSM

[162] “UDP stateless connections and their establishment”,

[163] http://www.frozentux.net/iptables-tutorial/chunkyhtml/x1555.html

[164] "Detection of Multistage Attack in Federation of Systems Environment", Przemysław

Bereziński, J. Śliwa, R. Piotrowski, B. Jasiul, Military Communication Institute

[165] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi, “HA-

CIDS: A Hierarchical and Autonomous IDS for Cloud Environments”, Fifth

International Conference on Computational Intelligence, Communication Systems

and Networks (CICSyN) Madrid, Spain, June, 2013.

[166] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi,

“Autonomous Response, Self-Resilience, and Prediction in a Cloud IDS”, under

review in April 2013, the ACM Cloud and Autonomic Computing Conference (CAC

2013), Miami, Florida, USA August, 2013.

[167] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi, “A

Hierarchical, Autonomous, and Forecasting Cloud IDS ”, under review in May 2013,

The 5th International Conference on Modeling, Identification and Control

(ICMIC2013), Cairo, Aug31-Sept 1-2, 2013.

[168] C. Chatfield (1978). The Holt-Winters Forecasting Procedure. Journal of the Royal

Statistical Society. Series C (Applied Statistics), Vol. 27, No. 3, pp. 264-279.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

222

Our Publications Underlying the Thesis Work:

 Journals:

[1] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, Esraa M. ElHariri, Ahmed M.

Youssouf, and Sahar A. Shehata, “A Hierarchical Cloud Intrusion Detection System:

Design and Evaluation”, in International Journal on Cloud Computing: Services and

Architecture (IJCCSA), Vol.2, No.6, December 2012, DOI: 10.5121/ijccsa.2012.2601.

[2] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “DDSGA: A Data-Driven Semi-

Global Alignment Approach for Detecting Masquerade Attacks”, in IEEE Transactions

on Dependable and Secure Computing, under second review in March 2013.

http://www.di.unipi.it/~hkholidy/projects/DDSGA/

[3] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “Detecting Masquerades in Clouds

through System calls and NetFlow Data Analysis”, Ready for submission to the IEEE

Transactions on Dependable and Secure Computing Journal.

[4] Hisham A. Kholidy, Fabrizio Baiardi, Salim Hariri, “Detecting Masquerades in Clouds

through Security Events and NetFlow Data Analysis”, in Journal of Computer Science

and Technology (JCST), under review in December 2012.

 Conferences

[1] Hisham A. Kholidy, Fabrizio Baiardi, "CIDS: A framework for Intrusion Detection in

Cloud Systems", The 9th International Conf. on Information Technology: New

Generations (ITNG), Las Vegas, Nevada, USA, 2012. Conference publisher: IEEE.

http://www.di.unipi.it/~hkholidy/projects/cids/.

[2] Hisham A. Kholidy, Fabrizio Baiardi, "CIDD: A Cloud Intrusion Detection Dataset for

Cloud Computing and Masquerade Attacks", the 9th International Conference on

Information Technology: New Generations (ITNG), Las Vegas, Nevada, USA, 2012.

Conference publisher: IEEE.

http://www.di.unipi.it/~hkholidy/projects/cidd/

[3] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi, “HA-

CIDS: A Hierarchical and Autonomous IDS for Cloud Environments”, Fifth

International Conference on Computational Intelligence, Communication Systems and

Networks (CICSyN) Madrid, Spain, June, 2013. Conference publisher: IEEE.

[4] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi,

“Autonomous Response, Self-Resilience, and Prediction in a Cloud IDS”, under review

in April 2013, the ACM Cloud and Autonomic Computing Conference (CAC 2013),

Miami, Florida, USA August, 2013. Conference publisher: ACM.

[5] Hisham A. Kholidy, Abdelkarim Erradi, Sherif Abdelwahed, Fabrizio Baiardi, “A

Hierarchical, Autonomous, and Forecasting Cloud IDS ”, under review in May 2013,

The 5th International Conference on Modeling, Identification and Control

(ICMIC2013), Cairo, Aug31-Sept 1-2, 2013. Conference publisher: IEEE.

PHD Thesis 2013 – Hesham Abdelazim Ismail Mohamed

223

[6] Hisham A. Kholidy, "HIMAN-GP: A Grid Engine Portal for controlling access to

HIMAN Grid Middleware with performance evaluation using processes algebra", The

2nd International Conference on Computer Technology and Development ICCTD 2010,

pp 163-168, Cairo, 2010.

[7] Hisham A. Kholidy, "A Study for Access Control Flow Analysis With a Proposed Job

Analyzer Component based on Stack Inspection Methodology", the 2010 10th

International Conference on Intelligent Systems Design and Applications (ISDA), pp

1442-1447, Cairo, Egypt, vol. IEEE Catalog Number: CFP10394-CDR, 2010

[8] Hisham A. Kholidy, Chatterjee N., "Towards Developing an Arabic Word Alignment

Annotation Tool with Some Arabic Alignment Guidelines", the 2010 10th International

Conference on Intelligent Systems Design and Applications (ISDA), pp 778-783, Cairo,

Egypt, vol. IEEE Catalog Number: CFP10394-CDR, 2010

Thank You

