Paper Title	A Study of operational optimization of a SOFC-PEFC		عنوان
	combines system with photovoltaic power generation		عنوان البحث
No of Authors	1		عدد المؤلفين
Authors Names	Abeer Galal Elsayed		أسماء
	v		المؤلفين
	International conference in prospects of engineering		
Publication Place	solutions and the challenges of the times 2013(PESCT)		مكان النشر
Publisher	International Conference		الناشر
Classification	International Conference	مؤتمر دولى متخصص ومحكم	التصنيف
Publication Year	2013		سنة النشر

Abstract

This study optimizes the operation planning of a photovoltaic systems and two types of fuel cell to supply energy to a demand side. The operation plan of a solid-oxide fuel cell (SOFC) and a proton-exchange membrane fuel cell (PEFC) is developed. The proposed system consists of a SOFC-PEFC combined system and a photovoltaic system (PV) as the energy supply to 30 residences in a city. The operation plan of the system has three cases: without PV power, with 50% and with 100% of PV output power. The power generation efficiency is investigated for different load patterns: average load pattern, compressed load pattern and extended load pattern. This paper reported that the power generation efficiencies of the proposed system at different load patterns are 27% to 48%.