

ملخص و بيانات الابحاث

بيانات عن البحث الثامن المقدم للترقية

	رقم البحث في القائمة المعتمدة					
تحكم معالج للاخطاء لمحرك الموتور المتزامن ذو المغناطيس الدائم عند فقد أحدى الاطوار					عنوان البحث باللغة العربية	
Fault-Tolerant Control of Permanent Magnet Synchronous Motor Drive under Open-					عنوان البحث باللغة الانجليزية	
Phase Fault						
Amr Saleh, Nada Sayed, Ghada A. Abdelaziz, Mona N. Iskander					أسماء المؤلفين المشاركين	
Ann Salen, Nada Sayed, Ghada A. Abdelaziz, Moha N. Iskahdel					بالترتيب	
Advances in Science, Technology and Engineering Systems ISSN: 2415-6698					اسم المجلة + رقم المجلد	
Volume		Issue		15511. 2415-0050	و العدد + ISSN	
Web of science		IF	Scopus	CiteScore/SJR/SNIP	71- 11-21-2	
			Q3	0.6/0.139/0.298	تصنيف المجلة	
Accepted: 03 November 2020					تاريخ النشر	
					DOI	
البحث مشتق من رسالة الماجستير للباحثه ندا سيد عبدالجيد بيومي					هل البحث مشتق من رسالة	
					علميه	

ملخص البحث باللغة الإنجليزية:

This paper presents an integrated solution for a fault-tolerant three-phase permanent magnet synchronous motor (PMSM) field-oriented control drive subjected to an open-phase fault (OPF) integrated with effective fault-tolerant detection methodology. The fault detection methodology is based on model predictive current control (MPCC), which is easy to apply, detect OPF in a range of microseconds, and robust under-speed or load transient. On the other hand, the fault-tolerant compensation is based on a neutral point connection together with stator current regulation to maintain the magneto-motive force (MMF) unchanged under open-phase failure. Controlling the motor phase currents in the post-fault condition ensures a rotating magnetic field similar to that produced during healthy conditions thus, reducing the saturation impact and ensuring the reliability of the control operation. The proposed integrated fault-tolerant drive is validated using MATLAB simulation that ensure the effectiveness of the proposed solution in steady state and during transients under different loading and rotor speed condition.