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Abstract---We propose a new public key cryptosystem which 
named PQK that based on the decisional Diffie-Hellman problem. The 
scheme is provably secure against adaptive chosen cipher-text attack 
under the hardness assumption of the decisional Diffie-Hellman 
problem. Compared with the RSA public key scheme, our scheme has 
nice features: (1) our scheme is provably secure against adaptive 
chosen cipher-text attack under the intractability paradigm, (2) the 
PQK is secure against other attacks such as common modulus attack 
and low exponent attack which the RSA is still suffered from these 
attacks, and (3) it is faster than, in the decryption process, the RSA 
cryptosystem. 

 
Keywords---RSA Cryptosystem, PQK Cryptosystem, Adaptive 

Chosen Ciphertext Attack, Low Exponent Attack, Common Modulus 
Attack. 

I. INTRODUCTION 
HE RSA cryptosystem is one of the most practical public 
key cryptosystems and is used throughout the world [1]. 

Let n  be a public key, which is the product of two appropriate 
primes, e  be an encryption key, and d  be a decryption key. 
The algorithms of encryption and decryption consist of 
exponentiation to the the  and thd  powers modulo n , 
respectively. We can make e  small, but must consider low 
exponent attacks [2] [3]. The encryption process takes less 
computation and is fast. On the other hand, the decryption key 
d  must have more than one fourth the number of bits of the 
public key n  to preclude Wiener's attack [4] and its extension 
[5]. Therefore, the cost of the decryption process is dominant 
for the RSA cryptosystem. 

  If a cryptosystem has more than one block of plaintexts, 
where each block is as large as the public-key n , we call it a 
multi-block cryptosystem.  

A lot of multi-block RSA-type cryptosystems have been 
proposed [6] [7] [8]. Their advantage is that they allow us to 
encrypt data larger than the public-key at a time, and we can 
prove their security is equivalent to the original RSA 
cryptosystem or factoring. However, these algorithms are very 
slow and the attacks against the RSA cryptosystem are also 
applicable to them (See, for example, [9] [10]).  
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We cannot find significant advantage over using the original 
RSA cryptosystem for each block. The RSA cryptosystem 
suffers from two main problems; the decryption process is very 
slow and it is insecure against adaptive chosen ciphertext 
attack, low exponent attack and common modulus attack. 

Tsuyshi Takagi [11] presented a new public-key 
cryptosystem with fast decryption named ݊௞  cryptosystem 
which is constructed over ZnZ k , where n is the modulus 

and k  is a positive integer. To implement the ݊௞ 
cryptosystems, we used only ordinary and elementary 
mathematical techniques such as computation of greatest 
common divisors, so that it is easy to implement. Moreover, the 
decryption time of the first block is dominant, because after the 
first block we only calculate the modular multiplication of the 
encryption exponent and an extended Euclidean algorithm to 
decrypt blocks after the first one. Therefore the ݊௞ 
cryptosystem is faster in the decryption process compared with 
the previously reported RSA-type cryptosystems [12]. If a 
message is several times longer than a public-key n , we can 
encrypt this message fast without additionally using a 
symmetry-key cryptosystem. This cryptosystem solve the 
slowness of decryption process, but it still suffers from the 
mentioned attacks. Unfortunately, this scheme is also suffers 
from all attacks which the RSA scheme faced.  

In this paper, we present and analyze a new public key 
cryptosystem which named PQK cryptosystem that is provably 
secure against adaptive chosen ciphertext attack (as defined 
byRackoff and Simon [13]). The scheme is quite practical, 
requiring just a fewexponentiations over a group. Moreover, 
the proof of security relies onlyon a standard intractability 
assumption, namely, the hardness of the Diffie-Hellman 
decision problem in the underlying group. 

The hardness of the Diffie-Hellman decision problem is 
essentially equivalent to the semantic security of the basic El 
Gamal encryption scheme [11]. Thus, with just a bit more 
computation, we get security against adaptive chosenciphertext 
attack, whereas the basic El Gamal scheme is completely 
insecure against adaptive chosen ciphertext attack. Actually, 
the basic schemewe describe also requires a universal one-way 
hash function. In a typical implementation,this can be 
efficiently constructed without extra assumptions; however, we 
also present a hash-free variant as well. 

Moreover, This paper will prove that the PQK cryptosystem 
has a modification of the encryption algorithm to enhance 
security against standard attacks such as the common modulus 
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attack and the low exponent attack are not applicable on the 
PQK cryptosystem. 

Therefore, the public encryption key becomes a composite 
number and has the relation eae = , for an integer a  ≥ 1. 

A. Chosen Cipher-text Security 
The notion of semantic security (defined by Goldwasser and 

Micali [14]) captures the notion of security of a public key 
cryptosystem against chosen plaintext attack. It is now 
generally accepted that this is a basic requirement of a good 
cryptosystem. However, it also known that other, stronger 
attacks are possible, and moreover, security against these types 
of attacks is necessary to ensure the security of many 
higher-level protocols built on top of the cryptosystem. 

A chosen ciphertext attack is one in which the adversary has 
access to a “decryption oracle,” allowing the adversary to 
decrypt ciphertexts of his choice. Typically, one distinguishes 
between a weak form of this attack, known as a lunch-time 
attack (defined by Naor and Yung [15]), and the strongest 
possible form, known as an adaptive chosen ciphertext attack 
(defined by Rackoff and Simon [16]). In a lunch-time attack, 
the adversary queries the decryption oracle some number of 
times, after which, he obtains the target ciphertext that he 
wishes to cryptanalyze, and is not allowed query the decryption 
oracle further. In an adaptive attack, the adversary may 
continue to query the decryption oracle after obtaining the 
target ciphertext; subject only to the (obviously necessary) 
restriction that queries to the oracle may not be identical to the 
target ciphertext. 

Security against adaptive chosen ciphertext attack also 
implies non- malleability (defined by Dolev, Dwork and Naor 
[18]), meaning that an adversary can’t take an encryption of 
some plaintext and “message” it into an encryption of a 
different plaintext that is related in some interesting way to the 
original plaintext. 

The rest of the paper is organized as follows. Section 2 
describes the basic scheme of the PQK cryptosystem. Proof of 
correctness of the PQK cryptosystem presents in Section 3. 
Then we describe the proof of security of PQK cryptosystem 
against adaptive chosen ciphertext attack in Section 4. PQK 
cryptosystem immunity against other attacks presents in 
Section 5. Finally, we provide some concluding remarks in 
Section 6  

B. Other Related Work 
Provably Secure Schemes. For many years, no public key 

system was shown to be secure under a chosen ciphertext 
attack. Naor and Yung [15] presented the first scheme provable 
secure against lunch-time attacks. Subsequently, Dolev, 
Dwork, and Naor [19] presented a scheme that is provably 
secure against adaptive chosen ciphertext attack. 

Unfortunately, all of the known schemes provably secure 
under standard intractability assumptions are completely 
impractical (albeit polynomial time), as they rely on general 
and expensive constructions for non-interactive 
zero-knowledge proofs. 

Practical Schemes.Damgard [18] proposed a practical 
scheme that he conjectured to be secure against lunch-time 
attacks; however, this scheme is not known to be provably 
secure, and is in fact demonstrably insecure against adaptive 
chosen ciphertext attack. Zheng and seberry [20] propose 
practical schemes that are conjectured to be secure against 
chosen ciphertext attack, but again, no proof based on standard 
intractability assumptions is known. 

Lim and Lee [21] also proposed practical schemes that were 
later broken by Frankel and Yung [22]. 

In a different direction, Bellare and Rogaway [24] have 
presented practical schemes that are provably secure against 
adaptive chosen ciphertext attack in an idealized model of 
computation where hash function is represented by a random 
oracle. 

II. THE PQK SCHEME 

Notation 1: Z is an integer ring. nZ is a residue ring 

ZpqZ k)( and its complete residue class is 

{ }1,...,2,1,0 −n . x
nZ is a reduced residue group modulo n  is 

the Least Common Multiple of 1m and 2m . ( )21,mmGCD is 

the Greatest Common Divisor of 1m  and 2m .We also assume 
that we have a group G Which  plaintext are elements of  group 
G. we also assume that H is a hash function that hashes long 
strings to elements of nZ . 
 
- Key Generation. The key generation algorithm runs as 
follows: 
- Generate two random primes p , q  and let ݊ ൌ  ௞ݍ݌

- Compute ( )1,1 −−= qpLCML  and find e , d which 

satisfies ( )Led mod1≡  and ( ) 1, =peGCD , where e is 

the prime public encryption key before our modification and d
is the corresponding secret decryption key. 
- Let e  be the modified public encryption key which is a 
composite number, where eae = , for an integer a ≥ 1. Then
e , n are public keys and d , p and q are the secret keys. 

- Random elements Ggg ∈21,   are chosen and random 
elements 

nZzzyyxx ∈,,,,,, 212121 are also chosen.  
 
- Compute the group elements  

21
21
xx ggb = , 21

21
yy ggf = , 21

21
zz ggh =  

Then public key is ( )nehfbgg ,,,,,, 21  and the private key is 

( )dzzyyxx ,,,,,, 212121 . 
 

- Encryption. The encryption algorithm runs as follows: 
let x

nZM ∈0  and nk ZMM ∈−11 ,.......,  be the plaintext. 

We chose nZr ∈  at random. Then it computes: 
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( ) αα rrrr fbvandCuuHgugu ==== ,,,, 212211

( ) ( ) )1(mod..... 1
1

10
ke

k
kr pqMnnMMhC −

−+++≡

The ciphertext is ( )vCuu ,,, 21  
 
- Decryption.Given a ciphertext ( )vCuu ,,, 21 , the 
decryption algorithm runs as follows. It first computes

( )CuuH 21 ,=α , and then tests if ( ) .2121
2121 vuuuu yyxx =

α
 

If this condition does not hold, the decryption algorithm output 
“reject”; otherwise, it outputs: 
First, we decrypt the first block 0M  

: ( )21
21

0 zz
d

uu
CM ≡

            
(2) 

Then, for the remaining blocks 121 ,......, −kMMM , we can 
decrypt by solving the linear equation modulo n  with the fast 
decryption that described in [23] 
 
- Details of Decryption 
Assume that, we have already decrypted 0M  by the decryption 
method in equation (2), and we write down the process to find 

121 .....,,, −kMMM  as follows. 
Consider that the encryption function (1) is the polynomial of 
the variables 110 .....,,, −kXXX  such that:

ae
k

kr
k

XnXnnXXh

XXXE

)....(

),......,,(

12
2

10

110

−

−

++++

=
 

  Expand the polynomial ,ሺܺ଴ܧ ଵܺ, ܺଶ, … , ܺ௞ିଵሻ by the 
polynomial theorem: 

))()(
!!!

!( 110
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110

1
1

10
,,0 110

−

−

−

−
−

=+++

≤≤ −
∑ K

K

K

S
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eySSS

eySSS k

r XnXnX
SSS

aeh L
L

LL

LL

And let: 

( )
⎭
⎬
⎫

⎩
⎨
⎧

≤≤=+++
=+++

=Γ
eaSSSeaSSS

iiSSS
SSS

ii

i
ii ,...,,0,...

,....2
,.....,,:

1010

21
10

Where ( )10 −≤≤ ki and 1≥a . 

 Let ( )ii XXXD .....,,, 10  be the coefficient of in
( )10 −≤≤ ki , we can find ( )ii XXXD .....,,, 10  by 
calculating: 
 

( ) =ii XXXD .....,,, 10

)
!!!

!( 10

10

10
),,,( 10

i

ii

S
i

SS

SSS i

r XXX
SSS

aeh LL
LLLL

∑
Γ∈

Here, we write them down with small i  as follows: 
 

}...,,,{)....,,,(

),(),,(

,),(

)(

1101101

2
1

0
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1

2
022102

1
1
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−−−

−−

−
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Where ,......, 32 cc are constants. 

Note that:  the only term that includes iX  in iD is 

)( 1
0 i
ear XeaXh − .  

We define:             
)().,,,()...,,,( 1

010110 i
ear

iiii XXaehXXXDXXXD −
− −=′

 

   Therefore, the terms ii DDDD ′− ,....,,, 110  are the 

polynomial of 110 ,...,, −iXXX . 

From this relation, we can decrypt 121 ,....,, −kMMM . Indeed, 

121 ,....,, −kMMM  are calculated as follows: 

by setting 1=i , 

the relations aer XhXDandXD 00001 )(0)( ===′ . So, 
the solution of the linear equation: 

,)mod(11
0 nh

BxeM r
ea ≡−

,)(mod)( 2
001 pqMDCBwhere −≡ is 1M , then we 

can decrypt 132 ,....,, −kMMM  by solving the general linear 
equation:                         

∑
−

=
+

−

−

′

−
−≡

≡

1

0
1

110

10

1
0

)mod().....,,,(

)....,,,(

),mod(

i
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i

ii

jj
i

r
iae

nMMMD

MMMD
CB

nh
BxMea

 

Inductively, we can decrypt all plaintexts 121 ,....,, −kMMM . 

III. PROOF OF CORRECTNESS FOR PQK CONSTRUCTION 
In this section, we prove the correctness for our construction 

which discuss how can successfully recovered the original 
message M  after encrypt it using thePQK cryptosystem. 
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- Proof of correctness 
From the construction of PQK cryptosystem we can see that: 

k
k

k pqMnMnnMMM )mod().....( 1
1

2
2

10 −
−+++=

 
   Then, the value of M  is correct if and only if the values of 

110 ,.....,, −kMMM  are correct values. Therefore, we consider 
another assumption: 

k
k

k pqMnMnMnMM )(mod)....( 1
1

2
2

10 −
− ′+′+′+′=    (3) 

Hence, to achieve the main purpose it must be used our analysis 
to prove that, 

111100 ,......,, −− =′=′=′ kk MMMMMM . 
 
Proof that 00 MM =′  
 From equation (3) let 1=k and 0=i . Then, 

)(mod0 nMM ′=  
The general linear equation that find 121 ,......,, −kMMM  is 
given by: 
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Hence, the value of  0M  is correct. 

Proof that 11 MM =′  
Then, 2=k , 1=i and 0=j . 

From equation (3) 2
10 )(mod)( pqMnMM ′+′=  

 The linear equation that find 1M  is  

2
101001

11
0

)(mod),()(

),mod(

pqMMDMDCBwhere
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0

1
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=′= ear eaMh
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Now, we can compute each value of  1B as follows: 
 The value of 1D′  can be calculated as follows: 
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The encryption function of M  is given by the following 
equation: 
 

( ) ( )kaekkr pqMnMnnMMhC mod..... 11
2

2
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In this case: 
2
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From the polynomial theorem we can get: 
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Then, 11 MM =′  
Hence, the value of  1M  is correct. 
By the same manner, we can prove that the values of  

12 ,....., −kMM  are the correct values. So that our 
construction is correct to recover the original message after 
encrypt it using the proposed cryptosystem. 

IV. PROOF OF SECURITY 
In this section, we prove the following theorem. 
Theorem 1The above cryptosystem is secure against 

adaptive chosen ciphertext attack assuming that (1) the hash 
function H is collision resistant, and (2) the Diffie- Hellman 
decision is hard in the group G. 

Beforegoing into the proof, we recall the meaning of the 
technical terms in the above theorem. 

Security against adaptive chosen ciphertext attack. Security 
is defined via the following game played by the adversary: 

First, the key generation makes arbitrary queries to a 
“decryption oracle,” decrypting ciphertexts of his choice. 

Next theadversary chooses two messages, ,, 10 mm  and 
sends these to an “encryption oracle.” The decryption oracle 
chooses a bit { }1,0∈b  at random, and encrypt bm . The 
corresponding ciphertext is given to the adversary (the internal 
coin tosses of the encryption oracle, in particular b , are not in 
the adversary’s view). 

After receiving the ciphertext from the encryption oracle, the 
adversay continues to query the decryption oracle, subject to 
the restriction that the query must be different than the output if 
the encryption oracle. 
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At the end of the game, the adversary outputs { }1,0∈′b , 
which is supported to be the adversary’s guess of the valueb . If 

the probability that bb =′ is ε+2
1 , then the adversary’s 

advantage is defined to be ε . 
The cryptosystem is said to be secure against adaptive 

chosen ciphertext attack if the advantage of any 
polynomial-time adversary is negligible. 

 
Collision resistant hash functions. A family of hash 

functions is collision resistant if given a random hash function 
H in the family, it is infeasible to find a collision, i.e., two 
strings yx ≠  such that ( ) ( )yHxH = . 

 
The Diffie-Hellman decision problem.Let G be a group of 

prime order order q, and consider the following two 
distributions: 

The distribution R of quadruples ( )2121 ,,, uugg , where 

2221 ,,, uugg  are chosen at random. 

The distribution D of quadruples ( )rr gggg 2121 ,,, , where 

Ggg ∈21 ,  are chosen at random, and qZr ∈  is chosen at 

random. 
An algorithm that solves the Difie-Hellman decision 

problem is a statistical test that can distinguish the two 
distributions. That is, given a quadruple coming from one of the 
two distributions, it should output 0 or 1, and there should be a 
non-negligible difference between (a) the probability that it 
outputs a 1 given an input fromR, and (b) the probability that it 
outputs a 1 given an input from D. the Diffie-Hellman decision 
problem is hard if there is no such polynomial-time statistical 
test. 
 
-  Proof of Theorem 

To prove the theorem, we will assume that there is an 
adversary that can break the cryptosystem, and show how to use 
this adversary to construct a statistical test for the 
Diffie-Hellman decision problem. 

For the statistical test, we are given ( )2121 ,,, uugg  
coming from either the distribution R or D. at a high level, our 
construction works as follows. We build a simulator that 
simulates the joint distribution consisting of adversary’s view 
in its attack on the cryptosystem, and the bit b generated by the 
decryption oracle (which is not a part of the adversary’s view). 
It will be clear that from if the input happens to come from D, 
the simulation of this joint distribution is perfect, and so the 
adversary has a non-negligible advantage. We then show that if 
the input happens to come from R, then the adversary’s view is 
essentially independent of b , and therefore the adversary’s 
advantage isnegligible. 

We now give the details of the simulator. The input to the 
simulator is ( )2121 ,,, uugg . The simulator runs the key 
generation algorithm and it chooses: 

nZzzyyxx ∈,,,,,, 212121  
 
The public key that the adversary sees is
( )nehfbgg ,,,,,, 21 . The simulator knows the 

corresponding private key ( )dzzyyxx ,,,,,, 212121 . The 
simulator answers decryption quires as in the actual attack, 
which it can do since it knows the private key. 

We now describe the simulation of the encryption oracle. 
Given  ,, 10 mm  the simulator chooses  { }1,0∈b  at random, 
and computes 
 

( ) ( )nMuuC ezz mod021
21≡ ,

( ) ( )αα 2121
112121 ,, yyxx uuuuvandCuuH == , 

 
And outputs 

( )vCuu ,,, 21  
 
That completes the description of the simulator. 
 

First, consider the joint distribution of the adversary’s view 
and the bit b  when the input comes from the distribution D. 
say rgu 11 =  and rgu 22 = . The is clear that rxx buu =21

21 , 
ryy fuu =21

21  and rzz huu =21
21 . From this is clear that the 

joint distribution of the adversary’s view and b  is identical to 
that in the actual attack. 

Second, consider that the distribution of the adversary’s view 
and the bit b  when the input comes from R. we want to show 
that the adversary’s view and b are essentially independent. 

Notation 2: let ( ).log  denote the logarithm to the base 1g , 

and let 2log gw = . Let 1
11
rgu =  and 2

12
wrgu = where

21 rr ≠ . Also let us define ( )vCuu ′′′′ ,,, 21  to be a “valid 

ciphertext” if there exists nZr ∈′  such that 1
11
rgu ′′=′  and

1
22
rgu ′′=′ . Otherwise, we will say it is an “invalid ciphertext.” 

Claim 1. If the decryption oracle rejects all invalid 
ciphertexts during the attack, then b is independently 
distributed from the adversary’s view. 

To see this, consider the pair ( )21 , zz . At the beginning of 

the attack, this is a random point on the line hwzz log21 =+  

(this is the information about ( )21 , zz  leaked by the public 
key). Moreover, if the decryption oracle only decrypts valid 
ciphertext ( )vCuu ′′′′ ,,, 21 , then the adversary obtains only 

linearly dependant relations hrwzrzr log21 ′=′+′  

(Since ( ) ( ) rzrzrzz hgguu ′′′ ==′′ 2121
2121 ). Thus, no 

information about ( )21, zz  is leaked. 
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Consider now the output of the simulated encryption oracle; 
we have: 
 

.
1

log

log

2

1

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠
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⎝

⎛
=

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

z
z

wrr
w

M
C
h

b

d  

 
Since the matrix in the above equation is nonsingular, for each 
choice of { }1,0∈b , there exists exactly one solution ( )21 , zz . 
This is implies that the distribution of b  is independent of the 
adversary’s view. 

Claim 2. Assuming the adversary does not find a collision in 
H, then the decryption oracle will reject all invalid ciphertexts 
during the attack. 
To prove this claim, we study the distribution of  
( ) nZyyxx ∈2121 ,,,  as seen by the adversary. From the 
adversary’s view, this is essentially a random point on the line 
formed by interesting the hyper planes: 

bwxx log21 =+  
fwyy log21 =+  

( ) ( ) vxwryrxwrxr log22112211 =+++ αα , 
 

The first two equations come from the public key, and the 
third comes from the output of the decryption oracle. 

Also note that decrypting a valid ciphertext leaks no 
information about the point ( )2121 ,,, yyxx  . 

The above considerations imply that it suffices to consider 
what happens when the adversary presents a single invalid 
ciphertext ( )vCuu ′′′′ ,,, 21 ≠ ( )vCuu ,,, 21  to the 
decryption oracle. 
First, assume that ( )Cuu ′′′ ,, 21 = ( )Cuu ,, 21 . In this case, the 
hash value is the same, but vv ≠′  implies that the decryption 
oracle will certainly reject. 
Second, assume that ( )Cuu ′′′ ,, 21 ≠ ( )Cuu ,, 21 . Let 

( )CuuH ′′′=′ ,, 21α and ( )CuuH ,, 21=α . We are 
assuming, by collision intractability, that αα ≠′ . 
Let 1

11
rgu ′=′  and 2

12
rwgu ′=′ , where 21 rr ′≠′  (since the 

ciphertext is invalid). The decryption oracle will not reject if 
and only if vv ′′=′ , where: 

( ) ( ) ( ) ( )( )α′
′′′′=′′ 2121
2121

yyxx uuuuv  
 

Consider the following matrix: 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′′′′′′

=

2121

2121

100
001

rwrrwr
wrrwrr
w

w

αα
αα

λ . 

 
It will to show that λ  is nonsingular, because even when the 
adversary sees the first three entries of the vector: 
 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

′′ 2

1

2

1

log
log
log
log

y
y
x
x

v
v
f
b

λ , 

 
The last entry of this vector will be independent of the 
adversary’s view. But then the probability that vv ′′=′ loglog  
is negligible, and when equality does not hold, the decryption 
oracle will reject. 
To finish the proof, we only need to show that λ  is 
nonsingular. We can easily verify that  
 

( ) ( ) ( ) ( ) .0det 1212
2 ≠′−′−′−= ααλ rrrrw  

 
That completes the proof of security. 

V. THE PQK CRYPTOSYSTEM IMMUNITY TO OTHER 
ATTACKS 

In this section, we explain the effectiveness of low exponent 
attack and common modulus attack against the PQK 
cryptosystem. 
- Low Exponent Attack 

A low public exponent is desirable to reduce encryption 
time. However, there is a powerful attack on low public 
exponent for RSA cryptosystem based on a theorem due to 
Coppersmith [25]. Hastad reported an attack, named low 
exponent attack based on Coppersmith’s theorem, which 
detects a low public exponent e . This attack is effective for 

eN ≥ , where N  is a number of parities that receive the same 
message M at the same time with common public exponent e ; 
on the other hand the public key for the PQK cryptosystem has 
the relation:  aee = , for an integer a  ≥ 1. Therefore, if the 
attacker can achieve Coppersmith’s constraint such that eaN ≥
, then, our modified cryptosystem will be broken.  

Here, we discuss Hastad’s attack. For simplicity, suppose 
that the same message M has to be sent to three different users 
and all corresponding public exponents are equal to 3. 
Therefore, the modified public key becomes aee = = 3*2, 
where a =2.  

Let the original message 4=M  (assuming that the message 
has one block). Then, we calculate the modulus n  for each 
message as follows: 
 
For message #1: 

.2025215,5,3 111 =⇒==== knkandnqp  
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For message #2: 
.441221,7,3 2222 =⇒==== knkandnqp  

For message #3: 
.1225235,7,5 3333 =⇒==== knkandnqp  

 
Assuming that, 2,3,2,3,2 2121 ===== randzzgg . Then,  

1296=rh  
Therefore, the corresponding ciphertexts are: 

.4911225mod)4(1296
,99441mod)4(1296

,8912025mod)4(1296

6
3

6
2

6
1

==

==

==

C
andC

C
 

Applying the Chinese Remainder Theorem (CRT) to C1, C2, 
and C3 as follows: 

)(mod321
6 NCCCM ++=  

)496125mod(3=M  
 

Therefore, the attacker gets the value of message equal 2 
whereas the original message is equal 4. Then, the attacker gets 
a hard problem, he always gets the wrong value of the message 
M . this means that he did not know if the value of message M 
is true or false. This problem takes place because 
Coppersmith’s constraint is not satisfied. To successfully 
mount this attack he must get at least six messages to satisfy 
Coppersmith’s constraint, but this way will increase the effort 
of the attacker to recover the correct value of the original 
message. Then, when using the PQK cryptosystem with small 
public exponent, the attacker will meet a hard problem when 
attempt to break this system using low exponent attack. The 
following tables summarize the numbers of messages required 
to mount a successful Hastad’s attack. 

Table 1. The number of messages required to mount a 
successful Hastad’s attack for PQK cryptosystem before our 
modification. Note that: the system is not defined for even 
values of e. 
 

TABLE 1 
e 3 5 7 9 11 13 

# of 
messages 4 6 8 10 12 14 

 
Table 2. The number of messages required to mount a 

successful Hastad’s attack for PQK cryptosystem after our 
modification. Note that: (*) means that the attack is not 
applicable which means that the attacker meets a hard 
computation to get the correct value of the original message. 
 

TABLE 2 
e e  ( a =2 ) # of messages 
3 6 7 
5 10 11 
31 62 * 

 
From Table 1 we observe that, at 3=e , the attacker just 

needs four messages to successfully break the PQK 

cryptosystem, whereas at 6=e  in Table 2 the attacker will 
need at least seven messages to break that cryptosystem. 
- Common Modulus Attack 

Simmon pointed out in [26] that the use of a common RSA 
modulus is dangerous, indeed, if a message M  is sent to two 
users that have comprised public encryption keys, then the 
message can be recovered. On the other hand, the PQK 
cryptosystem presented by Tsuyoshi Takagi also suffer from 
this attack because the public encryption key still prime 
number. Here, we discuss the effectiveness of the common 
modulus attack on the security of the modified PQK 
cryptosystem. Suppose that we need to send a message M  to 
two users that have the ciphertexts given by (Assuming that the 
message consists of one block): 

)mod(1
1 nMhC er≡ and )mod(2

1 nMhC er≡ , where 

21 , ee  are the public encryption keys for common modulus 
(݊ ൌ  .௞) for the PQK cryptosystemݍ݌
The attacker attempts to break this system using one of the 
following methods: 
 
Method #1: 

From our modification, we can see that 1)(gcd 2,1 ≠ee  
because these values become a composite numbers. So, when 
the attacker attempt to use extended Euclidean algorithm to find 

po,  such that 121 =+ epeo , where pando  are 
non-negative integers, he fail to satisfy this equation because 

21, ee  are composite numbers, i.e. 121 ≠+ epeo . 
Therefore, he cannot use the following relation to recover the 
original message: 

)mod(2121 nh
C

h
CMM r

p

r

o
epeo ≡/≠ +  

 
Method #2: 

The attacker succeeds to factorize the composite public key 

21, ee to aeeandaee ** 2211 ==  respectively. 
Then, he begins his attempt to recover the original message as 
follows: 
Let 121 =+ epeo  

Then, 121 =+ aepaeo  

1)()( 21 =+ eapeao  

121 =′+′ epeo ⇒  This relation can be obtained from 
extended Euclidean algorithm. 
Therefore, 21 epeoMM ′+′= ⇒ peoe MMM ′′= ][*][ 11       
(8) 

But, r
e

h
CM 11 ≠  as well as r

e

h
CM 22 ≠ . 

 
So, the attacker cannot use the equation to recover the original 
message. 
Hence, the common modulus attack seems infeasible for the 
PQK cryptosystem.  
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VI. CONCLUSIONS 
We have devolped a new practical public-key cryptosystem 

based on the notion called decisionalDiffie-Hellman problem.  
We concluded that the PQK cryptosystem is provably secure 

against adaptive chosen ciphertext attack since the hash 
function H  is collision resistant and the Diffie-Hellman 
decision problem is seemed hard. Also we proved that the PQK 
cryptosystem is secure against common modulus attack 
because the public encryption key became a composite number. 

On the other hand, we showed that it is possible to use the 
PQK cryptosystem with a composite small encryption key e  
provided Coppersmith’s condition eN < , where N  is the 
number of parties that receive the same message at the same 
time. This condition is used to defend against the low exponent 
attack. Therefore, the Low exponent Attack seems infeasible. 
From this paper we suggested the modulus n to be for example 
1024-bit for the 341-bit primes p and q , in order to make both 
the elliptic curve method and the number field sieve infeasible. 
So, this modulus is secure against the fast factoring algorithms. 

ACKNOWLEDGMENT 
The author would like to thank the anonymous reviewers of 

theCiiT for their valuable comments. 

REFERENCES 
[1] R. L. Rivest, A. Shamir, and L. Adleman, \A method for obtaining digital 

signatures and public-key cryptosystems," Communications of the ACM, 
21, (1978), pp.120-126. 

[2] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter, \Low-exponent 
RSA with related messages," Advances in Cryptology { EUROCRYPT 
'96, LNCS 1070, (1996), pp.1-9. 

[3] D. Coppersmith, \Finding a small root of a univariate modular equation," 
Advances in Cryptology { EUROCRYPT '96, LNCS 1070, (1996), 
pp.155{165. 

[4] M. J. Wiener, \Cryptanalysis of short RSA secret exponents," IEEE 
Transactions on Information Theory, IT-36, (1990), pp.553-558. 

[5] E. R. Verheul and H. C. A. van Tilborg, \Cryptanalysis of ̀ less short' RSA 
secret exponents," Applicable Algebra in Engineering, Communication 
and Computing, 8, (1997), pp.425-435. 

[6] N. Demytko, \A new elliptic curve based analogue of RSA," Advances in 
Cryptology { EUROCRYPT '93, LNCS 765, (1994), pp.40-49. 

[7] K. Koyama, U. M. Maurer, T. Okamoto, and S. A. Vanstone, \New 
public-key schemes based on elliptic curves over the ring Zn," Advances 
in Cryptology { CRYPTO '91, LNCS 576, (1992), pp.252-266. 

[8] K. Koyama, \Fast RSA-type schemes based on singular cubic curves," 
Advances in    Cryptology { EUROCRYPT '95, LNCS 921, (1995), 
pp.329-340. 

[9] B. S. Kaliski Jr., \A chosen message attack on Demytko's elliptic curve 
cryptosystem," Journal of Cryptology, 10, (1997), pp.71-72. 

[10] T. Takagi and S. Naito, \The multi-variable modular polynomial and its 
applications to cryptography," 7th International Symposium on 
Algorithm and Computation, ISAAC'96, LNCS 1178, (1996), 
pp.386-396. 

[11] T. Takagi.  New public-key cryptosystem with fast   decryption. 
Advances in Cryptology (PhD Thesis) - LNCS 1294, Germany, 2001. 

[12] C. Racko_ and D. Simon.Noninteractive zero-knowledge proof of          
knowledgeand chosen ciphertext attack. In Advances in 
Cryptology{Crypto'91, pages 433{444, 1991. 

[13] N. Demytko. A new elliptic curve based analogue of RSA. Advances in 
Cryptology {EUROCRYPT '93, LNCS 765, (1994), pp.40-49. 

[14] T. El Gamal. A public key cryptanalysis and signature scheme based on 
discrete logarithms. IEEE Trans. Inform. Theory, 31:469-472, 1985. 

[15] S. Goldwasser and S. Micali.Probabilistic encryption. Journal of 
computer and system Scinces, 28:270-299, 1984. 

[16] M. Maor and M. Yung. Public-key cryptosystems provably secure against 
chosen ciphertext attacks. In 22nd annual ACM symposium on 
technology of computing, pages 427-437, 1990. 

[17] C. Rackoff and D. Simon.Noninteractive zero-knoledge proof of 
knowledge and chosen ciphertext attack. In advances in 
cryptography-crypto’91, pages 433-444, 1991. 

[18] D. Dolv, C. Dwork, amd M. Naor. Non-malleable cryptography. In 23rd 
annual ACM symposium on theory of computing, pages 542-552, 1991. 

[19] I. Damgard. Towords practical public key cryptosystems secure against 
chosen ciphertext attacks. In advances in cryptology-crypto’ 91, pages 
445-456, 1991. 

[20] Y. Zheng and J. Seberry. Practical approaches to attaining security against 
adaptively chosen ciphertext attacks. In advances in 
cryptology-crypto’92, pages 292-304, 1992. 

[21] C. H. Lim and P. J. Lee. Another method for attaining security against 
adaptively chosen ciphertext attacks. In advances in 
cryptology-crypto’93, pages 420-434, 1993. 

[22] Y. Frankel and M. Yung.Cryptanalysis of immunized LL public key 
systems. In advances in cryptology-crypto ’95, pages 287-296, 1995. 

[23] T. Takagi, \Fast RSA-type cryptosystem using n-adic expansion," 
Advancesin Cryptology { CRYPTO '97, LNCS 1294, (1997), 
pp.372{384. 

[24] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for 
designing efficient protocols. In first ACM conferences on computer and 
communications security, 1993. 

[25] D.Coppersmith. Small solutions to polynomials equations and low 
exponent RSA vulnerabilities. 1996  

[26] G. L. Simmons. A ‘weak’ privacy protocol using the RSA crypto 
algorithm. Cryptology 7 1993, pp. 180-182. 

 
 
 

Tamer Barakat   received his BSc in communications 
and computers engineering from Helwan University, 
Cairo; Egypt in 2000. Received his MSc in 
Cryptography and Network security systems from 
Helwan University in 2004 and received his PhD in 
Cryptography and Network security systems from 
Cairo University in 2008. Currently, working as a 
lecturer, post doctor researcher and also joining several 
network security projects in Egypt. His main work is 

Cryptography and network security. More specially, he is working on the 
design of efficient and secure cryptographic algorithms, in particular, security 
in the wireless sensor networks.  
 

 


