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ABSTRACT 

 

 Using matrix-vector formalism, a weighted least squares version of the design problem of 

zero-phase 2-D FIR filters is presented in the continuous frequency domain with no 

assumptions of a quadrantally symmetric or antisymmetric frequency response. By 

minimizing the weighted mean squared error between the desired and designed frequency 

responses, the resulting two matrix equations are found to decouple under the assumptions of 

the separability of the 2-D weighting function and the evenness of the 1-D weighting 

functions. Consequently closed-form expressions for the matrices of the filter coefficients are 

derived. 

 

 

I. INTRODUCTION 

 

 Some work has been done in designing 2-D FIR filters using the least squares technique. 

Ahmad and Wang [1] applied the least squares criterion in the discrete frequency domain for 

designing filters with quadrantally symmetric or antisymmetric frequency response. Gu and 

Aravena [2] applied the weighted least squares criterion for designing the same kind of filters 

using a linear operator theory approach and ended up with a fixed-point problem in the form 

of an integral equation. By discretizing the continuous frequency variables, they obtained an 

affine equation for which they presented both explicit and iterative solutions. The weighting 

function they employed is exclusively 1 in the pass/stop band region and 0 in the transition 

band region. They employed some techniques [3] for updating the weighting function in order 

to equalize the peak ripples at the pass/stop band edges. Reweighted least squares strategies 
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[3,4] which derive originally from Lawson's work [5] have been investigated. As an extension 

to their work, Aravena and Gu [6] treated the case of a general weighting function and filters 

having zero-phase frequency response but no quadrantal symmetry or antisymmetry. They 

ended up with a fixed-point problem expressed by two coupled matrix integral equations 

which can be discretized and solved only by an iterative technique. Gislason et. al. [7] briefly 

presented a weighted least squares solution for the 2-D FIR filter design problem based on a 

discrete frequency domain formulation. 

 In this paper an alternative weighted least squares treatment of the design problem of 

zero-phase 2-D FIR filters will be presented in the continuous frequency domain. Under the 

assumption of the separability of the weighting function, two algebraic matrix equations 

involving the filter coefficients will be derived; and under the reasonable assumption of the 

evenness of the individual weighting functions the two equations will be shown to decouple 

leading to closed-form expressions for the two matrices of the filter coefficients. This 

treatment is distinct from that presented in [2] and [6] since it leads to algebraic rather than 

integral equations, it does not require discretization for finding the solution, and it results in 

compact closed-form expressions for the matrices of filter coefficients. 

 

 

II. Weighted Least Squares Optimization 

 

 The frequency response of a zero-phase 2-D FIR filter can be expressed as2 : 

H CT AC S T BS( , ) ( ) ( ) ( ) ( )ω ω ω ω ω ω
1 2 1 1 2 2 1 1 2 2

= +  (1) 

where A and B are respectively (N1+1) x (N2+1) and N1 x N2 matrices of the filter 

coefficients and C1(ω1), C2(ω2), S1(ω1) and S2(ω2) are the vectors defined by : 

C
i i i i

N
i i

( ) cos( ) cos( ) . . . cos( )ω ω ω ω= 1 2
T

             ,  i = 1,2  (2) 

S
i i i i

N
i i

( ) sin( ) sin( ) . . . sin( )ω ω ω ω= 2
T

              ,  i = 1,2  (3) 

                                                           
2The superscript T denotes the transpose. 
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 The optimization criterion will be defined as the integral of the weighted square of the 

difference between the frequency response H(ω1,ω2) of the filter to be designed and the 

desired frequency response D(ω1,ω2) , i.e., 
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where W(ω1,ω2) is a positive weighting function. The filter coefficient matrices will be 

evaluated by applying the minimization conditions : 

∇ =
A

E 0   ,   ∇ =
B

E 0  . (5) 

Here appeal will be made to the following lemma whose proof is given in the appendix. 

 

Lemma : 

The gradient of the scalar function : 

f A u
T

Av( ) =  (6) 

where A is an M1 x M2 matrix and u and v are respectively M1- and M2-dimensional vectors 

is given by : 

∇ =
A

f A uvT  ( )  . (7) 

 

Substituting (1) into (4) and applying the above lemma, we get : 
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Assuming that the two-dimensional weighting function W(ω1,ω2) is separable, i.e., 

W W W( , ) ( ) ( )ω ω ω ω
1 2 1 1 2 2

=  (10) 

and substituting (8) and (9) into (5) one gets the following coupled system of two matrix 

equations : 
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P AP R BRT U
1 2 1 2

+ =  , (11) 

RT AR Q BQ V
1 2 1 2

+ =  (12) 

where the square symmetric matrices P1, P2, Q1 and Q2 are of order (N1+1), (N2+1), N1 and 

N2 respectively and the rectangular matrices R1, R2, U and V are (N1+1) x N1, (N2+1) x N2, 

(N1+1) x (N2+1) and N1 x N2 respectively. These matrices are defined as follows : 
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Actually the separability condition of (10) has been imposed in order to be able to define the 

matrices P1, P2, Q1, Q2, R1 and R2 . 

 The system of two coupled matrix equations given by (11) and (12) is equivalent to 

(N1+1)(N2+1) + N1N2 simultaneous linear equations. Under the reasonable assumption that 

W1(ω1) and W2(ω2) are even functions of their respective arguments, it can be shown that : 

R R
1 2

0= =   . (18) 

Consequently (11) and (12) de-couple to : 

P AP U
1 2

=  , (19) 

Q BQ V
1 2

=  . (20) 

Since the 4 matrices P1, P2, Q1 and Q2 defined by (13) and (14) are at least positive 

semidefinite and are actually positive definite and consequently nonsingular for a wide range 

of weighting functions W1(ω1) and W2(ω2), the unique solution of the above two matrix 

equations is given by : 

A P UP=
− −

1
1

2
1 , (21) 

B Q VQ=
− −
1

1
2

1 . (22) 
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In the special case of W1(ω1) = W2(ω2) = 1, it can be shown from (13) and (14) that the 4 

matrices P1, P2, Q1 and Q2 become diagonal and reduce to : 

{ }5.0...5.01 2 Diag
i

P π=      , i = 1,2 (23) 

and 

I
i

Q  π=      , i = 1,2 (24) 

where I is the identity matrix. Consequently the filter coefficient matrices of (21) and (22) 

reduce to : 

{ } { }1...15.0  1...15.0
2

1
DiagUDiagA

π
=  , (25) 

VB  
2

1

π
=  . (26) 

 

III. SIMULATION EXAMPLE 

 

 The same fan filter presented as example 5.3 in [2] where the desired frequency response 

is given by : 

( )
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



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=
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will be designed using the technique of this paper. In order to be able to compare with the 

results of the cited reference, the individual weighting functions of (10) will be taken as : 

( )


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=
elsewhere                 0
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ωiiW  (28) 

The symmetric matrices P P Q Q1 2 1 2, , ,  which appear in the closed-form expressions (21), (22) 

have been evaluated analytically and their elements are given below where i = 1,2 : 
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The matrices U and V have been evaluated in terms of the vectors f f g g1 2 1 2, , ,  as : 

TffU 212=  (35) 

TggV 212=  (36) 

where the elements of these vectors are given below with i=1,2 : 

( ) επ 2
1

−=if  (37) 

( ) ( )[ ] ( ) i

n

ni Nnn
n

f ≤≤−−=
+

+
1   ,   sin11

1 1

1
ε  (38) 

( ) ( )[ ] ( ) i

n

ni Nnn
n

g ≤≤−−= 1     ,     cos11
1

ε  (39) 

Fig. 1 shows the frequency response of a filter designed with N N1 2 15 0 1= = = and ε π. . By 

comparing this figure with its counterparts, namely Figs 3a,b of [2] - which were obtained 

after 149 and 3577 iterations respectively - it is obvious that it is superior to the first figure 

and as good as the second one. 

 

 

IV. CONCLUSION  

 

 A weighted least squares treatment of the design problem of zero-phase 2-D FIR filters 

has been presented in the continuous frequency domain resulting in closed-form expressions 

for the filter coefficients under the reasonable assumptions of the separability of the 2-D 

weighting function and the evenness of the 1-D weighting functions. 

 

 

APPENDIX 

 

Proof of the Lemma : 
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Let the columns of matrix A be denoted by ai and the elements of vector v by vi , i.e.,  

( )
n

aaA ...
1

=    , (A1) 

( )T
n

vvv ...
1

=  . (A2) 

The scalar function f(A) : 

AvTuAf =)(  (A3) 

can be expressed as : 

∑
=






=

n

i
i

v
i

a
T

uAf

1

)(  . (A4) 

Consequently the gradient of f(A) with respect to vector ak is given by : 

k
uvAf

k
a

=∇ )(  . (A5) 

Defining the gradient of f(A) with respect to matrix A as : 














∇∇=∇ f

n
a

f
a

Af
A

...
1

)(  (A6) 

and substituting (A5), one gets : 

T
uvAf

A
=∇ )(  . (A7) 
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Figure Captions 

 

Fig. 1 : A perspective plot of the frequency response of the designed 2-D FIR filter . 


