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1. Introduction 

The method typically used to describe the propagation of radiation from an aperture to the 

Fourier domain is the Fresnel integral [1]. If it is not possible to evaluate the Fresnel integral 

analytically, it is customary to resort to numerical integration. However, the use of numerical 

integration for evaluating the Fresnel integral can be time consuming, especially when dealing 

with pulsed radiation from a two dimensional aperture. 

Several alternative techniques have been proposed for the computation of the Fresnel integral. 

Examples of these include the algorithm proposed by Carcole et al. [2] which depends on 

approximating the highly oscillatory Fresnel integrals by means of three simpler integrals and 

providing analytical formulae for these three integrals by using geometrical properties of the 

diffraction pattern. D’Arcio et al. [3] developed a technique for calculating the near-field 

diffraction patterns by replacing the actual diffraction integrand by a variant of the Fresnel 

diffraction kernel. Subsequently, analytical solutions were derived for the alternative integral. 

These two techniques can deal with apertures of complicated shapes with acceptable accuracy. 

However, the accuracy depends to some extent on the approximations made to the Fresnel 

kernel.  

Mas et al. [4] suggested a new technique for solving the Fresnel integral based on the similarity 

between the FRactional Fourier Transform (FRFT) and the Fresnel integral. Accordingly, the 

Fresnel integral is converted to the FRFT integral. The latter is evaluated by sampling it and then 

approximating it by a scaled version of the Discrete Fourier Transform (DFT). Subsequently, the 

DFT is calculated using either the single or double Fast Fourier Transform (FFT). The method is 

easy to implement but is affected by aliasing. 
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The present paper presents a new technique for evaluating the diffraction pattern based on the 

use of the Discrete FRactional Fourier Transform (DFRFT). The motivation behind this 

approach is that a Fresnel integral can be related to a scaled version of the continuous FRFT and 

the latter can be approximated by the DFRFT with high accuracy [5-6]. Consequently, the 

computation of the Fresnel integral will be reduced to the sampling of the amplitude distribution 

of the wave field at the source, and the premultiplication of the resulting excitation vector by 

DFRFT matrix to get samples of the output distribution at certain distance from the source. The 

core of this procedure is the technique for evaluating the DFRFT matrix. 

In Section 2, the relation between the Fresnel integral and the FRFT is provided. The method 

of computing the DFRFT is explained in Section 3 and its utilization for approximating the 

FRFT is summarized in Section 4. In Section 5, the relation between the DFRFT and the Fresnel 

integral is extended to the two dimensional case. The numerical examples given in Section 6 

testify to the effectiveness of the advocated approach in astonishingly reducing by several orders 

the computation time required for evaluating the Fresnel integral.  

 

2. The relationship between the Fresnel integral and the FRFT 

In this section, a different formulation is suggested to obtain the relationship between the 

Fresnel integral and the FRFT integral. This formulation is different from that previously used 

[e.g., cf. Ref. 4]. The ath order continuous fractional Fourier transform has been defined by the 

integral [5]: 

     




 xdxfxxKxf aa  ,  (1-a) 

where 
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and 2a  is the angle of rotation. More specifically  xf a  is a representation of the signal 

 xf  along an axis making an angle   with the time axis in the time-frequency plane. 

Consider radiation of wavelength   illuminating a planar screen with complex amplitude 

transmittance )(xt . The diffraction field of such radiation produces a complex amplitude 

distribution of light )(ˆ xA  in a plane at distance d  from the screen given by the Fresnel integral 

[6]:  

         ,,ˆ 




 xdxtkxxhxA space  (2-a) 

where  kxxhspace ,,   is the kernel of the Fresnel integral defined by: 

    



 















 2exp
12

exp,, xx
d

i
di

d
ikxxhspace  (2-b) 

where 1k is the wavenumber. 

In preparation for expressing the Fresnel integral in terms of the FRFT, one starts by rewriting 

(1-a) as: 

  










 







 

 xd
L

x
f

L

x
xK

L
xf aa  ,

1
   (3) 

where L  is half the width of the aperture. 
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Based on (1-b), the main part of the exponent of the complex exponential term appearing in 







 

L

x
xK a ,  can be manipulated as follows: 

     

    
        2222

2

222
2

2
2

  sec1 sec 
 cot 5.0

 sec2
 cot 5.0

 cot 5.0  csc cot 5.0 

xLLxx
L

xLxLxx
L

L

x

L

x
xx


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







 







 



 

         sec
 cot 5.0

 tan5.0 2

2
2 


 Lxx

L
x . (4) 

Consequently  xf a  in Eq. (3) can be expressed as: 

           










 







 







 xd
L

x
fLxx

L
iexi

i

L
xfa   sec

 cot 5.0
xp tan5.0exp

2

 cot11 2

2
2 . 

 (5) 

In order for the above integral to resemble in its appearance that of (2), replace x  by  cos
L

x
 

in both sides of the above equation to get: 

          . 
 cot 5.0

xp2 sin25.0exp
2

 cot11
cos 2

2

2












 







 





























  xd

L

x
fxx

L
ie

L

x
i

i

LL

x
fa

 (6) 

By comparing the integral appearing in the above equation with that in (2), one is naturally led 

to define a scaled version   xt s  of  xt as follows: 

   Lxtxt s   . (7) 

Consequently (2) can be expressed as: 

       exp.
12

expˆ 2










 





 















 xd
L

x
txx

d
i

di

d
ixA s . (8) 
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Upon comparing (6) and (8) one concludes that in order to express  xÂ  in terms of the FRFT 

of  xt s , the angle   should be selected such that    dL  2cot5.0  or 












 
2

1

2
tan

L

d
. (9) 

Consequently 

     
  

   
.    

2

2
2

cossin22sin

222

2

dL

Ld








  (10) 

Expressing (8) in the light of (6) where   is given by (9), one obtains: 

        





 




























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



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2

L

x
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L

x
i

i
L

d
i

di
xA s

a  . (11) 

where  xt s
a  is the FRFT of  xt s . Using (9), the above equation can be expressed in terms of    

solely as: 

         





 









































 cos 2sin25.0exptan

2
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22

L

x
t

L

x
i

L
i

i
xA s

a  . (12) 

Alternatively, using (9) and (10),  xÂ  can be expressed in terms of d  solely as: 

 
        
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
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 x
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L
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2
exp

2
exp

2
1

1ˆ  . (13) 

By defining a new variable u  as   cos
L

x
u , Eq. (12) can be expressed as: 

             utui
L

i
i

LuAuA s
a   tan5.0exptan

2
exp

 tan1

1
secˆ~ 2

2























  . (14) 
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Equation (9) implies that the angle   is directly determined by the distance d between the 

plane where the distribution of light  xÂ  is sought and the illuminated planar screen. An 

inspection of (9) shows that 2  and consequently 1a  as d . It follows from Eq. 

(13) that 

  0ˆlim 


xA
d

 . 

Practically for 8.0a  one is essentially calculating the field in the Fraunhofer region where 

the diffraction pattern reduces to the Fourier transform of the screen. Another special case arises 

in the Rayleigh limit where 21a  and consequently 4 . In this case (9) implies that 

 22 Ld , the Rayleigh diffraction limit, and (12) simplifies to: 

  
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

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
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
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
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








 L

x
t

L

x
i

L
i

i
xA

s
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d 2

1
 25.0exp

2
exp

1

1ˆ
5.0

22

22
  .  (15) 

 

3. The Discrete Fractional Fourier Transform 

In the recent years, methods for defining and evaluating the DFRFT have been developed as an 

alternative to the numerical evaluation of the integral appearing in the definition of the FRFT 

given by Eq. (1). The advocated DFRFT techniques may be regarded as a generalization of the 

DFT. Along such veins, most of the available techniques start by the analysis equation of the 

DFT, viz., 

   





1

0

1,,2,1,0  ;     W
1 N

q

pq
N Npqx

N
p X  (16.a) 

where 
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



 


N
iWN

2
exp  . (16.b) 

This can be written in matrix form as FxX  , where the DFT matrix F  is defined by: 

Nq pW
N

qp
Npqpq ,,2,1,       ,

1
f  and  ][f )1)(1(  F . 

The eigen-decomposition of the DFT matrix F  is 1MDMF  , where M  is a modal matrix 

that has the eigenvectors of F  as its columns and D  is a diagonal matrix whose diagonal 

elements are the eigenvalues of F . Inspired by this formulation, the DFRFT of the fractional 

order a  can be defined by: 

xFX a  (17.a) 

where: 

1aa MMD F  . (17.b) 

This means that the fractional power of matrix F  is calculated from its eigendecomposition and 

the fractional powers of its eigenvalues. The definition of the DFRFT should satisfy the 

following conditions [5]: 

1. Unitarity. 

2. Index additivity. 

3. Reduction to the DFT matrix for unity order  1a . 

4. Achieving a good approximation of the FRFT. 

The first two conditions are satisfied by selecting orthonormal eigenvectors for the matrix F . 

The third condition is directly satisfied by virtue of Eq. (17.b). The fourth requirement will be 

satisfied by choosing eigenvectors whose elements resemble the Hermite-Gaussian functions, 

since they are the eigenfunctions of both the continuous-time Fourier transform (CTFT) and the 

FRFT. 
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 In their pioneering work, McClellan and Parks [7] arrived at the multiplicities of the 

eigenvalues of matrix F. Santhanam and McClellan were the first to try to develop a definition 

for the DFRFT through the eigendecomposition of matrix F [8]. Unfortunately this definition 

was later shown – by Pei et al. [5,9] – not to be a fully-fledged one since it is inherently the sum 

of four terms; namely the time-domain signal and its DFT together with their circularly reflected 

versions. Dickinson and Steiglitz [10] arrived at a real symmetric nearly tridiagonal matrix S 

which commutes with matrix F and proved that the maximum algebraic multiplicity of any of its 

eigenvalues can be two; which occurs only when the order N of the matrix is a multiple of 4. 

Although a common set of eigenvectors of S and F always exists, the case of a double eigenvalue 

of S requires special attention since a set of two corresponding eigenvectors of S – obtained by a 

general eigenanalysis software package – will generally neither be eigenvectors of F nor even be 

orthogonal. Candan, Kutay and Ozaktas [11] applied a similarity transformation defined in terms 

of a unitary matrix P to matrix S and argued that 1
PSP  is a 2 x 2 block diagonal matrix and that 

the two diagonal blocks are unreduced tridiagonal matrices. They showed that the eigenvectors 

of S are Hermite-Gaussian-like. Pursuing it further, Pei et al. viewed the orthonormal 

eigenvectors of S as only initial eigenvectors of F and generated final ones which better 

approximate the Hermite-Gaussian functions by using either the orthogonal procrustes algorithm 

(OPA) or the Gram-Schmidt algorithm (GSA) [5]. Hanna, Seif and Ahmed proved that those 

final eigenvectors are invariant under the change of the initial ones [12]. Moreover they 

developed a methodology for the generation of the final superior eigenvectors - without 

computing the initial ones as a prerequisite - based on the direct utilization of the orthogonal 

projection matrices of the DFT matrix on its eigenspaces [13]. 
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 It is worth mentioning that matrix S used in [10,11,5] is based on a second order 

approximation to the second derivative appearing in the differential equation generating 

Hermite-Gaussian functions. Recently Candan [14] used higher order approximations to the 

second derivative and the resulting difference equation is expressed in terms of a circulant matrix 

M of order N. The highest approximation order ( k2 ) should satisfy Nk 12 . The generating 

matrix M is used in obtaining a matrix which commutes with the DFT matrix F and whose 

eigenvectors better approximate samples of the Hermite-Gaussian functions than those of matrix 

S used in [10,11,5]. More recently Pei, Hsue and Ding [15] removed the order upper bound 

restriction and constructed arbitrary order DFT-commuting matrices whose Hermite-Gaussian-

like eigenvectors outperform those of [14]. Serbes and Durak-Ata [16] obtained an exact closed-

form expression for the infinite order approximation to the second derivative in terms of inverse 

trigonometric functions. 

 In the present paper, one first generates the eigenvectors of matrix S of [10] using the 

procedure advocated in [11]. Taking them as initial eigenvectors of the DFT matrix F, one next 

generates the final superior ones using the Gram-Schmidt algorithm (GSA) contributed in [5]. 

Since it was proved that the final eigenvectors of F are invariant under the change of the initial 

ones [12], the approach of the present paper outperforms those of [14-16]. As a final remark the 

digital method for computing the continuous FRFT – without using the notion of the DFRFT – 

contributed by Ozaktas et al. [17] has been avoided since it does not preserve the index additivity 

property.  
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4. Relationship between DFRFT and FRFT 

Consider the continuous signal )(tf  defined on the interval LtL  , the procedure 

adopted for calculating the FRFT of )(tf  with an angular parameter   using the DFRFT of the 

preceding section is as follows: 

1. Sample the function )(tf  with sampling interval sT  given by 

s
s N

L
T

2
  (18) 

where sN  is the number of sampling points. 

2. Zero pad to the right and left of the sampled function  snTf  such that the total number of 

samples will be N . 

3. Construct vector x  whose elements are the sequence  qx  defined by: 

 
 

  
,  Neven for             

1
2

for         

1
2

0for              
 















Nq
 N

TNqf

N
qqTf

qx

s

s

 (19-a) 

 
 

  
N oddfor        

1
2

1
for        

2

1
0for              

 



















Nq

 N
TNqf

N
qqTf

qx

s

s

  . (19-b) 

4. Compute the modified angle  : 




















 
  tan

2
tan

2
1

sNT
 . (20) 

5. Compute the vector: 

 xFX  
 β

π
β

2

 . (21) 
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The elements of vector βX  are the DFRFT sequence   , N-1.0, 1, ...  ppX β  ,  

6. Calculate the spacing   between the samples of the FRFT using the formula [5]: 

   


2
22

2
22 sin

4
cos

s
s TN

T  . (22) 

7. Compute the DFRFT with an angle of rotation   using the elementwise multiplication: 

       . N-0, 1, ...,pp XpPpX D 1  ,      (23) 

where  pPD  is the postphase compensation factor given by [5]:  

   
 

 
  































  cot
cos

cos
1

2
 exp

 cot
2

1

 cot1
 

2 2

222

2

p
i

T
N

i

i
T

N
pP

s

sD  . (24) 

Having obtained the DFRFT  X , one can directly get the samples of the FRFT using the 

formula: 

 

 
even, Nfor       

 1
2

for        

1
2

0for               
)(
























p
N

 NpX

N
ppX

pf  (25-a) 

 

 
odd. Nfor          

1
2

1
for         

2

1
0for                  

)(


























p
 N

NpX

N
ppX

pf  (25-b) 

One should note that: 

 The zero padding in step 2 is required in order for the N  samples to reflect the true nature 

of the continuous-time signal  tf . 

 Step 3 is required since the support of the signal  tf  can include part of the negative time 

axis. Employing the DFT to transform the sequence  nx  to the sequence  kX    implies 
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that the underlying mathematical framework is periodic [18], i.e.  nx  is one period of a 

periodic signal with period N and the same holds for  kX  . The same notion should hold 

for the DFRFT. 

 Steps 4, 6 and 7 were suggested by Pei et. al. [5] because the sampling period sT  in (18) is 

generally not equal to N2 . In the very special case of NTs  2  one has the 

simplification:   , sT  and 1DP . 

 

5. Diffraction from a rectangular aperture 

The relationship between the FRFT and the Fresnel integral that has been elaborated upon in 

section 2 can be generalized to the two-dimensional case, under the assumption that the 

amplitude of the optical signal is separable, viz., 

     ygxfyx  ,  . (26) 

The FRFT of the two-dimensional function  yx,   is given by: 

 








 ydxdyxkyyxxhyx aa ),( );,;,( ),(  (27) 

where 

   yyKxxKkyyxxh aaa  , ,);,;,(  (28) 

and aK is defined by (1-b). It follows that  

     ygxfyx aaa  ,  . (29)  

The DFRFT that approximates the FRFT of ),( yx  is the product of the DFRFTs of the 

sampled version of both  xf  and )( yg . 
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The diffraction from a planar screen with complex amplitude transmittance ),( yxt  produces a 

complex amplitude distribution ),(ˆ yxA  of light in a diffraction plane at distance d  from the 

illuminated screen according to the Fresnel integral [Ref. 6, p. 232, Eqs. (7.43) and (7.44)]:  

 








 ydxdyxtkyyxxhyxA space ),( );,;,(),(ˆ  (30) 

where 















d

yyxxi

di
dikyyxxhspace

])()[(
exp

1
)2exp();,;,(

22

. (31) 

For a separable two-dimensional amplitude transmittance 

)( )(),x( )2()1( ytxtyt   (32) 

the two-dimensional amplitude distribution of light in a diffraction plane at distance d  is 

obtained using (12) as:  

             



























































 2

2

 2
1

1

 s1
2

2

2
1

2

1
0 coscos 2sin2sin25.0exp,ˆ

21 L

y
t

L

x
t

L

y

L

x
iAyxA s

aa

 (33) 

where: 

    













d
i

ii
A

2
exp

tan1

1

tan1

1

21

0  , (34) 























 
2
2

1
22

1

1
1 2

tan  ;  
2

tan
L

d

L

d
. (35) 

In the above equations 1L  and 2L  are half the width of the aperture in the x  and y  directions 

respectively. Letting  1
1

cos 
L

x
u  and  2

2

cos 
L

y
v , Eq. (33) leads to: 
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                    vtutvuiAvLuLAvuA s
a

s
a

 2 1
2

2
1

2
02211 21

 tantan5.0expsec,secˆ,
~

 .

 (36) 

One should notice that if the rectangular aperture is replaced by a square one, then 

LLL  21 ;  21  and (33) reduces to: 

   
           






 






 



 














 coscos

4

2sin
exp

2
exp

tan1

1
,ˆ 2122

2 L

y
t

L

x
tyx

L

id
i

i
yxA s

a
s

a  . (37) 

6. Numerical Examples 

In preceding sections, it has been shown that the FRFT can solve the Fresnel integral which is 

used to determine the diffraction pattern. It has also been alluded to the fact that the DFRFT can 

be used to evaluate the FRFT and consequently to determine the diffraction pattern. 

Consequently the Fresnel integral can be evaluated by replacing the integration operation by just 

matrix multiplication. The effectiveness of the DFRFT is demonstrated by considering several 

numerical simulations of the diffraction from rectangular apertures. The two cases dealing with 

continuous wave and pulsed illuminations are considered. 

A) Continuous Wave Illumination 

Consider the case of a long rectangular slit illuminated by a uniform radiation distribution 

having wavelength  . Assume that the width of the aperture in the x-direction is 4 units 

(i.e. 42 L ). All lengths are given in terms of an arbitrary unit which would depend on the width 

of the aperture L2 . The length of the slit in the y-direction is much longer than the wavelength 

such that diffraction effects along this direction are negligible and the one-dimensional Fresnel 

integral can be used to determine the radiated field. Furthermore, choose the light wavelength   

equal to L025.0  with light amplitude: 
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 


















otherwise              0

50

1

2
rectxv

  

L     x          .

Lx      -L          

L

x
  . (38) 

The plots in Fig. (1) show the real and imaginary parts of the diffraction pattern calculated at 

distance Ld 5.2 . The solid line plots represent the Fresnel Integral evaluated using the 

Recursive Adaptive Lobatto Quadrature (RALQ) method which approximates the definite 

integral to within an error of 610  [19]. The dots on the same plots are obtained using the DFRFT 

with 500N . The two plots demonstrate that the radiation patterns calculated using the RALQ 

evaluation method of the Fresnel integral and the DFRFT are quite close to each other. To 

illustrate the efficacy of the DFRFT algorithm, the same calculation is repeated for 70N . The 

resulting values are plotted in Fig. (2) where one notices the slight degradation in the degree of 

match due to decreasing N. 

 The same calculations are repeated at a closer distance to the aperture, namely Ld  . And for 

a shorter wavelength. The effectiveness of the DFRFT approach for evaluating the Fresnel 

integral as compared to RALQ method will be studied by recording the computation time. While 

the width of the aperture is kept the same, the wavelength is chosen equal to L001.0 . The solid 

curve in Fig. (3) shows the real and imaginary parts calculated using RALQ method for 

evaluating the Fresnel integral, while the dots represent the values calculated using DFRFT with 

500N . In Fig. (4), the same plots are repeated but with the DFRFT calculated using 70N  . 

One should note that for shorter wavelength the error in DFRFT calculation is relatively high 

around the sharp transition edges. In Table (1), the computation time of the DFRFT and the 

RALQ method are compared. The entries in the table are the execution times for runs carried out 

on Dell latitude E6510 Intel® core™ i5 CPU M520 @ 2.40GHz 1.17 GHz, 1.99 GB of RAM, 
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232.8 GB of HDD computer laptop. The saving in the execution time when using the DFRFT 

approach is unequivocal. 

The following two examples demonstrate the effectiveness of using the DFRFT for computing 

the diffraction pattern for the radiation from a two-dimensional rectangular aperture. The width 

parameters are 221  LLL ,    yv)( xvx,yv   















4
rect

4
rect

yx
, and the wavelength 

L025.0 . The real part of the radiated field at Ld 25.0  is displayed in Fig. (5). The surface 

plot in Fig. (5-a) is evaluated by using the RALQ method, while Fig. (5-b) is calculated using 

DFRFT with 70N . The execution times of the RALQ method and the DFRFT are compared 

in Table (2). One should notice the advantage of the DFRFT as far as the computation time is 

concerned. The effectiveness of the DFRFT method becomes clearer when one considers the 

case of a shorter wavelength radiation. Fig. (6) illustrates the surface plots evaluated using the 

RALQ and DFRFT methods for L00025.0 . The other conditions are maintained as in Fig. 

(5). 

B) Pulsed Illumination 

Consider an aperture illuminated by a wavefield whose spectrum is given by [20]: 

   kcTk
L

x
kx 






  2exp 

2
rect,f̂  (39) 

where 1k  is the wave number, T is the pulse duration,   is a parameter that determines the 

bandwidth and the peak of the spectrum of the pulse, and c is the velocity of light in vacuum. 

The above equation can be expressed as: 

     k bxvkx ,f̂  (40) 
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where   xv is given by Eq. (38) and  kb  is the amplitude of the spectrum at the aperture given 

by: 

   kcTkk   2exp b  . (41) 

The spectrum of the radiated field at distance d from the aperture is: 

      xd,kxf ,kxx,hx,kG
x

space  




ˆˆ . (42) 

Upon substituting (40) in (42), one obtains: 

        xdx v,kxx,hkbx,kG
x

space  




ˆ . (43) 

Applying the result (12), the above equation can be expressed as: 

   
 

        





 





















 cos 2sin25.0exptan2exp

 tan1

1
,ˆ

2
2

L

x
v

L

x
iLki

i
kbkxG s

a  (44) 

where     xLx vv s   and 








 

kL

d
2

1

2
tan . By taking the inverse Fourier transform, one 

obtains the radiated field as: 

      dkkxkctitxG
k

  ,Ĝ 2exp,
0





  . (45) 

Upon using Eqs. (44) and (41), one obtains: 

     
 

    

      cos  2sin25.0exp

 tan2exp  
 tan1

1
 2exp 2exp,

s
a

2

2

0

dk
L

x
v

L

x
i

Lki
i

kcTkkctitxG
k





























 










 

 (46)

 

It should be mentioned that without the notion of the FRFT, the above radiated pulse can be 

obtained by substituting (43), (41), (38), and (2-b) in Eq. (45) to get 
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          dkxdxx
d

k
i

id

k
dkikcTkkitx

k

L

Lx





 


  








  exp2exp2exp ct2exp,G
0

2 . (47) 

Let the width of the aperture be 22 L  and the parameter values be 10  and 60.cT  . The 

corresponding amplitude of the spectrum  kb  of (41) is displayed in Fig. (7) which shows that 

all significant spectral components fall in the range 70  k . The radiated pulse  txG ,  at 

distance Ld  5.0  is computed using both the RALQ rule to evaluate the double integral in (47) 

and the DFRFT to approximate the FRFT in preparation for the numerical evaluation of the 

single integral appearing in (46) (where k varies from 0.1 to 7). The surface plots of the 

wavefield are displayed in Fig. (8), where the plotting grid has increments 1.0x  and 

ct 01.0  second (where ct takes values from 0.1 to 1.2). The computation times of both 

methods are shown in Table (3) which demonstrates the substantial saving achieved by the 

DFRFT method. The profiles of the radiated pulse evaluated at Lx   as computed by the two 

methods are shown in Fig. (9) which testifies to the sufficient accuracy of the DFRFT method. 

 

7. Concluding Remarks 

The Fresnel integral has been expressed in terms of the continuous FRactional Fourier 

Transform (FRFT) and consequently it has been evaluated using the Discrete FRactional Fourier 

Transform (DFRFT) as a fast and accurate alternative to the numerical integration method. The 

proposed method has been successfully applied for finding the diffraction pattern of an 

illuminated rectangular screen in both the one- dimensional and two-dimensional cases. The 

simulation results exhibit a tremendous improvement in the computation time of the DFRFT 

approach as compared to the RALQ rule numerical integration technique. 
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Although the technique described in this paper is limited to rectangular optical elements and 

apertures, it is of interest to extend this approach to more general shapes especially circular 

optical components. For circular elements, the evaluation of the diffraction field can be achieved 

by making use of the fractional Hankel transform (FRHT). There have been several attempts to 

evaluate FRHT directly or through relating it to the FRFT [21-23]. To achieve this goal an 

approach similar to the one used in this paper may be used. An analogous discrete fractional 

Hankel transform (DFRHT) approach will be based on the construction of the fractional 

transformation matrix through the calculation of its eigendecomposition and the fractional 

powers of the eigenvalues. In the case of circular optical element, the eigenvalues are represented 

either by the two-variable Hermite polynomials or the Laguerre–Gauss modes [21,22]. 

Generalization to 2-D optical elements of arbitrary shape may be done by using techniques 

similar to the one described in [24].  
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Table (1) The execution time of the RALQ method and DFRFT method for evaluating the 1-D 
Fresnel Integral ( L025.0 ). 

Method Execution Time 
hh:mm:ss 

DFRFT ( 70N  ). 00:00:00.07 
DFRFT ( 500N ). 00:00:04 
RALQ method 00:01:26.08 
 
 
Table (2)   The execution time of the 2-D RALQ method and DFRFT method for evaluating the 
2-D Fresnel Integral ( L025.0 ). 

Method Execution Time 
hh:mm:ss 

DFRFT ( 70N ) 00:00:20 
RALQ method. 30:01:10 
 
 
Table (3) The execution time of the RALQ method and DFRFT method for evaluating the 
pulse illumination pattern ( 1.0x  and 01.0 tc ). 
Method Execution Time 

hh:mm:ss 
DFRFT ( 100N ). 00:00:50 
RALQ method 04:31:20 
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FIGURE CAPTIONS 

Figure 1. (Color Online) (a) The real and (b) imaginary parts of the diffraction pattern at 

Ld 5.2 . The solid lines are obtained by evaluating Fresnel Integral using the 

RALQ method. The dots are points calculated using DFRFT with 500N . The 

width of the slit is 42 L  and L025.0 .. 

Figure 2. (Color Online) (a) The real and (b) imaginary parts of the diffraction pattern at 

Ld 5.2 . The solid lines are obtained by evaluating Fresnel Integral using the 

RALQ method. The dots are points calculated using DFRFT with 70N . The 

width of the slit is 42 L  and L025.0 . 

Figure 3. (Color Online) (a) The real and (b) imaginary parts of the diffraction pattern at 

Ld  . The solid lines are obtained by evaluating Fresnel Integral using the RALQ 

method. The dots are points calculated using DFRFT with 500N . The width of 

the slit is 42 L  and L001.0 . 

Figure 4. (Color Online) (a) The real and (b) imaginary parts of the diffraction pattern at 

Ld  . The solid lines are obtained by evaluating Fresnel Integral using the RALQ 

method. The dots are points calculated using DFRFT with 70N  . The width of the 

slit is 42 L  and L001.0 . 

Figure 5. (Color Online) The real part of the amplitude distribution of diffraction pattern 

using (a) the RALQ and (b) the DFRFT method ( 70N ). The distance is 

1 25.0 Ld  , 1025.0 L , and the dimension of the aperture 442  2 21  LL . 

Figure 6. (Color Online) The real part of the amplitude distribution of the diffraction pattern 

using (a) the RALQ method and (b) the DFRFT method ( 70N ). The distance is 

1 25.0 Ld  , 100025.0 L , and the dimension of the aperture 442  2 21  LL . 
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Figure 7. (Color Online) The spectrum of the pulsed field at the aperture ( )(kb  of Eq. (41)) 

Figure 8. (Color Online) The field of a pulse radiated from a slit and evaluated at Ld 5.0  

using (a) the RALQ method and (b) the DFRFT. 

Figure 9. (Color Online) The profile of the radiated pulse at Lx  , using the RALQ method 

(solid line) and DFRFT method (dots). 
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