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Abstract 
 
 A new technique is proposed for generating initial orthonormal eigenvectors of the 
Discrete Fourier Transform matrix F by the singular value decomposition of its orthogonal 
projection matrices on its eigenspaces and efficiently computable expressions for those 
matrices are derived. In order to generate Hermite-Gaussian like orthonormal eigenvectors of 
F given the initial ones, a new method called the Sequential Orthogonal Procrustes Algorithm 
(SOPA) is presented based on the sequential generation of the columns of a unitary matrix 
rather than the batch evaluation of that matrix as in the Orthogonal Procrustes Algorithm 
(OPA). It is proved that for any of the SOPA, the OPA, or the Gram-Schmidt Algorithm 
(GSA) the output Hermite-Gaussian like orthonormal eigenvectors are invariant under the 
change of the input initial orthonormal eigenvectors. 
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I. INTRODUCTION 

 
 Having developed the continuous FRactional Fourier Transform (FRFT) [1-3], current 

research is taking place to develop its discrete counterpart, namely the Discrete FRactional 

Fourier Transform (DFRFT) [4-8]. In order for the DFRFT to satisfy the requirements of 

unitarity and index additivity, orthonormal eigenvectors should be generated for the Discrete 

Fourier Transform (DFT) matrix F. In order for the DFRFT to approximate its continuous 

counterpart, it is logical to demand that the eigenvectors of F approximate the Hermite-

Gaussian functions which are the eigenfunctions of the FRFT [9]. 

 Candan, Kutay and Ozaktas obtained a second order difference equation by discretizing the 

second order differential equation satisfied by the Hermite-Gaussian functions [6,7]. Periodic 

solutions of this difference equation exist since its coefficients are periodic with period N. 

One period of each solution sequence forms the elements of an  eigenvector of an almost 

tridiagonal real symmetric matrix S. The matrix S and the DFT matrix F have a common  set 

of eigenvectors because they commute. Candan et. al. used those Hermite-Gaussian like 

orthonormal eigenvectors of F as a basis for a legitimate definition of the DFRFT. Actually 

the work of Candan et. al. was an extension of that of Dickinson and Steiglitz [10] who 

previously studied the eigenstructure of the special matrix4 S. 

 Pei, Yeh and Tseng achieved markedly superior results. They regarded the orthonormal 

eigenvectors of matrix S only as initial orthonormal basis spanning the eigenspaces of matrix 

F. In each eigenspace they searched for other orthonormal eigenvectors that better 

approximate the Hermite-Gaussian functions [5]. The unitarity of matrix F implies that its 

eigenspaces corresponding to its distinct eigenvalues are orthogonal to each other [11] and the 

task reduces to finding good Hermite-Gaussian like orthonormal eigenvectors for each 

eigenspace individually. More specifically since matrix F has four distinct eigenvalues 

( ) 4,1 , 1
L=− − kj k [12,13], the corresponding initial eigenvectors are grouped as the columns 

of 4 matrices 4,1 , L=kVk . Pei et. al. generated a set of n vectors by sampling the Hermite-

Gaussian functions and proved that they are approximate eigenvectors of matrix F 

corresponding to the exact eigenvalues ( ) 4,1 , 1
L=− − kj k [4,5]. Those vectors are arranged as 

the columns of 4 matrices 4,1 , L=kU k . Pei et. al. proposed two techniques for getting 

                                                           
4 Strictly speaking, denoting the matrix S  in the work of Dickinson et. al. [10] and Pei et. al. [5] by 1S  and the 

matrix S  in the work of Candan et. al. [6] by 2S , the two matrices are related by ISS 412 −= . Therefore 1S  

and 2S  have the same eigenvectors. 
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orthonormal eigenvectors of F that better approximate the Hermite-Gaussian functions than 

the initial orthonormal eigenvectors forming the columns of the matrices 4,1 , L=kVk [5]. 

The first technique is the Gram-Schmidt Algorithm (GSA) where for each  value of k 

separately the columns of kU  are projected on the column space of kV  to get exact 

nonorthogonal eigenvectors of F that are next orthonormalized by applying the Gram-Schmidt 

method. The second technique  is the Orthogonal Procrustes Algorithm (OPA) where for each 

value of k  separately the desired superior orthonormal eigenvectors are assumed to form the 

columns of a matrix kÛ  that is expressed  as kk QV  and the unitary matrix kQ  is evaluated by 

minimizing the Frobenius norm of the matrix difference ( )kk UU ˆ−  [14]. 

 One objective of the current paper is to present a direct technique for generating initial 

orthonormal eigenvectors of F without appealing to matrix S. The technique depends on the 

generation of the orthogonal projection matrices of matrix F on its eigenspaces and the 

computation of initial  eigenvectors by applying the singular value decomposition technique. 

More specifically, expressions are derived for the projections matrices and simplified in order 

to get efficiently computable forms. A second objective is to present an alternative technique 

for generating good Hermite-Gaussian like eigenvectors of F given initial ones. In this 

technique – to be referred to as the Sequential Orthogonal Procrustes Algorithm (SOPA) – the 

columns of the unitary matrix kQ  are sequentially evaluated by solving a series of constrained 

minimization problems rather than batch evaluated as in the OPA. A third contribution is the 

proof that the superior Hermite-Gaussian like eigenvectors computed using any of the three  

techniques – GSA, OPA or SOPA – are invariant under the change of the initial eigenvectors. 

This implies that for any of the three refined techniques the final eigenvectors will be the 

same whether the initial eigenvectors are computed by finding the eigenvectors of the 

auxiliary matrix S or by the singular value decomposition of the projection matrices. More 

surprisingly, it will be proved that both the GSA and the SOPA produce identical results 

despite being  algorithmically quite different. 

 In section II the projection matrices on the four eigenspaces of matrix F will be derived 

using two completely different methods. In section III each projection matrix is decomposed 

by the singular value decomposition technique in order to get orthonormal basis  of the 

corresponding eigenspace. In section IV the Gram-Schmidt Algorithm and the Orthogonal 

Procrustes Algorithm will be surveyed and proved to produce an output that  is invariant 

under the change of the initial eigenvectors. The contributed Sequential Orthogonal 
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Procrustes Algorithm will be next presented and proved to have the same property. In section 

V it will be shown that the SOPA and GSA produce identical outputs despite being 

algorithmically distinct. Some simulation results will be presented in section VI. 

 

II. THE ORTHOGONAL PROJECTION MATRICES ON THE EIGENSPACES OF 

MATRIX F 

 

 The Discrete Fourier Transform matrix ( )nmfF ,=  of order N is defined by: 

( )( ) NnmW
N

f nm
nm ,,1, ,          1 11

, L== −−  (1) 

where 







−=

N
jW π2exp . (2) 

 Matrix F has the following 4 distinct eigenvalues [12]: 

( ) 4,1 ,          1
L=−= − kj k

kλ . (3) 

 It is straightforward to show that matrix F is unitary and consequently is diagonalizable 

[15]. According to the spectral theorem [16], F has the following spectral decomposition: 

∑
=

=
4

1k
kk PF λ  (4) 

where kP  is the orthogonal projection matrix on the k th eigenspace of F to be denoted by  

kE . Two different methods will be presented below for deriving the four projection matrices. 

 

Method A 

 Since for any integer m, matrix mF  has the same eigenvectors and consequently projection 

matrices as matrix F, equation (4) implies that: 

L,1,0 ,          
4

1

== ∑
=

mPF
k

k
m
k

m λ  . (5) 

 The special case of 0=m  is the resolution of the identity matrix induced by F. Since the 

objective is the derivation of the four  projection matrices, the above equation will be written 

for 3,2,1,0=m  in order to get four matrix equations that can be expressed as: 
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













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3
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F
F
F
I
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P
P
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where the partitioned matrix of coefficients is given by: 



















=

IIII
IIII
IIII

IIII

A

3
4

3
3

3
2

3
1

2
4

2
3

2
2

2
1

4321

λλλλ
λλλλ
λλλλ

. (7) 

 In preparation for solving (6), one obtains the following  results from (3): 

( )( ) ( )



 =

=







 −−== ∑∑∑

==

−−

=

otherwise                            0
integerr    ,   4 if          4

1
4

2exp
4

1

4

1

15.0
4

1

rm

kmje
kk

mkj

k

m
k

π
λ π

 (8) 

( ) ( ) ( )( )



 =

=







 −−=






 −






 −−= ∑∑∑

===

otherwise                                0
integerr    ,   4 if          4

1
4

2exp1
2

exp1
2

exp
4

1

4

1

4

1

*

rn-m

kmnjnkjmkj
kkk

k
m
k

n πππ
λλ

 (9) 

 Using (7)-(9), one obtains5: 

IAA 4=+  (10) 

and consequently 
+− = AA 25.01 . (11) 

 Therefore (6) can be directly solved using (11) and (7) to get the following compact 

expression for the four orthogonal projection matrices: 

4,,1  ,        25.0
3

0

* L== ∑
=

kFP
m

m
kk

m

λ . (12) 

 In order to put the above expression in an efficiently computable form, one should utilize 

the fact that [17, p.351]: 









≡Γ=

J
F

0
012  (13) 

where J is the contra-identity matrix of order ( )1−N  defined by: 

                                                           
5 The superscripts * and + respectively denote the complex conjugate and the complex conjugate transpose. 
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

















=

1
1

1
N

J . (14) 

 Upon using the fact that [10]: 

IF =4  (15) 

and the unitarity and symmetry of F , one obtains6: 
*13 FFFF === +− . (16) 

 From (3), one directly gets: 

( )( )12 1 −−= k
kλ  . (17) 

 Substituting (13), (16), (3) and (17) in (12), one obtains: 

( )( ) ( ) ( )( )[ ]{ }*111 1125.0 FFjIP kkk
k

−−− −++Γ−+= . (18) 

 Therefore the final expressions required for computing the orthogonal projection matrices 

are given by: 

( ){ }FIP Real 225.01 +Γ+= , (19) 

( ){ }FIP Imaginary 225.02 −Γ−= , (20) 

( ){ }FIP Real 225.03 −Γ+= , (21) 

( ){ }FIP Imaginary 225.04 +Γ−= . (22) 

 

Method B 

 According to a corollary of the spectral theorem, each orthogonal  projection matrix kP  

can be expressed as [16, p. 434]: 

( ) 4,,1  ,        L== kFgP kk  (23) 

where ( )Fgk  is a polynomial in F which satisfies  the conditions: 

( ) 4,,1  ,          , L== ig kiik δλ . (24) 

 Since matrix F is diagonalizable and has only 4 distinct eigenvalues, the polynomial 

( )Fgk  is of the third degree. Using the Lagrange interpolation formula, ( )λkg  can be 

expressed as: 

( ) ( ) ( )∑
=

=
4

1i
iikk fgg λλλ  (25) 

                                                           
6 Although matrix F is symmetric it is not Hermitian. 
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where 

( ) 4,,1  ,          
4

1

L=
−
−

=∏
≠
=

if
ir

r ri

r
i λλ

λλ
λ . (26) 

 Combining (24)-(26), one gets: 

( ) ( ) ∏
≠
= −

−
==

4

1
kr

r rk

r
kk fg

λλ
λλ

λλ . (27) 

 Upon substituting (3) in the above equation, one obtains: 

( ) ( )32
1 125.0 λλλλ +++=g  , (28) 

( ) ( )32
2 125.0 λλλλ jjg −−+=  , (29) 

( ) ( )32
3 125.0 λλλλ −+−=g  , (30) 

( ) ( )32
4 125.0 λλλλ jjg +−−=  . (31) 

 Using (23) and (28)-(31), one gets the following expressions for the projection matrices: 

( )32
1 25.0 FFFIP +++=  , (32) 

( )32
2 25.0 jFFjFIP −−+=  , (33) 

( )32
3 25.0 FFFIP −+−=  , (34) 

( )32
4 25.0 jFFjFIP +−−=  . (35) 

 Using (3), it immediately follows that the above four expressions are identical to 

expression (12) obtained using the first approach. 

 

III. INITIAL ORTHONORMAL EIGENVECTORS OF MATRIX F 

 

 The N th order square orthogonal projection matrix kP  has rank kr  which is the dimension 

of the k th eigenspace of matrix F given by Table 1 [12]. The objective here is to compute 

orthonormal basis for each eigenspace. The singular value decomposition technique will be 

shown to be the right technique to apply. The singular value decomposition of an arbitrary 

square matrix A of order N is [18]: 
+Σ= VUA  (36) 

where U  and V  are unitary matrices of order N and 

{ }NDiag σσ ,,1 L=Σ  . (37) 
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 In the above equation the singular values Nii L,1 , =σ  are real and satisfy 

021 ≥≥≥≥ Nσσσ L . 

Lemma 1: 

 Let A be a square Hermitian matrix of order N having a modal matrix V and eigenvalues 

Nλλ ,,1 L  arranged such that Nλλλ ≥≥≥ L21 . The singular value decomposition of A is 

given by (36) where 

SVU  =  , (38) 

{ }NDiag λλ ,,1 L=Σ  , (39) 

{ }NssDiagS ,,1 L=  (40) 

and 

Nns
n

n
n ,,1 ,         

0 if        1
0 if          1

L=




<−
≥

=
λ
λ

 . (41) 

Proof: See Appendix A. 

 The above lemma implies that for a Hermitian matrix the singular values are equal to the 

absolute values of its eigenvalues and the right singular vectors are equal to its orthonormal 

eigenvectors. 

 If the rank of A is r, the matrices V and Σ  in (36) can be partitioned as: 

( )ba VVV =  , (42) 








Σ
=Σ

OO
Oa  (43) 

where 

{ }ra Diag σσ ,,1 L=Σ  (44) 

and 021 >≥≥≥ rσσσ L . In (42) the rN ×  submatrix aV  has orthonormal columns by the 

unitarity of V . 

 For a Hermitian matrix A of rank r, combining (36),(38),(40),(42) and (43), one obtains: 
+Σ= aaaa VSVA  (45) 

where aS  is the leading diagonal block of order r of matrix S defined by (40). 

 In the particular case of an orthogonal projection matrix A, all eigenvalues are either 1 or 0 

[18]. Consequently the diagonal matrices aΣ  and aS  in (45) reduce to the identity matrix and 

(45) simplifies to: 
+= aaVVA  . (46) 
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 Therefore in order to find orthonormal basis for any space of dimension r given its 

orthogonal projection matrix A, one has only to apply the singular value decomposition 

technique (36) and select the first r columns of matrix V in (42). It should be emphasized that 

one should never try to get the same result computationally by applying an eigenvalue 

decomposition procedure since A might have  repeated eigenvalues and the corresponding 

eigenvectors – as evaluated by that procedure – will not generally be orthogonal. 

 Applying the result (46) to the four projection matrices of last section, one gets: 

4,,1  ,          L== + kVVP kkk . (47) 

 The orthonormal basis of the k th eigenspace of matrix F given by the columns of kV  will 

be taken as initial orthonormal eigenvectors of F corresponding to kλ . They will be utilized 

for deriving the desired Hermite-Gaussian like orthonormal eigenvectors direly needed for 

defining a discrete fractional Fourier transform that approximates its continuous counterpart. 

 

IV. HERMITE-GAUSSIAN LIKE EIGENVECTORS 

 

 By sampling the Hermite-Gaussian functions, Pei et. al. obtained approximate eigenvectors 

for the DFT matrix F that correspond to the exact eigenvalues kλ  of (3) as delineated in [4,5]. 

Those vectors are grouped to form the columns of the four krN ×  matrices 4,,1 , L=kU k  

where the dimensions of the corresponding eigenspaces kr  are given in Table 1. Being 

approximate rather than exact eigenvectors, the columns of kU  do not belong to the 

eigenspace kE  corresponding to the eigenvalue kλ . The objective here is to find orthonormal 

basis for kE  to form the columns of a matrix kÛ  that are as close as possible to the columns 

of matrix kU . Towards achieving that goal two techniques have been proposed by Pei et. al. 

[5], namely the Gram-Schmidt Algorithm (GSA) and the Orthogonal Procrustes Algorithm 

(OPA). A third technique to be termed the Sequential Orthogonal Procrustes Algorithm 

(SOPA) will be proposed in this paper. In preparation for presenting the new technique, the 

first two techniques will be surveyed below and cast in a form that will facilitate the 

comparison. More importantly, they will be proved to produce an output that is invariant 

under the change of the initial orthonormal basis of kE . 

 Since the eigenspaces 4,,1 , L=kEk  are orthogonal to each other due to the unitarity of 

matrix F, each eigenspace will be dealt with separately. In order to simplify the notation the 
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subscript k will be dropped in the remainder of this paper. The krN ×  matrices kkk UUV ˆ,,  

will be written as the rN ×  matrices UUV ˆ,,  respectively. The space kE  will be denoted by 

E . 

 

(A) The Gram-Schmidt Algorithm (GSA) 

 First matrix U  will be expressed as the partitioned matrix: 

( )ruuU L1= . (48) 

 Each column nu  of U  will be projected on E  to get nu~ . Since the resulting r  vectors are 

not orthogonal, they will be orthonormalized by applying the Gram-Schmidt technique in 

order to get rnun ,,1 , ˆ L= . More specifically, since the space E  is spanned by the 

orthonormal columns of V , vector nu~  can be expressed as: 

rnvuvu
r

m
mnmn ,,1  ,          ,~

1

L== ∑
=

. (49) 

 The above equation can be rewritten as: 

( )















=

nr

n

rn

uv

uv
vvu

,

,
~

1

1 ML . (50) 

 By virtue of the definition of matrix V , the same equation can be compactly expressed as: 

rnuVVu nn ,,1  ,          ~ L== + . (51) 

 Upon defining the rN ×  matrix U~  as: 

( )ruuU ~~~
1 L=  (52) 

the r vector equations (51) can be combinedly expressed as: 

UVVU +=~ . (53) 

 The Gram-Schmidt technique is next applied to orthonormalize the columns of matrix U~  

in order to get the columns of matrix Û  using the following steps: 

1) 
1

1
1 ~

~
ˆ

u
uu =  . (54) 

2) For rs ,,2 L= : 

 a) ∑
−

=

−=
1

1

ˆ~,ˆ~ s

m
msmss uuuuy  , (55) 
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 b) 
s

s
s y

y
u =ˆ  . (56) 

 Matrix Û  is next defined as: 

( )ruuU ˆˆˆ
1 L= . (57) 

 

Lemma 2: 

 The result of the Gram-Schmidt Algorithm is invariant under the change of the initial 

orthonormal  basis of the space E  given by the columns of matrix V . 

Proof: 

 Consider a second set of initial orthonormal basis given by the columns of a matrix W  

defined by: 

( )rwwW L1= . (58) 

 Since the columns of V  form a basis of E , the columns of W  can be expressed as linear 

combinations of those of V , i.e., 

rnvw
r

m
mnmn ,,1  ,          

1

L== ∑
=

α . (59) 

 The above r  vector equations can be compactly expressed as a matrix equation: 

VGW =  (60) 

where G  is a square matrix of order r . It follows immediately that: 

( )GVVGWW +++ = . (61) 

 By the orthonormality of the columns of V  and W  individually, the above equation 

implies that: 

IGG =+ . (62) 

 Based on this unitarity property of G , it follows from (60) that: 
++++ == VVVVGGWW . (63) 

 This proves that the matrix product +VV  is invariant under the change of the initial 

orthonormal basis of the space E . It follows from (53) that U~  is invariant under the change 

of V . The same applies to Û  as can be concluded from (54)-(57). 

  (Q.E.D.) 

 

(B) The Orthogonal Procrustes Algorithm (OPA) 
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 Here the desired matrix Û  of the Hermite-Gaussian like eigenvectors defined by (57) will 

be expressed as7: 

VQU =ˆ  (64) 

where Q  is a unitary matrix to be evaluated such that the square of the Frobenius norm 

F
UU ˆ−  is minimized. The solution of this problem is given by the Orthogonal Procrustes 

Algorithm expounded in [14] and used in [5] and summarized in the following three steps: 

1. Form matrix C : 

 UVC += . (65) 

2. Find the singular value decomposition of C : 

 += ADBC . (66) 

3. Compute matrix Q : 

 += ABQ . (67) 

 

Lemma 3: 

 The matrix Û  determined by the OPA is invariant under the change of the initial 

orthonormal basis of the space E  given by the columns of matrix V . 

Proof: 

 Let 1V  and 2V  be two initial orthonormal bases of E. They should be related by: 

GVV 12 =  (68) 

where G  is a unitary matrix. (This follows along the same lines of (59)-(62)). Let 1Q  and 2Q  

be the corresponding unitary matrices evaluated by the OPA and 1Û  and 2Û  be the resulting 

optimal matrices given by (64). It follows from (65)-(67) and (64) that: 

2,1  ,          == + iUVC ii  (69) 

2,1  ,          == + iBDAC iiii  (70) 

2,1  ,          == + iBAQ iii  (71) 

2,1  ,          ˆ == iQVU iii  (72) 

 Our task reduces to showing that 12
ˆˆ UU = . From (68) and (69), one gets: 

                                                           
7 It should be mentioned that in [5], the OPA was erroneously applied since Û  was taken as QVU =ˆ  rather 

than as VQU =ˆ . 
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( ) 1122 CGUVGUVC ++++ === . (73) 

 Substituting (70) in the above equation, one obtains: 
+++ == 1112222 BDAGBDAC . (74) 

 By the uniqueness of the singular values of 2C , the above equation implies that: 

12 DD = . (75) 

 By the unitarity of the matrices GBABA ,,,, 2211 , equation (74) leads to: 

211122 BBDAGAD +++= . (76) 

 Since the diagonal matrices 2D  and 1D  have real nonnegative diagonal elements arranged 

in decreasing order of absolute value, a direct application of Lemma 1 results in: 
+= TTDD 12 . (77) 

 By comparing (76) and (77), one gets: 

( )++++ = 2112 BBAGA . (78) 

 It follows immediately that: 
+++ = 1122 BAGBA . (79) 

 Upon utilizing (71), the above equation reduces to: 

12 QGQ += . (80) 

 Substituting (68) and (80) in (72), one eventually obtains: 

( )( ) 11111222
ˆˆ UQVQGGVQVU ==== + . (81) 

  (Q.E.D.) 

 

(C) The Sequential Orthogonal Procrustes Algorithm (SOPA) 

 Although the desired matrix Û  will be expressed as in (64), the unitary matrix Q  will not 

be evaluated by minimizing the square of the Frobenius norm 
F

UU ˆ−  as in the OPA but 

rather its columns rsqs ,,1 , L=  will be evaluated sequentially in the manner to be next 

delineated. By virtue of the definition of the Frobenius norm of a matrix and the Euclidean 

norm of a vector [18] and using (48), (57) and (64), one obtains: 

∑
=

=
r

s
sJJ

1
 (82) 

where 

22ˆ
FF

VQUUUJ −=−=  , (83) 
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2

2

2

2
ˆ sssss VquuuJ −=−=  , (84) 

( )rqqQ L1= . (85) 

 In the OPA, matrix Q  has been evaluated by minimizing the total performance index J  of 

(83). In the SOPA there will be r  stages of sequential minimizations. In stage s, the column 

sq  of Q  will be evaluated by minimizing the partial performance index sJ  of (84) subject to 

the constraints that sq  will be orthogonal to the previously evaluated columns 

1,,1 , −= skqk L  and be of unit norm in order to satisfy the unitarity of Q . These s 

constraints can be expressed as: 

1,,1  ,          0 −==+ skqq sk L  (86) 

1=+
ss qq . (87) 

 The first set of ( )1−s  orthogonality constraints can be compactly expressed as: 

01 =− ss qC  (88) 

where 

















=
+
−

+

−

1

1

1

s

s

q

q
C M . (89) 

 It should be mentioned that the rows of the ( ) rs ×−1  matrix 1−sC  are linearly independent 

because of being orthogonal due to the way they have been sequentially generated. For 

mathematical tractability, one will set aside the quadratic constraint (87) for a while and 

minimize sJ  subject to the linear constraints (88) and call the resulting vector sx . Next by 

normalizing sx  in order to satisfy the normalization condition (87), one obtains sq . More 

specifically, the constrained minimization problem defined by the quadratic criterion (84) and 

the linear constraints (88) is solved  in Appendix B and its solution is given by: 

( ) ( )[ ] ( ) ssssss uVVVCCVVCCIVVx +−+
−

−
+
−

−+
−

+
−

−+







 −=

1
1

1

1
1

11
1 . (90) 

 By the orthonormality of the columns of matrix V , the above equation reduces to: 

[ ]{ } ssssss uVCCCCIx +
−

−+
−−

+
−−= 1

1
111 . (91) 

 By utilizing the orthonormality of the rows of matrix 1−sC  of (89), the above result 

simplifies to: 

( ) rsuVCCIx ssss ,,2  ,          11 L=−= +
−

+
− . (92) 
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 In the special case of generating 1x , one has the unconstrained minimization problem 

defined by criterion 1J  of (84) whose solution is given by: 

11 uVx += . (93) 

 The quadratic constraint (87) accounting for the normalization condition will be satisfied 

by computing: 

rsx
x

q s
s

s ,,1  ,          1
L== . (94) 

 Therefore the sequential orthogonal procrustes algorithm can be summarized in the 

following steps: 

1) For 1=s : 

a) 11 uVx +=  

b) 1
1

1
1 x
x

q =  

c) 1qQ =  

d) ] [=C           (the null matrix) 

2) For rs ,,2 L= : 

a) Augment matrix C by the row vector +
−1sq  

b) ( ) ss uVCCIx ++−=  

c) s
s

s x
x

q 1
=  

d) Augment matrix Q  by the column vector sq  

3) Generate Û  according to (64). 

 

Lemma 4: 

 The matrix Û  determined by the SOPA is invariant under the change of the initial 

orthonormal basis of the space E  given by the columns of matrix V . 

Proof: 

 Let 1V  and 2V  be two initial orthonormal bases of E  which should be related by (68). Let 

iQ  be the Q  matrix determined by the SOPA corresponding to iV  and let iÛ  be the resulting 

matrix Û . An extra subscript i  will be introduced in the vectors sx  and sq  and matrix 1−sC  
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to become six , , siq ,  and 1, −siC  respectively when they are computed based on matrix iV . From 

(93) and (68), one obtains: 

1,111121,2 xGuVGuVx ++++ ===  . (95) 

 By virtue of (94) and the unitarity of G , one gets: 

1,11,2 qGq +=  . (96) 

 From (89) and (96), it follows that: 

GCGqqC 1,11,11,21,2 === ++ . (97) 

 From (92), (97) and (68), one obtains: 

( ) ( ) ( )
2,1

211,11,1211,11,1221,21,22,2

xG

uVCCIGuVGGCCGIuVCCIx
+

+++++++++

=

−=−=−=
 . (98) 

 It follows from the above equation and (94) that: 

2,12,2 qGq += . (99) 

 By the same token, it can be shown that: 

rsqGq ss ,,1  ,          ,1,2 L== + . (100) 

 From (85) and (100), one obtains: 

12 QGQ += . (101) 

 The above equation together with (64) and (68) lead to: 

( )( ) 11111222
ˆˆ UQVQGGVQVU ==== +  . (102) 

  (Q.E.D.) 

 

V. THE EQUALITY OF THE OUTPUTS OF THE GSA AND SOPA 

 

 In the GSA, one starts by projecting the vectors rsus ,,1 , L=  on the column space of 

matrix V  to get the nonorthogonal vectors rsus ,,1 , ~ L= . Next by applying the Gram-

Schmidt orthonormalization technique, one sequentially obtains the orthonormal vectors 

rsus ,,1 , ˆ L= . In the SOPA, one sequentially obtains the columns rsqs ,,1 , L=  of the 

unitary matrix Q . This corresponds to the sequential evaluation of the vectors rsus ,,1 , ˆ L=  

since (64), (57) and (85) imply that: 

rsVqu ss ,,1  ,          ˆ L== . (103) 
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 It will be shown below that the GSA and SOPA produce identical results. Towards that 

goal one starts by a  further manipulation of the equations pertaining to both techniques only 

for the sake of proving the equality of their outputs. 

 

(A) The GSA 

 Manipulating (55), one obtains: 

( )

ssss

s

s

m
mms

s

m
smmss

uUUu

uuuu

uuuuy

~ˆˆ~

~ˆˆ~

~ˆˆ~

11

1

1

1

1

+
−−

−

=

+

−

=

+

−=









−=

−=

∑

∑

 (104) 

where 

( )111 ˆˆˆ
−− = ss uuU L . (105) 

 Substituting (51) in (104), one gets: 

( ) ss

sssss

uABA
uVVUUuVVy

1

11
ˆˆ

−

++
−−

+

−=
−=           ,  rs ,,2 L=  (106) 

where 
+=VVA , (107) 

+
−−− = 111

ˆˆ
sss UUB  . (108) 

 Since the vectors rsus ,,1 , ˆ L=  lie in the column space of matrix V , it follows from (105) 

that 

VWU s =−1
ˆ  (109) 

where W  is an ( )1−× sr  matrix. Consequently 

( )WVVWUU ss
++

−
+
− =11

ˆˆ . (110) 

 By the orthonormality of the columns of 1
ˆ

−sU  and those of V , the above equation results 

in: 

IWW =+ . (111) 

 From (107), (108) and (109), one obtains: 

( ) ( )( ) 1111
ˆˆ

−
+
−−

+++++
− ==== ssss BUUVWVWVVVVWWAB  . (112) 

 Therefore (106) simplifies to: 

( ) rsuBAy sss ,,2  ,          1 L=−= − . (113) 
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 In the special case of 1=s , (51) and (107) result in: 

1111
~ AuuVVuy === +  . (114) 

 

(B) The SOPA 

 One starts by defining: 

rsVxz ss ,,1  ,          L==  (115) 

where the vectors rsxs ,,1 , L=  are given by (92) and (93). The orthonormality of the 

columns of V  implies that: 

rsxz ss ,,1  ,          L== . (116) 

 Equations (115), (116), (94) and (103) result in: 

rsuVq
z
z

ss
s

s ,,1  ,          ˆ L=== . (117) 

 Since (94) implies that sx  is an unnormalized version of sq , the above equation implies 

that sz  defined by (115) can be interpreted as an unnormalized version of sû . Combining 

(115) and (92), one obtains: 

( )[ ] rsuVCVCVVz ssss ,,2  ,          11 L=−=
++

−
+
−

+ . (118) 

 Using (89), (103) and (105), it follows that: 

( ) ( ) 111111
ˆˆˆ −−−

+
− === ssss UuuqqVVC LL  . (119) 

 Substituting the above equation in (118) and utilizing (107) and (108), one gets: 

( ) ( ) rsuBAuUUVVz ssssss ,,2  ,          ˆˆ
111 L=−=−= −

+
−−

+ . (120) 

 In the special case of 1=s , it follows from (115), (93) and (107) that: 

1111 AuuVVVxz === + . (121) 

 

(C) The identity 

 From (107) and (108), it is obvious that matrix A  is the same for both the GSA and the 

SOPA since it is an input matrix while the matrices rsBs ,,2 , 1 L=−  are computed for each 

algorithm separately. From (114) and (121) it is clear that 11 zy = ; and from (56) and (117) it 

follows that 1û  is the same for both algorithms. By virtue of (105) and (108), one concludes 

that 1Û  and 1B  are identical for both algorithms. Equations (113) and (120) imply that 

22 zy =  and consequently 2û  are the same for both algorithms. Proceeding in the same 
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manner, one concludes that both the GSA and SOPA result in exactly the same set of vectors 

rsus ,,1 , ˆ L= . 

 

VI. SIMULATION RESULTS 

 

 Orthonormal eigenvectors of the DFT matrix F  have been computed using the following 

three techniques: 

1) The P method where one only obtains initial orthonormal vectors by the singular value 

decomposition of the projection matrices 4,,1 , L=kPk  of F  according to (47) as 

was explained in section III. 

2) The Orthogonal Procrustes Algorithm (OPA) explained in section IV (B). 

3) The Sequential Orthogonal Procrustes Algorithm (SOPA) explained in section IV (C). 

 It should be mentioned that even if one intends to apply a refined technique such as the 

second or third one, he should start by applying the first technique in order to generate initial 

orthonormal eigenvectors of F  to be used as input to the advanced technique. Since the main 

goal is to generate Hermite-Gaussian like orthonormal eigenvectors of F , the error vectors 

between the eigenvectors of F  and samples of the Hermite-Gaussian functions of the same 

order have been computed as it was done in [5]. The norms of these error vectors have been 

plotted versus k  for Nk ,,1L=  where k  denotes the columns of the modal matrix of F. 

Figures 1 and 2 show the results for 128  and  64=N  respectively. Since in the P method the 

act of approximating the Hermite-Gaussian functions was not taken into account, it is quite 

expected that the P method has the largest error among the three techniques being compared. 

For the OPA or SOPA the error tends to increase on the average with k . The interpretation is 

that the samples of the Hermite-Gaussian functions are approximate eigenvectors of F  with 

an approximation error that grows with the order of those functions [4,5]. Consequently the 

error between the exact Hermite-Gaussian like eigenvectors determined by the OPA or SOPA 

and the approximate eigenvectors tends to increase with k . Upon comparing the OPA and 

SOPA, one clearly notices that the OPA has a lower rate of growth of the error. The 

interpretation is that for the SOPA the number of linear constraints expressed by (88) and (89) 

increases with the order thus restricting the freedom left in the solution space for minimizing 

the criterion sJ  given by (84). This is to be contrasted to the OPA where matrix Û  rather 

than its individual columns is batch evaluated. On the other hand, the SOPA has the merit that 

the error begins to be noticeable at a value of k  larger than that for the OPA. 
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VII. CONCLUSION 

 

 A new technique has been developed for generating initial orthonormal eigenvectors of the 

Discrete Fourier Transform matrix F  based on the singular value decomposition of the 

projection matrices of F  on its eigenspaces after deriving efficiently computable expressions 

for these projection matrices. In order to generate Hermite-Gaussian like eigenvectors of F  

given the initial ones, a new method called the Sequential Orthogonal Procrustes Algorithm 

(SOPA) has been proposed based on the sequential evaluation of the columns of a unitary 

matrix rather than the batch evaluation of that matrix as in the Orthogonal Procrustes 

Algorithm (OPA). Surprisingly the output of the SOPA has been  proved to be equal to that of 

the Gram-Schmidt Algorithm (GSA). Furthermore It has been proved that for any of the GSA, 

OPA or SOPA, the output is invariant under the change of the input initial orthonormal 

eigenvectors of F . 
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APPENDIX A 

Proof of Lemma 1 

 

 The modal decomposition of a Hermitian matrix A is: 
+Λ= VVA  (A1) 

where 

{ }NDiag λλ ,,1 L=Λ  (A2) 

and all eigenvalues Nnn ,,1 , L=λ  are real [15]. The diagonal matrix Λ  can be expressed as: 

Σ=Λ  S  (A3) 

where the real diagonal matrices Σ  and S are defined by (39)-(41). Substituting (A3) in (A1), 

one gets: 

( ) +Σ= VSVA     . (A4) 

 By comparing (36) and (A4), one obtains (38). 

  (Q.E.D.) 
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APPENDIX B 

 

Statement of the problem:  

 Find the r-dimensional vector x  that minimizes: 
2

2
VxuJ −=  (B1) 

subject to the constraints: 

0=Cx  (B2) 

where u  is an N-dimensional vector, V  is an rN ×  matrix with linearly independent 

columns, C  is an ( ) rs ×−1  matrix with linearly independent rows and ( ) Nrs <<−1 . 

Solution: 

 Augmenting the constraints (B2) to the criterion (B1) by means of the complex vector λ  

of Lagrange multipliers, one gets the following real augmented criterion: 

( ) λλ ++ −−= CxCxJJ a  . (B3) 

 By virtue of the definition of the Euclidean norm, one obtains from (B1) and (B3): 

λλ +++++++++ −−−−+= CxCxuVxVxuVxVxuuJ a . (B4) 

 Since aJ  is a real-valued scalar function of the complex vector x  and its complex 

conjugate *x , a necessary and sufficient condition for minimization is: 

0* =∇ ax
J  (B5) 

where in finding the gradient vector, one should view x  and *x  as two different vectors, i.e. 

one should treat x  as a constant vector when evaluating *x
∇  [19]. Consequently it follows 

from (B4) that: 

λ+++ −−=∇ CuVVxVJ ax*  . (B6) 

 Upon applying condition (B5), one gets: 

( ) ( )λ++−+ += CuVVVx 1  . (B7) 

 By applying condition (B2) in order to evaluate vector λ , one obtains: 

( )[ ] ( ) uVVVCCVVC +−+
−

+−+−=
111

λ . (B8) 

 Substituting (B8) in (B7), one obtains: 

( ) ( )[ ] ( ) uVVVCCVVCCIVVx +−+
−

+−++−+







 −=

1111 . (B9) 
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Table 1: The dimensions kr  of the four eigenspaces 
 

k 1 2 3 4 

kλ  1 -j -1 j 

4m m+1 m m m-1 

4m+1 m+1 m m m 

4m+2 m+1 m m+1 m 

 

 

N 

4m+3 m+1 m+1 m+1 m 
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Fig. 1: Norm of the error vectors between the exact and approximate eigenvectors for 

64=N . 
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Fig. 2: Norm of the error vectors between the exact and approximate eigenvectors for 

128=N . 


