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ABSTRACT

An investigation is made of the Eigenstructure of a class of lower triangular moment
matrices which arose in the context of finding the forced response of IIR filters to typical
excitations. It is found that the Jordan matrix can have at most two types of Jordan
blocks. The modal matrix is shown to have a peculiar structure where the progenitors in
the column partitions corresponding to the Jordan blocks have a certain pattern.

I. INTRODUCTION

Holtz and Campbell [1] presented an elegant technique for finding the forced
response of an IIR filter to a typical set of excitation functions (i.e., polynomials,
geometric progressions, sinusoids and products of these sequences). A class of moment
matrices emerged and they proved that it has nice mathematical properties such as
closure under matrix multiplication (which is commutative) and matrix inversion. The
main objective of this paper is to investigate the Eigenstructure of this important class of
matrices in search for a more complete characterization of its properties.

An 1IR digital filter is described by the difference equation:

N M

2dYo =2 CiXo 1)
j=0 =L
where X, and y, are respectively the input and output sequences and d; and c; are constant

coefficients. A typical excitation sequence having the form :
X, =u“(a1nr‘1+a2n"2+--~+ar_1n+ar) (2)

can be compactly expressed as :

X, =U"TA (3)
where T and A are the r-dimensional row and column vectors defined respectively by :
T=(* n? ... 1 (4)
and

a=(a a, - a) . (5)
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The corresponding forced response can be expressed as :

y, =u"TB (6)
where
B=(b, b, - b) . 7)

It was shown [1] that the output vector B can be evaluated given the input vector A by

the equation :
B=W 'H A (8)

where H; and W, are lower triangular moment matrices of order r defined respectively by

r—j .
G_. 1< j<i<r
H, (i, )= (r_iJ I=1 )
0 i<
and
- -1 Q.. 1<j<i<r
W, (0, j)=1r=j)= (10)
0 i<

r
In the above equations (kj denotes the binomial coefficient and G, and Qn, are the m th

generalized moments - corresponding respectively to the input and output coefficients

appearing in (1) - defined by :

G, = j_MZ_Lcju"'(— i) (11)
and

Qn =%dju"(—1)”‘ (12)
Define the r-dimensional vectors G and Q as3 :

G=G, G - G, (13)
Q=(Q Q - Q). (14)

One should notice that the matrices H; and W, of (8) are functions of the parameter u
which is the base of the geometric progression term u™ appearing in (2), (3) and (6). By

taking u = e’ where y is a complex number, one can obtain the forced responses of the IIR

3 The rows and columns of all matrices and vectors (apart from vectors G and Q defined by (13) and (14))
are indexed from 1 to r instead of from 0 to r as was done in [1].
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filter to the products of exponentials, polynomials and sinusoids. One should also notice
that vector T appearing in (3) and (6) and defined by (4) is time dependent.

The matrices H; of (9) (or W, of (10)) - irrespective of the definition of G, (or Q) -
are the moment matrices whose mathematical properties were investigated by Holtz and
Campbell and whose Eigenstructure will be investigated below.

Il. The Eigenstructure

Since H; is a triangular matrix with equal diagonal elements, all of its Eigenvalues are
equal to the diagonal element Go; in other words H; has one Eigenvalue & = Gy with
algebraic multiplicity r. The geometric multiplicity of this Eigenvalue, i.e. the number of
linearly independent Eigenvectors associated with it, depends on the location of the first
nonzero element (not counting Go) of the vector G defined by (13). Let Gk be this
element, i.e.,

G =G,=--=G,,=0 and G, #0.

Here the smallest submatrix containing the nonzero elements of the matrix (H, — Al )is a

nonsingular lower triangular matrix of order (r - k). Consequently, the null space of

(Hr —ﬂl)has the dimension k. Therefore the matrix H; has k linearly independent

Eigenvectors and (r - k) generalized Eigenvectors [2-4]. Let m be the index of the
Eigenvalue A = Gy ,i.e. let the largest Jordan block of H, be m x m. Since it can be shown
that for any r x r matrix C, m is the smallest integer such that [5, p. 132] :

rank (C - A)™ = r - algebraic multiplicity of A (15)
we find that : rank (H, - A1)™ = 0 and consequently :

(H -A)"=0. (16)

In view of the particular structure of the matrix (H, — Al), the smallest submatrix

containing the nonzero elements of the matrix (H, —ll)(mfl) Is a nonsingular lower
triangular submatrix of order :

q=r—(m-1k . (17)
Since multiplying (H, —/u)(m_l) by (H, — Al)increases the number of zero rows by K,
Eq.(16) can be satisfied only if g < k and hence m>r/k , i.e.

m=[r/k] (18)

where (x} is the smallest integer greater than or equal to x.



Since the last k columns of the matrix (H, — Al ) are zero, the k linearly independent

Eigenvectors of matrix H; can be taken as the last k columns of the r x r identity matrix,
i.e.,

X; =€ i=r—-k+1,---,r (19)
where g; is the unit vector whose i th element is unity and whose other elements are zeros.
Let M and J be respectively the modal and Jordan matrices associated with the matrix H; .
The matrix M has k column partitions corresponding to the k Eigenvectors. Letf; ,i=1,
..., k be the progenitors, i.e. the first (numbered from the right for the sake of the clarity
of the presentation) generalized Eigenvectors in these column partitions. Therefore the
matrix M has the form :

M=(e, . f|l-lef|e f) (20)

where in each partition the dots between the leading generalized Eigenvector f; and the

Eigenvector e represent other generalized Eigenvectors (if any) which can be obtained
from f; by successive multiplication by (H, — Al).

First the progenitors f; corresponding to the largest m x m Jordan blocks will be

found. Those generalized Eigenvectors should satisfy :

(H, -A)"f =0
and
(H ro Al )(m_l) fi =€ - (21)

Since only the elements in the lower left q x g triangular part of the matrix (Hr -Al )(m_l)

are nonzero where q is given by (17), Equation (21) can be consistent only for r > r+1-i >
(r-q)+1,.e. onlyforl<i<q.Moreover by taking the last (r - q) elements of each of

the vectors f; to be zero, the first q elements of each of these vectors can be uniquely

(m-1)

determined from (21). Exploiting the lower triangular nature of (Hr —ll) , we find

that the first g progenitors f; of the matrix H, corresponding to the m x m Jordan blocks
are given by :

q
fi= Dlae, 1<i<q (22)

J=q+1-i

where for each i at least «. #0 .

i1,0+1-i
Second if k > g, the progenitors f; (i > q) corresponding to the (m-1) x (m-1) Jordan

blocks will be found. Those progenitors should satisfy :



(H, =A™ f =0
and
(Hr - A )(m_Z) fi =€ - (23)

The nonzero elements of the matrix (Hr —il)(mfz) lying in its lower left part form a

nonsingular lower triangular matrix of order (q + k) where g is given by (17);
consequently Eq.(23) is consistent only for r > r+1-i > r-(q+k)+1 ,i.e. for 1 <i < g+k .
Since there are only a total of k progenitors, the remaining (k-g) progenitors fi (gq+1 <i <
k) can be evaluated from Eq.(23) . By taking the last (r-(q+k)) elements of each of those

vectors f; to be zero, the first (q+k) elements of each of them can be uniquely determined
from Eq. (23) . Exploiting the lower triangular nature of (Hr —ll)(m_z) we find that the

last (k-q) progenitors f; corresponding to the (m-1) x (m-1) Jordan blocks are given by :

q+k
fi= > aye, q+1<i<k (24)

j=q+k+1-i

where for each i at least «. #0 .

i,0+k+1-1
Therefore the Jordan matrix of the matrix H, corresponding to the modal matrix (20)

is given by :

J =Diag{J,,---,J,} (25)

where the Jordan blocks Jiare m x m for 1 <i <qgand (m-1) x (m-1) for (g+1) <i <k (if
k>q), i.e. all Jordan blocks are of two types at most.

In the special case of m = 2, g Jordan blocks will be 2 x 2 and the remaining (k-q)
blocks (if any) will be 1 x 1, i.e. the corresponding column partitions of the modal matrix
have no generalized Eigenvectors. In the particular case of k = 1 there will be only one
Jordan block of dimension r X r ; this is actually the case of simple degeneracy where all
generalized Eigenvectors are associated with the single Eigenvector e, .

The particular form of the progenitors given by Egs. (22) and (24) and of the
remaining generalized Eigenvectors (if any) obtained by successive multiplication by

(Hr —/1I) results in a certain structure of the modal matrix M of Eq (20), which will be

illustrated in the examples given in the following section.
I11. Hlustrative Examples

Example 1 :

r=12andk=4.



From (18) and (17), we get m =3 and g =4 . Since g = k , all Jordan blocks are 3 x 3.
The Jordan matrix is :
J =Diag{J,,J,,J,.J,}

where each Jordan block is given by :

P 1 0
,=|o p 1
0 0 P

The corresponding modal matrix is shown in Fig. 1 where an x represents a nonzero
element (the rest of the elements are zero) and where the columns are numbered from the
right to the left in accordance with the presentation of the previous section.

Example 2 :

r=14andk=6.

From (18) and (17) we get m =3 and q = 2 . The Jordan matrix is :

J =Diag{J,.J,.9,,J,.3,.J,}

where

— O

1
P
0

o

[
Il
o o J0

P, 1
and J, = 0 P
0

and the corresponding modal matrix is shown in Fig. 2 .

SU

Example 3 :
r=24andk=7.
Here m =4 and q = 3. Therefore 3 Jordan blocks are 4 x 4 and 4 blocks are 3 x 3. The
modal matrix is shown in Fig. 3.
Example 4 :
r=6andk=1.
Here m =6 and q = 1. This is the simple degeneracy case where there is only 1 Jordan
block of order 6 . The modal matrix is shown in Fig. 4 .
IV. CONCLUSION

The Eigenvalue problem of a certain class of moment matrices is considered. It is
shown that the Jordan matrix has no more than 2 types of Jordan blocks. the modal
matrix has a corresponding certain pattern of zero and nonzero elements.
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Fig. 1 : The modal matrix of example 1

(An x represents a nonzero element)
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Fig. 2 : The modal matrix of example 2
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(An x represents a nonzero element)



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24

0 00O0OOOOOOOOOOOONXT OOS®OOOOODO

0 00O0OOOOOOOOOOOONXTG OODONIXUOOOTO

0 0O0OO0OOOOOOOO®O®OOONXTU OO OIXUO0O0O0 x

0 0Ox0O0O0OOOOOOOOOOOOOOOOOODO
0 0Ox 00 x 0O00O0O0OO0ODOOOOOOOOOOOODO
0 0Ox 00 x 00 x0O0OOOOOOOOOOOOODO
0 0Ox 00 x 00 x00x 0000O0OO0OO0ODO0ODO0OO0OCO0CO
0 0Ox 00 x 00 x00Xx 00 x0O0OO0OOOOOODO
0 0Ox 00 x 00 x0O0Xx 00 x 0O0O0ONXO0OOOODO
0 0Ox 00 x00x 00x 00x00O0Xx©0O0O0IX§PO

0 x00O0OOOUOOOO®O®OONIXSOOONXO0OO0O0IXSTPO

0 x 00 x 0000O0OO0OO0OOONXTG OOSONXO®O0UO0O0IXTO

0 x 00 x 00 x0O0OOOUOUOIXUOOONXO®O0UO0O0IXTDO

0 x 00 x0 0O x 00 x 000 x 000 Xx 00©0IXxUO

0 x 00 x0 0 x 00 x 00 x x000Xx 00©O0IX@PMO

0 x 00 x 00 x 00 x 00 xXxx 00 xx 00©0«xwo0

0O x 00 x0 0 x 00 x 00 xx 00 x x 00 «xxxwo

X X 00 x 00 x0 0 x 00 x x00 xx 00 x x o0

0 x 0 x x0 0 x 00 x 00 x x 00 x x0©0«xxxwo

0 x 00 x 0 x x0 0 x 00 x x00 Xx x 00 x xwo0

0 x 00 x0 0 x 0 x x 00 x x 00 x x 00 x xwo0

0 x 00 x0 0 x 00 x 0 x xx 00 Xx x0©0«xxxwo

0 x 00 x0 0 x 00 x 00 x x 0 x xx 00 «xxwo

0 x 00 x0 0 x 00 x 00 xx 00 Xx x 0 xxxwo

19 16 13

Fig. 3 : The modal matrix of example 3
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(An X represents a nonzero element)

1
2

5

0 0000 x

0 000 Xx O

0 00 x x 0] 3

0 0 x x x 0 4

0 x x x x O

X X X X X 0| 6

6 5 43 2 1
Fig. 4 : The modal matrix of example 4

(An X represents a nonzero element)



