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ABSTRACT 

 

 An investigation is made of the Eigenstructure of a class of lower triangular moment 

matrices which arose in the context of finding the forced response of IIR filters to typical 

excitations. It is found that the Jordan matrix can have at most two types of Jordan 

blocks. The modal matrix is shown to have a peculiar structure where the progenitors in 

the column partitions corresponding to the Jordan blocks have a certain pattern. 

I. INTRODUCTION 

 Holtz and Campbell [1] presented an elegant technique for finding the forced 

response of an IIR filter to a typical set of excitation functions (i.e., polynomials, 

geometric progressions, sinusoids and products of these sequences). A class of moment 

matrices emerged and they proved that it has nice mathematical properties such as 

closure under matrix multiplication (which is commutative) and matrix inversion. The 

main objective of this paper is to investigate the Eigenstructure of this important class of 

matrices in search for a more complete characterization of its properties.  

 An IIR digital filter is described by the difference equation:  

∑∑
−=

−
=

− =
M

Lj
jnj

N

j
jnj xcyd

0

 (1) 

where xn and yn are respectively the input and output sequences and dj and cj are constant 

coefficients. A typical excitation sequence having the form : 
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can be compactly expressed as : 

TAux n
n =  (3) 

where T and A are the r-dimensional row and column vectors defined respectively by : 

( )121 L−−= rr nnT  (4) 

and 

( )Traaaa L21=  . (5) 
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The corresponding forced response can be expressed as : 

TBuy n
n =  (6) 

where 

( )TrbbbB L21=  . (7) 

It was shown [1] that the output vector B can be evaluated given the input vector A by 

the equation : 

AHWB rr
1−=  (8) 

where Hr and Wr are lower triangular moment matrices of order r defined respectively by 

: 
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and 
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In the above equations 
r
k
⎛
⎝
⎜
⎞
⎠
⎟ denotes the binomial coefficient and Gm and Qm are the m th 

generalized moments - corresponding respectively to the input and output coefficients 

appearing in (1) - defined by : 
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Define the r-dimensional vectors G and Q as3 : 

( )TrGGGG 110 −= L  (13) 

( )TrQQQQ 110 −= L  . (14) 

 One should notice that the matrices Hr and Wr of (8) are functions of the parameter u 

which is the base of the geometric progression term um appearing in (2), (3) and (6). By 

taking u = eγ where γ is a complex number, one can obtain the forced responses of the IIR 
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filter to the products of exponentials, polynomials and sinusoids. One should also notice 

that vector T appearing in (3) and (6) and defined by (4) is time dependent. 

 The matrices Hr of (9) (or Wr of (10)) - irrespective of the definition of Gm (or Qm) - 

are the moment matrices whose mathematical properties were investigated by Holtz and 

Campbell and whose Eigenstructure will be investigated below. 

II. The Eigenstructure  

 Since Hr is a triangular matrix with equal diagonal elements, all of its Eigenvalues are 

equal to the diagonal element G0; in other words Hr has one Eigenvalue λ = G0 with 

algebraic multiplicity r. The geometric multiplicity of this Eigenvalue, i.e. the number of 

linearly independent Eigenvectors associated with it, depends on the location of the first 

nonzero element (not counting G0) of the vector G defined by (13). Let Gk be this 

element, i.e. , 

0     and     0  121 ≠==== − kk GGGG L  . 

Here the smallest submatrix containing the nonzero elements of the matrix ( )H Ir − λ is a 

nonsingular lower triangular matrix of order (r - k). Consequently, the null space of 

( )H Ir − λ has the dimension k. Therefore the matrix Hr has k linearly independent 

Eigenvectors and (r - k) generalized Eigenvectors [2-4]. Let m be the index of the 

Eigenvalue λ = G0 ,i.e. let the largest Jordan block of Hr be m x m. Since it can be shown 

that for any r x r matrix C, m is the smallest integer such that [5, p. 132] : 

rank (C - λI)m = r - algebraic multiplicity of λ (15) 

we find that : rank (Hr - λI)m = 0 and consequently : 

( ) 0=− m
r IH λ  . (16) 

In view of the particular structure of the matrix ( )H Ir − λ , the smallest submatrix 

containing the nonzero elements of the matrix ( )H Ir
m− −λ ( )1  is a nonsingular lower 

triangular submatrix of order : 

( )kmrq 1−−=  . (17) 

Since multiplying ( )H Ir
m− −λ ( )1  by ( )H Ir − λ increases the number of zero rows by k, 

Eq.(16) can be satisfied only if q ≤ k and hence m ≥ r/k , i.e. 

⎡ ⎤krm /=  (18) 

where ⎡ ⎤x  is the smallest integer greater than or equal to x. 
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 Since the last k columns of the matrix ( )H Ir − λ are zero, the k linearly independent 

Eigenvectors of matrix Hr can be taken as the last k columns of the r x r identity matrix, 

i.e., 

rkriex ii ,,1              L+−==  (19) 

where ei is the unit vector whose i th element is unity and whose other elements are zeros. 

Let M and J be respectively the modal and Jordan matrices associated with the matrix Hr . 

The matrix M has k column partitions corresponding to the k Eigenvectors. Let fi , i = 1 , 

... , k be the progenitors, i.e. the first (numbered from the right for the sake of the clarity 

of the presentation) generalized Eigenvectors in these column partitions. Therefore the 

matrix M has the form : 

( )1211 ||| fefefeM rrkkr LLLL −−+=  (20) 

where in each partition the dots between the leading generalized Eigenvector fi and the 

Eigenvector er+1-i represent other generalized Eigenvectors (if any) which can be obtained 

from fi by successive multiplication by ( )H Ir − λ . 

 First the progenitors fi corresponding to the largest m x m Jordan blocks will be 

found. Those generalized Eigenvectors should satisfy : 

( ) 0=− i
m

r fIH λ  

and 

( ) iri
m

r efIH −+
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)1(λ  . (21) 

Since only the elements in the lower left q x q triangular part of the matrix ( )H Ir
m− −λ ( )1  

are nonzero where q is given by (17), Equation (21) can be consistent only for r ≥ r+1-i ≥ 

(r - q) + 1 ,i.e. only for 1 ≤ i ≤ q . Moreover by taking the last (r - q) elements of each of 

the vectors fi to be zero, the first q elements of each of these vectors can be uniquely 

determined from (21). Exploiting the lower triangular nature of ( )H Ir
m− −λ ( )1 , we find 

that the first q progenitors fi of the matrix Hr corresponding to the m x m Jordan blocks 

are given by : 

qief
q
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where for each i at least α i q i, + − ≠1 0  . 

 Second if k > q , the progenitors fi (i > q) corresponding to the (m-1) x (m-1) Jordan 

blocks will be found. Those progenitors should satisfy : 
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 The nonzero elements of the matrix ( )H Ir
m− −λ ( )2  lying in its lower left part form a 

nonsingular lower triangular matrix of order (q + k) where q is given by (17); 

consequently Eq.(23) is consistent only for r ≥ r+1-i ≥ r-(q+k)+1 ,i.e. for 1 ≤ i ≤ q+k . 

Since there are only a total of k progenitors, the remaining (k-q) progenitors fi ( q+1 ≤ i ≤ 

k ) can be evaluated from Eq.(23) . By taking the last (r-(q+k)) elements of each of those 

vectors fi to be zero, the first (q+k) elements of each of them can be uniquely determined 

from Eq. (23) . Exploiting the lower triangular nature of ( )H Ir
m− −λ ( )2  we find that the 

last (k-q) progenitors fi corresponding to the (m-1) x (m-1) Jordan blocks are given by : 
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where for each i at least α i q k i, + + − ≠1 0  . 

 Therefore the Jordan matrix of the matrix Hr corresponding to the modal matrix (20) 

is given by : 

{ }1,, JJDiagJ k L=  (25) 

where the Jordan blocks Ji are m x m for 1 ≤ i ≤ q and (m-1) x (m-1) for (q+1) ≤ i ≤ k ( if 

k > q ), i.e. all Jordan blocks are of two types at most. 

 In the special case of m = 2 , q Jordan blocks will be 2 x 2 and the remaining (k-q) 

blocks (if any) will be 1 x 1 , i.e. the corresponding column partitions of the modal matrix 

have no generalized Eigenvectors. In the particular case of k = 1 there will be only one 

Jordan block of dimension r x r ; this is actually the case of simple degeneracy where all 

generalized Eigenvectors are associated with the single Eigenvector er . 

 The particular form of the progenitors given by Eqs. (22) and (24) and of the 

remaining generalized Eigenvectors (if any) obtained by successive multiplication by 

( )H Ir − λ results in a certain structure of the modal matrix M of Eq (20), which will be 

illustrated in the examples given in the following section. 

III. Illustrative Examples 

Example 1 : 

r = 12 and k = 4 . 
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From (18) and (17), we get m = 3 and q = 4 . Since q = k , all Jordan blocks are 3 x 3 . 

The Jordan matrix is :  

{ }aaaa JJJJDiagJ ,,,=  

where each Jordan block is given by : 
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⎥
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P
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P
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The corresponding modal matrix is shown in Fig. 1 where an x represents a nonzero 

element (the rest of the elements are zero) and where the columns are numbered from the 

right to the left in accordance with the presentation of the previous section. 

Example 2 : 

r = 14 and k = 6 . 

From (18) and (17) we get m = 3 and q = 2 . The Jordan matrix is :  

{ }aabbbb JJJJJJDiagJ ,,,,,=  

where  
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and the corresponding modal matrix is shown in Fig. 2 . 

Example 3 : 

r = 24 and k = 7 . 

Here m = 4 and q = 3 . Therefore 3 Jordan blocks are 4 x 4 and 4 blocks are 3 x 3 . The 

modal matrix is shown in Fig. 3 . 

Example 4 : 

r = 6 and k = 1 . 

Here m = 6 and q = 1 . This is the simple degeneracy case where there is only 1 Jordan 

block of order 6 . The modal matrix is shown in Fig. 4 . 

IV. CONCLUSION 

 The Eigenvalue problem of a certain class of moment matrices is considered. It is 

shown that the Jordan matrix has no more than 2 types of Jordan blocks. the modal 

matrix has a corresponding certain pattern of zero and nonzero elements. 
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         12       10         8         6         4         2    1  

Fig. 1 : The modal matrix of example 1 

(An x represents a nonzero element) 
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         14       12       10         8          6         4         2    1  

Fig. 2 : The modal matrix of example 2 

(An x represents a nonzero element) 
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                    22             19             16             13                    9                    5                    1  

Fig. 3 : The modal matrix of example 3 

(An x represents a nonzero element) 
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2 
3 
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          6    5    4   3    2    1  

Fig. 4 : The modal matrix of example 4 

(An x represents a nonzero element) 

 


