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Abstract 

 

A numerical model using beam element is developed for the prediction of free 

vibrational natural frequencies of composite beams. Both flexural and torsional natural 

frequencies are studied. The mass and stiffness matrices of the element are derived from 

kinetic and strain energies. This is done using cubic Hermit polynomials as shape functions 

on the basis of first-order shear deformation theory. The effects of warping stiffness, shear 

deformation, and rotary inertia are incorporated in the formulation. Various boundary 

conditions (i.e., clamped–free, clamped–clamped, simple–clamped, and simply supported) are 

considered. Computations and numerical results are carried out using MATLAB software. 

Results are presented and compared to those previously published solutions in order to 

demonstrate the accuracy of the present model. 
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1. Introduction 

Fiber reinforced composite materials have been widely used in many potential 

engineering applications including aerospace, automotive as well as in the mechanical 

industries. The increasing usage of composite materials, in some applications area, is 

preferred to conventional ones mostly because of their high specific strength and stiffness. 

Laminated beams find applications in a variety of structural components such as helicopter 

blades, robot arms, etc. The increased use of laminated composite beams requires a better 

understanding of vibration characteristics of such composite beams; it is quite essential in the 

design of composite beams subjected to dynamic loads. Therefore, this research aims to 

establish a numerical model using finite element method in order to predict the free 

vibrational frequencies of those beams. This includes out-of-plane bending, in-plane bending 

and torsional vibrational frequencies of composite beams. 

The researches pertain to the vibration analysis of composite beams using the finite 

element technique have undergone rapid growth over the past few decades and are still 

growing. Teh and Huang [‎1] presented two finite element models based on a first-order theory 

for the free vibration analysis of fixed-free beams of general orthotropy. The discrete models 

include the transverse shear deformation effect and the rotary inertia effect. Chandrashekhara 

and Bangera [‎2] investigated the free vibration of angle-ply composite beams by a higher-

order shear deformation theory using the shear flexible FEM. The Poisson effect, which is 

often neglected in one-dimensional laminated beam analysis, is incorporated in the 

formulation of the beam constitutive equation. Also, the effects of in-plane inertia and rotary 

inertia are considered in the formulation of the mass matrix. Nabi and Ganesan [‎3] developed 

a general finite element based on a first-order deformation theory to study the free vibration 

characteristics of laminated composite beams. The formulation accounts for bi-axial bending 

as well as torsion. The required elastic constants are derived from a two-dimensional 

elasticity matrix. Maiti and Sinha [‎4] developed a finite element method (FEM) to analyze the 

vibration behavior of laminated composite. The developed finite element methods are based 

on a higher-order shear deformation theory and the conventional first-order theory and are 
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used to analyze accurately the bending and free vibration behaviour of laminated composite 

beams, using nine-noded isoparametric elements. Rao and Ganesan [‎5] investigated the 

harmonic response of tapered composite beams by using a finite element model. Only 

uniaxial bending is considered. The Poisson effect is incorporated in the formulation of the 

beam constitutive equations. Interlaminar stresses are evaluated by using stress equilibrium 

equations. The effects of in-plane inertia and rotary inertia are also considered in the 

formulation of the mass matrix. Bassiouni et al. [‎6] presented a finite element model to 

investigate the natural frequencies and mode shapes of the laminated composite beams. The 

model required all lamina had the same lateral displacement at a typical cross-section, but 

allowed each lamina to rotate a different amount from the other. The transverse shear 

deformation was included. Also, experimental investigation is carried out and the given 

results are used to validate the results with the finite element. Ramtekkar et al. [‎7]   developed 

a six-node plane-stress mixed finite element model by using Hamilton’s principle. The 

transverse stress components have been invoked as the nodal degrees of freedom by applying 

elasticity relations. Natural frequencies of cross-ply laminated beams were obtained and 

various mode shapes were presented. Murthy et al. [‎8] derived a refined 2-node beam element 

based on higher order shear deformation theory for axial-flexural-shear coupled deformation 

in asymmetrically stacked laminated composite beams. Aydogdu [‎9] studied the vibration of 

cross-ply laminated beams subjected to different sets of boundary conditions. The analysis is 

based on a three-degree-of-freedom shear deformable beam theory. Subramanian [‎10] has 

investigated the free vibration of LCBs by using two higher order displacement based on 

shear deformation theories and finite elements. Both theories assume a quintic and quartic 

variation of in-plane and transverse displacements in the thickness coordinates of the beam 

respectively. Tahani [‎11] developed a new layerwise beam theory for generally laminated 

composite beam and compared the analytical solutions for static bending and free vibration 

with the three-dimensional elasticity solution of cross-ply laminates in cylindrical bending 

and with three-dimensional finite element analysis for angle-ply laminates. Jun et al. [‎12] 

presented a dynamic finite element method for free vibration analysis of generally laminated 

composite beams on the basis of first order shear deformation theory. The influences of 

Poisson effect, couplings among extensional, bending and torsional deformations, shear 

deformation and rotary inertia are incorporated in the formulation. The aforementioned 

studies have contributed significantly to understand the vibration behavior of composite 

beams. Although a large number of investigators studied the problem of vibrational 

frequencies of composite beams using the finite element method, but most of them have been 

limited to out of plane bending vibrational behavior. 

In the present work, a general formulation capable of predicting free vibrational 

frequencies of composite beams using the finite element method is presented. The 

formulation has the capability to determine flexural vibration (vibration in x-z plane and 

vibration in x-y plane) and torsional vibration of composite beams. The used beam element 

has two-node, developed based upon Hamilton’s principle, where interdependent cubic and 

quadratic polynomials are used for the transverse and rotational displacements, respectively. 

The mass and stiffness matrices of the element are derived from kinetic and strain energies on 

the basis of first-order shear deformation theory using cubic Hermite polynomials as shape 

functions. The effects of warping stiffness, shear deformation, and rotary inertia are 

incorporated in the formulation.  

In the following section explicit expressions for the stiffness and mass matrices of the 

beam element are presented. 

2. Two-Node Beam Element for Free Vibration of Composite Beams  

The Bernoulli-Euler theory of free motion of elastic beams has been found to be 

inadequate for the prediction of higher modes of vibration and also inadequate for those 

beams when the effect of cross sectional dimensions on frequencies cannot be neglected. 

Timoshenko beam theory takes into account the effects of rotary inertia and shear 

deformations during vibration of a beam, as it is easy to see that during vibration a typical 

element of a beam performs not only a translatory motion, but also rotates. With the 



introduction of shear deformation, the assumption of the elementary theory that plane sections 

remain plane is no longer valid as shown in Figure 1. Consequently, the angle of rotation, 

which is equal to the slope of the deflection curve, is not simply obtained by differentiating 

the transverse displacement owing to the shear deformation. Thus, two independent motions, 

w(x, t) and θ(x, t) are considered in the description of flexural motion in x-z plane. The same 

is used in the description of torsional behavior, which will have two independent motions, 

ψ(x, t) and φ(x, t).  

 

 
Figure 1. Undeformed and deformed geometries for a Timoshenko beam element 

 
The following quantities can be defined as: 

wo = transverse displacement of the neutral plane of the beam 

∂wo/∂x = slope of the neutral plane of the beam 

θx = slope of the cross-section due to effects of the bending, or the time dependent  

rotation of the cross-section about y axis 

γxz = shear angle 

θx - ∂wo/∂x  = loss of slope, equal to the shear angle γxz 

2.1 Governing Equations  

From the Hamilton Principle, with the use of the kinematic hypotheses of the first-

order shear deformation laminate theory, it is possible to obtain the differential equations of 

motion for free natural uncoupled vibration of composite Timoshenko beams, which can be 

written in the following form: 

Free flexural vibration in x-z plane taking into accounts both rotary inertia and transverse 

shear deformation effects [‎13]: 
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Free flexural vibration in x-y plane taking into accounts both rotary inertia and lateral shear 

deformation effects: 
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Free torsional vibration taking into accounts both warping and rotational shear deformation 

effects [‎15]: 
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Where w(x,t) and v(x,t) are the flexural translations in z- and y-direction respectively, while 

ψ(x,t) represents the torsional rotation about the x-axis and φ(x, t) represents the warping 

torsional angle. 

(EIyy) represents flexural rigidity with respect to y-axis, (EIzz) represents flexural rigiditiy with 

respect to z-axis, (EIω) represents warping rigidity, (GIt) represents torsional rigidity, Syy is 

shear rigidity in x-y plane, Szz is shear rigidity in x-z plane, Sωω torsional shear rigidity, Iyy and 

Izz are the moments of inertia of the cross-section about y-axis and z-axis, respectively, Is is 

the polar moment of inertia of the cross-section about the shear center, Iω and It are warping 

and torsion constants, A is the cross-sectional area, and  is the mass density.  

The aforementioned rigidities for symmetric orthotropic laminated beam of solid rectangular 

cross section can be obtained by the following relations:  

Flexural rigidity with respect to y-axis
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Shear rigidity in x-z plane Szz, 
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Where b; width of the beam, h; thickness of the beam, a11; element 1–1 of the laminate 

extensional compliance matrix, d11; element 1–1 of the laminate bending compliance matrix, 

a66; element 6-6 of the laminate extensional compliance matrix, d66; element 6–6 of the 

laminate bending compliance matrix,
55'Q ; transformed shear stiffness, G13; lamina shear 

modulus in plane 1–3, G23; lamina shear modulus in plane 2–3, β; angle between the fiber 

direction and longitudinal axis of the beam. 

 

2.2 Beam Element Formulation 

The partial differential equations of motion of flexural vibration in x-z plane are 

transformed to a two-node finite element based discrete set of differential equations using 

“newly” developed shape functions for (w) and (θ). These functions are developed so that 



they exactly satisfy the homogeneous form of both of the static equations of equilibrium of an 

unstressed uniform Timoshenko beam. 

For the static case with no external force acting on the beam, the governing equation of 

motion (Timoshenko beam equations) of flexural vibration in x-z plane reduces to [‎13]: 
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From equation (15), it can be seen that this governing equation of the beam based on 

Timoshenko beam theory can only be satisfied if the polynomial order for w is selected one 

order higher than the polynomial order for θ. Let w be approximated by a cubic polynomial 

and θ be approximated by a quadratic polynomial as: 
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Then the cubic shape function for (w) and a quadratic shape function for (θ) will be of the 

form [‎13]: 
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Where (w1), (θ1), (w2), (θ2) are the nodal displacements and rotations at the beam end nodes 

(1) and (2), respectively, and (aij) and (bij) are unknown coefficients. Four of the (aij) and four 

of the (bij) coefficients can be determined in terms of the remaining 12 coefficients by 

enforcing that (w(x = L) = w2) and (θ(x = L) = θ2). The remaining coefficients are determined 

by substituting the shape functions into the equations (15) and (16) and solving. The resulting 

explicit form of the two shape functions are given as [‎13]: 
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() is the ratio of the beam bending stiffness to shear stiffness and is given by: 
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And the array of nodal displacements and rotations is given as: 

   2211  ww
Te   (25) 

It is interesting to note the dependency the shape functions have upon (), which is a ratio of 

the beam bending stiffness to the shear stiffness. For long slender beams ( = 0), [Nw] reduces 

to the cubic Hermitian polynomial and [Nθ] reduces to the derivative of [Nw] with respect to 

(x). 

The strain energy of the beam element undergoing flexural vibration in x-z plane depends 

upon the linear strain ε, the shear strain  and is given by: 
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And, the kinetic energy ][ e

wT of the beam element depends on the sum of the kinetic energy 

due to the linear velocity dw/dt and due to angular twist θ and is given by:  
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The stiffness matrix ][ e

wK  of the regular beam element is the sum of the bending stiffness and 

the shear stiffness and is written in matrix form as: 
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Substituting the mode shape functions [Nw], [Nθ] into equation (28) and integrating, get the 

stiffness matrix of the regular beam element as ][ e

wK  which is given by [‎13]: 
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Which is the element stiffness matrix for a uniform beam element undergoing flexural 

vibration in x-z plane, with including shear deformation effect in x-z plane (Szz). 

Similarly, the element stiffness matrix for a uniform beam undergoing flexural vibration in x-

y plane, with including shear deformation effect in x-y plane (Syy) is expressed as ][ e

vK : 
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Where the ratio of the beam bending stiffness to shear stiffness  will be: 
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The mass matrix of the regular beam element, under flexural vibration in x-z plane is the sum 

of the translational mass and the rotational mass, and is given in matrix form as: 
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Substituting the mode shape functions [Nw], [Nθ] into equation (32) and integrating, give the 

mass matrix of the regular beam element as: 

][][][
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e

w MMM    (33) 

Where [MA] and ][
yyIM 

 in equation (33) is associated with the translational inertia and 

rotary inertia (with the shear) as: 
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From equation (33) [‎14]: 
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Where
A

I
r
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2 ,  is given by
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Similarly, for the mass matrix of the regular beam element, under flexural vibration in x-y 

plane ][ e

vM  will be as the same as of the mass matrix, under flexural vibration in x-z plane 

][ e

wM but with 
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I
r zz2 and
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The same shape functions [Nw] and [Nθ] given by equations (22) and (23) will be used for 

describing the torsional vibration of the beam element, including both torsional warping and 

shear deformation effects. Thus, the shape functions of [Nψ] and [Nφ] will be the same as 

shape functions of [Nw] and [Nθ], respectively. 

ψ be approximated by a cubic polynomial and φ be approximated by a quadratic polynomial 

as: 
3

4

2

321)( xaxaxaax   (37) 

2

321)( xbxbbx   (38) 

Where ψ(x) and φ(x) are two independent motions. 

From the strain energy of the beam element undergoing torsional vibration, including both 

warping and shear deformation effects, the stiffness matrix [
eK ] of the beam element will be 

the sum of the warping stiffness, the torsional stiffness, and the torsional shear stiffness, and 

can be written in matrix form as: 
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Where the element torsional stiffness [
e

tK ] can be obtained by the following relation: 
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After integration the above relation yields to: 
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The mass matrix of the regular beam element under torsional vibration including warping 

inertia effect is: 
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The shape functions of [Nψ] and [Nφ] are taken the same as shape functions of [Nw] and [Nθ], 

respectively. Substituting these shape functions into equation (42) and integrating, give the 

torsional mass matrix of the regular beam element as: 
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From equation (43): 
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It is clear that if the shear deformations and rotary inertia effects are neglected that is ( = 0 

and r = 0), all the stiffness and mass matrices will be the stiffness and mass matrices of a 

Bernoulli-Euler model. 

 

 

2.3 Solution procedure for eigenvalue Problem  



Applying Lagrange's equation yields the element equation of motion for free vibration of 

laminated composite beams as: 

0}]{[}]{[  eeee KM   (47) 

Upon assembly of the element equations, the equations of motion can be determined for the 

entire structure in the form: 

0}]{[}]{[   KM   (48) 

Where K is the global stiffness matrix, obtained, by proper assembly of the local stiffness 

matrices ( eK ) and M is the global inertia matrix, obtained, by proper assembly of the local 

mass matrices ( eM ). 

The 12×12 stiffness matrix K takes the following form: 
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Similarly, the mass matrix M can be written as: 
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And the vector containing 12 nodal displacements and slopes, (δ
T
), can be written as: 

][ 221122112211  zzyyT vvww  (51) 

The finite element approximations to the natural frequencies and mode shapes are obtained 

using eigenvalue - eigenvector problem method; that is, the natural frequency approximations 

are the square roots of the eigenvalues of [M
-1

K], and the mode shapes are developed from the 

eigenvectors. 

 

Imposing harmonic motion to equation (48) in the form: 

    t sin  (42) 

Get: 

       2MK  (53) 

Hence: 

      
 21

KM  (54) 

This is the eigenvalue problem that was solved to obtain the natural frequencies and mode 

shapes of beams under investigation.  

Where ω is the angular natural frequency and Δ is the mode shape of the structure for the 

corresponding natural frequency. 

 

3. Validation and numerical results 

3.1 Validation 

In order to validate the accuracy and applicability of the developed model, various examples 

are presented and the results are compared with the available in the literature.  

Example 1. Out-of-plane bending frequencies of a simply supported (0
0
) graphite epoxy 

beam: 

Two simply supported orthotropic (0
0
) graphite epoxy beams with different aspect 

ratios are considered. The shape of the cross-section of the beams is assumed to be a square 

(h/b=1). The material properties are given in Table 1, which are taken from the literature [‎5]. 

The first five out-of-plane bending natural frequencies of the thin beam (L/h=120) and thick 

beam (L/h=15) using the developed FEM model are presented in Table 6.2, where L is the 

beam length. Those results are compared with the results of [‎2], [‎3], and [‎5]. As seen from the 

table, the present model yielded results in good agreements with the results given in the 

literature. 



Table 1. The transversely isotropic material properties  

Properties 

E1  

(GPa) 

E2 = E3 

(GPa) 

G12=G13 

(GPa) 

G23 

(GPa) 

υ12= υ13 

 

ρ  

(kg/m
3
) 

graphite epoxy 

(AS4/3501-6) 
144.8 9.65 4.14 3.45 0.3 1389.23 

 

Table 2. Out-of-plane bending frequencies (kHz) for a simply supported (0
0
) graphite 

epoxy composite beam  

L/h Mode 
Present Reference 

FEM [‎2] [‎3] [‎5] 

120  

(L=762 mm) 

1 0.052 0.051 0.054 0.051 

2 0.209 0.203 0.213 0.202 

3 0.468 0.454 0.472 0.454 

4 0.824 0.804 0.801 0.804 

5 1.275 1.262 - 1.252 

51  

(L=381 mm) 

1 0.751 0.755 0.789 0.754 

2 2.537 2.548 2.656 2.555 

3 4.707 4.716 4.895 4.753 

4 6.960 6.960 7.165 7.052 

5 9.212 9.194 - 9.383 

Example 2. Out-of-plane bending frequencies of symmetric angle ply [β/-β/-β/β] graphite 

epoxy beam with different boundary conditions: 

The material and geometrical properties used in this example are same as the 

properties of the thick beam (L/h=15, h/b=1) given in the previous example. Different 

boundary conditions are considered to study the performance of the present model. 

The fundamental out-of-plane bending frequencies of symmetric angle-ply [β/-β/-β/β] 

composite beam for various boundary conditions are presented in Table 3. It can be seen that 

the present results using FEM demonstrate good agreement with the results of reference [‎12] 

for all values of β. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Fundamental out of plane bending frequencies (Hz) of symmetric angle ply [β/-

β/-β/β] composite beam 



Boundary 

conditions 
Method 

β 

0
0
 15

0
 30

0
 45

0
 60

0
 75

0
 90

0
 

C-F 
FEM 277.0 208.0 138.0 89.0 75.0 74.0 74.0 

[‎12] 278.4 207.2 137.9 89.3 74.7 73.7 74.2 

C-C 
FEM 1373.0 1130.0 812.0 549.0 463.0 456.0 459.0 

[‎12] 1376.4 1125.7 811.2 548.4 462.9 456.4 459.1 

C-S 
FEM 1055.0 836.0 580.0 385.0 323.0 319.0 321.0 

[‎12] 1058.5 856.1 592.4 386.3 323.2 318.6 320.6 

S-S 
FEM 752.0 572.0 384.1 250.1 209.4 206.5 207.8 

[‎12] 753.2 656.6 428.6 256.4 209.2 206.1 207.4 

C-F Clamped-Free  C-C Clamped -Clamped   C-S Clamped-simply supported   S-S simply 

supported-simply supported 

 

 

Example 3. Torsional natural frequencies of simply supported I-beam: 

In this example, using FEM, the torsional natural frequencies for the simply 

supported (S–S) I-beam with symmetric lamination of [45/-45/-45/45] are evaluated. The I-

beam has flange width b=600 mm and the height d =600 mm, as shown in Figure 2. The beam 

length L is 12 m and the thicknesses tb of flanges and web are 30 mm. All constituent flanges 

and web are assumed to be symmetrically laminated with respect to its mid-plane. The 

graphite-epoxy is used for the beam with its material as given in Table 1. 

 

Figure 2. Cross section of the I-beam 

 
The lowest four torsional natural frequencies for the S-S I beam obtained using FEM are 

presented in Table 4. It can be shown that the present results are in good agreement with those 

from [‎16] and [‎17] 

 
 

 

 

 

Table 4. Torsional natural frequencies (Hz) of S–S I beam with [45/-45/-45/45] 



Method 
Mode 

1 2 3 4 

Present FEM 10.69 27.71 53.61 88.88 

Reference 
[‎16] 10.96 28.03 53.85 89.05 

[‎17] 10.96 28.10 54.18 90.02 

 

From the validation process, it can be concluded that results from the present model 

demonstrate a good agreement with the results of references, for both flexural and torsional 

frequencies. 

 

3.2 Effects of Shear deformation and Rotary Inertia  

The investigation is performed to a graphite-epoxy composite beam of square cross-

section of 4 layers of equal thickness with lay-up of symmetric cross-ply [0/90]s. Clamped-

free and clamped-clamped boundary conditions are considered. Material properties are given 

in Table 1. The investigation includes the thin beam (L/h=120, L=762 mm) and thick beam 

(L/h=15, L=381 mm). The natural frequencies are calculated with and without including the 

effects of shear deformation and rotary inertia to study their influence on the natural 

frequencies. The effects of shear deformation and rotary inertia on the first six out-of-plane 

and in-plane bending frequencies of the thin beam are tabulated in Tables 5-8 for C-F and C-

C boundary conditions. The percentage difference between Timoshenko's and Bernoulli's 

frequencies is determined as: 

100 difference Percentage
Timoshenko

BernoulliTimoshenko





f

ff

 
 

Table 5. The shear and rotary inertia effects on out-of-plane bending frequencies (Hz) of 

C-F graphite-epoxy beam (L/h=120, L=762mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including rotary 

inertia 

1 16.2 16.2 16.2 16.2 0.0 

2 101.6 101.6 101.3 101.3 0.3 

3 284.5 284.5 282.2 282.2 0.8 

4 557.6 557.3 549.3 549.1 1.5 

5 921.7 921.1 900.0 899.5 2.5 

6 1377 1375.5 1330.4 1329.3 3.6 

 

 

 

 

 

 

 

 

 

 

 



Table 6. The shear and rotary inertia effects on out-of-plane bending frequencies (Hz) of 

C-C graphite-epoxy beam (L/h=120, L=762mm) 

Mode 
Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including rotary 

inertia 

1 103.0 103.0 102.7 102.7 0.3 

2 
285.0 285.0 281.3 281.3 1.3 

3 558.0 558.0 547.0 546.9 2.0 

4 922.0 922.0 895.3 894.9 3.0 

5 1378.0 1377.0 1321.8 1320.9 4.3 

6 1924.0 1922.0 1821.7 1820.1 5.7 

 
Table 7. The shear and rotary inertia effects on in-plane bending frequencies (Hz) of C-

F graphite-epoxy beam (L/h=120, L=762mm) 

Mode 

Without shear deformation With shear deformation Percentage 

difference 

(%) 

Without rotary 

inertia 

With rotary 

inertia 

Without rotary 

inertia 

With rotary 

inertia 

1 
13.3 13.3 13.3 13.3 0.0 

2 83.3 83.3 83.1 83.1 0.2 

3 
233.3 233.2 232.1 232.1 0.5 

4 
457.1 456.9 452.9 452.7 0.9 

5 
755.6 755.1 744.6 744.1 1.5 

6 
1128.7 1127.6 1104.9 1103.9 2.2 

 

Table 8. The shear and rotary inertia effects on in-plane bending frequencies (Hz) of C-

C graphite-epoxy beam (L/h=120, L=762mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 

Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including rotary 

inertia 

1 
84.6 84.6 84.4 84.4 0.2 

2 
233.3 233.3 231.6 231.6 0.7 

3 
457.3 457.2 451.8 451.7 1.2 

4 
756.0 755.6 742.2 741.9 1.9 

5 
1129.3 1128.5 1100.5 1099.8 2.7 

6 
1577.4 1575.6 1524.0 1522.6 3.6 

 



As presented in Tables 5-8, it can be seen that, the classical theory for the thin beam with 

shear deformation and rotary inertia neglected yields accurate results for the lower modes and 

when the number of modes increases percentage differences increase.  

 

The effects of shear deformation and rotary inertia on out-of-plane and in-plane 

bending frequencies of the thick beam are presented in Tables 9-12 for C-F and C-C boundary 

conditions. As shown, ignoring the shear deformation and rotary inertia leads to an over 

prediction of the natural frequencies of the thick beam. The classical theory yields strikingly 

inaccurate results for the thick beam (high percentage differences). The percentage 

differences increase with increasing number of modes and increasing number of constrains 

for boundary conditions. The percentage difference is considerably higher for the higher 

frequencies, for example, the percentage difference for the sixth natural frequency of out-of-

plane vibration is 140.6% for clamped-free ends. This value reaches 193.9% for clamped-

clamped ends. 

 
Table 9. The shear and rotary inertia effects on out-of-plane bending frequencies (Hz) of 

C-F graphite-epoxy beam (L/h=15, L=381mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including 

rotary inertia 

1 270 270 263 262 3.1 

2 1700 1690 1395 1390 22.3 

3 4770 4700 3267 3252 46.7 

4 9340 9110 5342 5316 75.7 

5 15450 14830 7488 7453 107.3 

6 23070 21770 9629 9588 140.6 

 
Table 10. The shear and rotary inertia effects on out-of-plane bending frequencies (Hz) 

of C-C graphite-epoxy beam (L/h=15, L=381mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including 

rotary inertia 

1 1730 1730 1307 1306 32.5 

2 4770 4730 2931 2926 63.0 

3 9350 9180 4835 4824 93.8 

4 15450 14980 6853 6837 126.0 

5 23080 22030 8918 8899 159.4 

6 32240 30200 10990 10970 193.9 

 

 

 

 

 



Table 11. The shear and rotary inertia effects on in-plane bending frequencies (Hz) of C-

F graphite-epoxy beam (L/h=15, L=381mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including 

rotary inertia 

1 212 210 209 208 1.9 

2 1330 1324 1181 1176 13.1 

3 3730 3678 2911 2892 29.0 

4 7310 7123 4956 4917 48.7 

5 12090 11603 7149 7091 70.5 

6 18060 17031 9389 9317 93.8 

 

Table 12. The shear and rotary inertia effects on in-plane bending frequencies (Hz) of C-

C graphite-epoxy beam (L/h=15, L=381mm) 

Mode 

Neglecting shear deformation Including shear deformation Percentage 

difference 

(%) 
Neglecting 

rotary inertia 

Including 

rotary inertia 

Neglecting 

rotary inertia 

Including 

rotary inertia 

1 1350 1350 1136 1135 18.9 

2 3730 3700 2689 2682 39.1 

3 7320 7190 4573 4555 60.7 

4 12100 11730 6622 6592 83.6 

5 18070 17250 8756 8717 107.3 

6 25240 23640 10927 10882 131.9 

 
From the results, it can be seen that the shear deformation and the rotary inertia have 

great effects on out-of-plane and in-plane bending frequencies of the thick beam L/h=15. It 

can be shown that the classical theory, which neglects the effects of rotary inertia and shear 

deformation, over-predicts the natural frequencies for the specified boundary conditions. In 

other words, the effects of shear deformation and rotary inertia are to decrease the out-of 

plane and in-plane bending natural frequencies. 

 

4. Conclusion 

A finite element model applicable to the dynamic behavior of laminated composite 

beams has been developed on the basis of first-order shear deformation theory. This model 

has the capability for determining flexural and torsional frequencies of laminated beams. The 

shear deformation and rotary inertia effects has been investigated. It has been found that 

neglecting shear deformation and rotary inertia effects yields strikingly inaccurate results for 

thick beams. It can be drawn from this research that dynamic problems of laminated 

composites must be solved employing the rotary inertia and the shear deformation effects in 

the mathematical model to obtain solutions that are more realistic. Finally, it is shown that the 

developed model using finite element method provides an appropriate and efficient means in 

predicting accurate natural frequencies of flexural and torsional vibrations for various 

configurations and boundary conditions of the composite beams. 
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