بيانات عن البحث الثامن المقدم للترقية

٨					رقم البحث في القائمة المعتمدة
Experimental investigation of the crashworthiness performance of					عنوان البحث باللغة الانجليزية
fiber and fiber steel-reinforced composites tubes					
Samer Gowid, Elsadig Mahdi, Jamil Renno, Sadok Sassi, Ghais					أسماء المؤلفين المشاركين
Kharmanda, and Abdallah Shokry					بالترتيب
Composite Structures ISSN: 0263-8223					اسم المجلة + رقم المجلد
Volume	251	Issue		155N: 0205-6225	و العدد + ISSN
Web of sciene	ce	IF	Scopus	CiteScore	تصنيف المجلة
Q1		5.138	Q1	8.7	العليف (عبد
01 November, 2020.					تاريخ النشر
لا البحث غير مشتق من رسالة علمية					هل البحث مشتق من رسالة علمية؟
لا البحث غير مسلق من رسانه عميه					علمية؟

ملخص البحث باللغة الإنجليزية:

Crashworthiness plays a key role in energy absorption and hence in vehicle accidents. The energy absorption capacity of laminated composite materials is heavily investigated in the industry due to their low cost, corrosion resistance, and high strength to weight ratio. Thus, this paper experimentally investigates the effect of the addition of woven fiber laminates and fiber steel sandwich laminates on the strength and energy absorption capacity of PVC polymer tubes. The sandwich-structured composite is formed from two glass-fiber composite layers with a steel layer in between. Four normal and hybrid reinforcement configurations are proposed, evaluated, and compared to the benchmark unreinforced tube. The crashworthiness characteristics of the reinforced composite tubes were identified using quasi-static axial compression tests. The crushing parameters, in terms of loaddisplacement response, load-carrying capacity, Specific Energy (SE) absorption capability, and Crush Force Efficiency (CFE) were determined for each sample. Moreover, Scanning Electron Microscope (SEM) analysis was carried out to investigate the microstructures, which clearly indicate the fractured surfaces. The results show that the tube reinforced with a 1 mm steel layer sandwiched between 2 layers and 4 layers of woven glass-fiber has the highest SE and CFE of 14 J/g and 0.91, respectively, while the tube reinforced with 7 layers of glass fiber layers only has the highest Initial Peak Load (IPF) of 139.36 kN.