Geologic Origin and Physiochemical Characterizations of Tertiary Bentonitic Clays in the North Western Desert of Egypt for Some Industrial Applications

By

Mohamed Ali Mohamed Ali Agha

A Dissertation

Submitted to Fayoum University

for the degree of

Doctor of Philosophy

in

Geology

Department of Geology

Faculty of Science

Fayoum University

2014

Geologic Origin and Physiochemical Characterizations of Tertiary Bentonitic Clays in the North Western Desert of Egypt for Some Industrial Applications

By

Mohamed Ali Mohamed Ali Agha

(B.Sc. in Geology and Chemistry, Cairo University, 1999)

(M.Sc. in Mineralogy, Petrology and Ore deposits, Fayoum University, 2007)

Supervised by

• Dr. Mohamed Said Abu El Ghar

Associate Professor of Sedimentology

Geology Department, Faculty of Science, Fayoum University, Egypt.

• Professor/ Ali Abdel-Motelib Ali

Professor of Applied Geology

Geology Department, Faculty of Science, Cairo University, Egypt.

• Professor/ Ray E. Ferrell

Professor of Geology and Mineralogy of Clays and Clay Minerals

Department of Geology & Geophysics, Louisiana State University, Louisiana, USA.

Approval Sheet

Geologic Origin and Physiochemical Characterizations of Tertiary Bentonitic Clays in the North Western Desert of Egypt for Some Industrial Applications

By

Mohamed Ali Mohamed Ali Agha

(B.Sc. in Geology and Chemistry, Cairo University, 1999)

(M.Sc. in Mineralogy, Petrology and Ore deposits, Fayoum University, 2007)

This dissertation for Ph.D. degree in Geology has been approved by:

• Dr. Mohamed Said Abu El Ghar

Associate Professor of Sedimentology

Geology Department, Faculty of Science, Fayoum University, Egypt.

• Professor/ Ali Abdel-Motelib Ali

Professor of Applied Geology

Geology Department, Faculty of Science, Cairo University, Egypt.

• Professor/ Ray E. Ferrell

Professor of Geology and Mineralogy of Clays and Clay Minerals

Department of Geology & Geophysics, Louisiana State University, Louisiana, USA.

Head of Geology Department Faculty of Science, Fayoum University **Dr. Sobhi A. Helal**

Acknowledgments

I owe the accomplishment of this study to many people. First and foremost, I wish to express my deepest gratefulness and heartfelt thanks to Professor **Ray E. Ferrell** for his support, encouragement, fruitful suggestions, fertile discussion, and reviewing the dissertation. It was an honor to work with him.

Special appreciations have to be directed to Professor **Ali Abdel Motelib** for suggesting the point of study, field work, and supervision. I am greatly indebted to Dr. **Mohamed Said Abu El Ghar** and Dr. **Sobhi Helal** for their wise supervision, assistance in the fieldwork and provided great support during the study.

The investigation was funded by **the Egyptian Cultural Affairs and Missions Sector**, as a joint supervision program. The author expresses his sincere greetings to Professor **Ahmed G. Shedeed** and Professor **Nabil Yassen** for making his work possible in Egypt. I should extend my thanks to Professor **Mohamed El Rabeaai**, Dr. **Amr Abel Nabi**, and Dr. **Mosaa Negm** for productive discussions.

The LSU Department of Geology & Geophysics provided support for the study. I am extremely thankful to Professor George F. Hart for providing appropriate statistical methods. The author expresses his sincere thanks to Wanda LeBlanc for her indescribable and skillful assistance during all phases of laboratory work at Louisiana State University. Many thanks for Dr. Xiagong Xie (SEM Lab.), Professor Murad Abu-Farsakh (Louisiana Transportation Research Center), Professor Andrew K. Wojtanowicz, Fenelon Nunes (Mud Drilling Lab.), Andy Harrison, and Nchekwube Mbmalu (former LSU graduate students) for their kind help.

Above all, many, countless and lots of thanks to my parents, my wonderful wife "Shimaa" and my lovely children for their never-ending encouragement and patience!

I dedicate this work

То

My Parents

My wife

My Children: Ali, Omar and Yussuf

Curriculum Vitae

Name: Mohamed Ali Mohamed Ali Agha

Gender: Male

Status: Married

Nationality: Egyptian

Date of Birth: 24th March, 1978

Place of Birth: Cairo, Egypt

Cell phone #: (002) 01010807077

E-mail: aliomaragha@yahoo.com

Professional Profile

Eager to teach college students and carry out researches about applied mineralogy, using a unique combination of twelve years' education experience coupled with mineralogy and petrology background.

- Hold Master's Degree in Mineralogy, Petrology and Ore deposits.
- Experienced in Clay Mineralogy and petrogenesis of clays.

Scientific Qualifications

PhD student, 2009-untill now: I have been awarded a full joint scholarship sponsored by the Egyptian Government for two years (Oct. 2009- Oct. 2011) to conduct PhD research studies connected to my PhD registered at the Fayoum University. These researches are carried out at Louisiana State University (LSU), Baton Rouge, Louisiana, USA under the supervision of Prof. Dr. Ray E. Ferrell.

M.Sc., 2003-2007: Thesis entitled "Geology and Geochemistry of Gabal Agib Ring Complex, South Eastern Desert, Egypt" Department of Geology, Faculty of Science, Fayoum University, Fayoum, Egypt.

Post Graduate Courses 2001: Attended post graduate courses as a partial fulfillment of requirements of the degree of Master of Science (Mineralogy, Petrology, and Ore Deposits), **Grade:** Very Good.

B.Sc., 1995-1999: Geology and Chemistry; **Grade** "very good", **Rank** "1st", Department of Geology, Faculty of Science, Cairo University, Fayoum Branch, Fayoum, Egypt.

Certificates

- International TOEFL(iBT), Score: 80, Registration No. 6961943, 2009.
- Accredited the International Computer Driving License (ICDL), Syllabus version 4, UNESCO Office in Cairo, 2007.

Training Sessions

- Operating of X-Ray XRF device by Bruker Handheld, 2010.
- Teaching Assistant, 2008.
- Quality Standards in the Education Process, 2007.
- Use of Technology in Teaching, 2006.
- How to Write Scientific Researches, 2006.
- Modern Trends in Teaching, 2006.
- Decisions Making and Solving Problems, 2006.

Awards and Honors

- Superlative Instructor Award, Cairo University, 2005.
- Superlative Assistant Lecturer Award, Cairo University, 2009.

Computer Skills

- Software: Clays Software (Clay++, MacDiff); Geochemical software (Newpet 2.0, Minpet); IBM Software (Microsoft Windows[®] and DOS, Microsoft Word, Microsoft Excel, Microsoft Power Point)
- Working knowledge of the Internet
- System installations; reasonable knowledge of PC system (setup/install, upgrade and maintain specialist software)

Employment

- Assistant lecturer in the Geology Department, Faculty of Science, Fayoum University, Fayoum, Egypt (2007 present).
- Instructor in the Geology Department, Faculty of Science, Fayoum University, Fayoum, Egypt (2005 2007).
- **Instructor in the Geology Department**, Faculty of Science, Cairo University, Fayoum Branch, Fayoum, Egypt (2000 2005).

Publications from the Thesis

- Agha, M.A., Ferrell, R. E., Hart, G.F. (2012): Mineralogy of Egyptian Bentonitic Clays I: Discriminant Function Analysis. *Clays and Clay Minerals*, **60**, 387-404.
- Agha, M.A., Ferrell, R.E., Hart, G.F., Abu EL Ghar, M.S., and Abdel-Motelib, A. (2013) Mineralogy of Egyptian bentonitic clays II; Geologic Origin. *Clays and Clay Minerals*, **61**, 551-565.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
ABSTRACT	xviii
CHAPTER 1 INTRODUCTION	1
1.1. OBJECTIVES OF THE STUDY	2
1.2. REGIONAL GEOMORPHOLOGY AND GEOLOGIC SETTING	3
1.3. STRATIGRAPHIC OUTLINES	6
1.3.1. Gehannam Formation or Ravine Beds (Middle Eocene)	8
1.3.2. Birket Qarun Formation (Upper Eocene)	9
1.3.3. Qasr El Sagha Formation (Upper Eocene)	
1.3.4. Moghra Formation (Lower Miocene)	11
1.3.5. Marmarica Formation (Middle Miocene)	
1.3.6. Qaret El Muluk Formation (Upper Pliocene)	
1.4. LOCATION OF STUDY AREAS	
1.4.1 Southwest Alamein Province (P1)	
1.4.2. South El Hammam Province (El Barkan; P2)	14
1.4.3. Wadi El Natrun Province (P3)	
1.4.4. El Fayoum Province (P4)	
1.5. SAMPLING AND FIELD DESCRIPTION	
1.5.1. Wadi El Natrun Province (Q5; s025-s032)	17
1.5.2. Southwest Alamein Province (Q1-Q3; s001-s014)	
1.5.2.1. Deir El Moreir (Q1; s001-s006)	19
1.5.2.2. Deir Abul Hegif (Q2; s007-s010)	
1.5.2.3. Deir El Harrah (Q3; s011-s014)	
1.5.3. South El Hammam Province (Q4; s015-s024)	
1.5.4. El Fayoum Depression (P4)	
1.5.4.1. Qasr El Sagha (Q6; s033-s062)	

1.5.4.2. Kom Oshim (Q7; s063-s080)	24
1.5.4.3. Girza (Q8; s081-s096)	26
1.5.4.4. Qalamshah (Q9; s097-s110)	
1.5.4.5. Shaklofa (Q11; s113-s116)	30
1.5.4.6. Cemetery (Q10; s111-112) and Reigha (Q12; s117-s124)	
1.6. REFERENCES	

CHAPTER 2 MINERALOGY OF EGYPTIAN BENTONITIC CLAYS I; DISCRIMINANT FUNCTION ANALYSIS

DISCRIMINANT FUNCTION ANALYSIS	
2.1. ABSTRACT	
2.2. INTRODUCTION	40
2.3. MATERIALS AND METHODS	42
2.3.1. Samples	42
2.3.2. X-ray Powder Diffraction	43
2.3.2.1. Sample Preparation	43
2.3.2.2. Whole-Sample XRD Analysis	44
2.3.2.3. Clay-Fraction Mineralogy	44
2.3.3. Statistical Analysis Methods	46
2.4. RESULTS	47
2.4.1.Qualitative Mineral Content	47
2.4.2. Quantitative X-Ray Mineralogy	
2.4.3. Characteristics of the provinces	53
2.4.4. Characteristics of the Epochs	54
2.4.5. Characteristics of the Quarries	
2.4.6. Summary of DFA Results	62
2.5. DISCUSSION	63
2.6. CONCLUSION	67
2.7. ACKNOWLEDGMENT	67
2.8. REFERENCES	

CHAPTER 3 MINERALOGY OF EGYPTIAN BENTONITIC CLAYS I ORIGIN	I: GEOLOGIC
3.1. ABSTRACT	
3.2. INTRODUCTION	77
3.2.1. Geologic Setting	
3.3. MATERIALS AND METHODS	
3.3.1. Samples	
3.3.2. Laboratory Procedures	
3.3.3. Discriminant Function Analysis (DFA)	
3.4. RESULTS	
3.4.1. Microfabric	
3.4.2. Vertical Variation in XRD Predictor Mineral Abundances	
3.5. DISCUSSION	
3.5.1. Origin of Clay Mineral Assemblages	
3.5.1.1. Paleo-Climate Index (CI)	
3.5.1.2. Parent Rock Index (PI)	
3.5.1.3. Source Areas	
3.5.1.4. Physical Sorting	96
3.5.1.5. Burial Diagenesis	
3.5.1.6. Alternative smectite origin	
3.5.2. Importance of DFA	
3.5.3. Geologic History and Origin of the Bentonitic Clay Deposits	
3.6. SUMMARY OF ORIGIN	100
3.7. CONCLUSIONS	
3.8. ACKNOWLEDGMENT	101
3.9. REFERENCES	

CHAPTER 4 MINERALOGY OF EGYPTIAN BENTONITIC CLAYS III EXCHANGE CAPACITY AND EXCHANGEABLE CATIONS	: CATION
4.1. ABSTRACT	
4.2. INTRODUCTION	119
4.3. METHODS	121
4.3.1. Cation Exchange Capacity and Exchangeable Cations	121
4.3.1.1. Preparation of Exchange Solutions	121
4.3.1.2. Exchange Procedure	122
4.3.1.3. Measurement Procedure	122
4.3.2. Scanning Electron Microscope with X-ray Spectroscopy (SEM-EDS)	123
4.3.3. Data Analysis	123
4.4. RESULTS	124
4.4.1. Cation Exchange Capacity and Exchangeable Cations	124
4.4.1.1. Exchange variables related to sample weight	124
4.4.2. SEM-EDS	126
4.5. DISCUSSION	127
4.5.1. Soluble Mineral Contamination	127
4.5.2. Stratigraphic Variability	131
4.5.3. Purification of Exchange Cation Data	135
4.5.4. Mineralogical Control of CEC	137
4.5.4.1. Validity of the Regression Equations	141
4.6. CONCLUSIONS	
4.7. ACKNOWLEDGMENT	
4.8. REFERENCES	

CHAPTER 5 PHYSICAL PROPERTIES AND Na-ACTIVAT BENTONITIC CLAYS FOR INDUSTRIAL APPLICATION SUITA	ION OF THE NWD ABILITY150
5.1. ABSTRACT	
5.2. INTRODUCTION	
5.3. METHODS	

5.3.1. Specific Surface Area	
5.3.1.1. Desiccant preparation	
5.3.1.2. Procedure	
5.3.2. Swelling index and Na-activation	155
5.3.2.1. Procedure	
5.3.3. Compressive Strength	
5.3.3.1. Procedure	
5.3.4. Rheological Properties	
5.3.4.1. Procedure	
5.3.5. Statistical Analysis	
5.4. RESULTS	
5.4.1. Specific Surface Area (SSA)	
5.4.2. Swelling index and Na-activation	
5.4.3. Compressive Strength	
5.4.4. Rheological Properties	
5.5. DISCUSSION	
5.5.1. Specific Surface Area (SSA)	
5.5.2. Swelling index and Na-activation	
5.5.2.1. Swelling Index of Raw Samples	
5.5.2.2. Swelling Index of Na-activated Samples and Quality	
5.5.2.3. Swelling Index of Na-activated Samples and Grade	
5.5.3. Compressive Strength	
5.5.3.1. Effect of Physiochemical Properties	
5.5.3.2. Effect of water and clay	
5.5.3.3. Suitability for foundry purposes	
5.5.4. Rheological Properties	
5.5.4.1. Effect of clay concentration and mineralogy	
5.5.4.2. Effect of activation	
5.5.4.3. API and OCMA Specifications	

5.6. CON	ICLUSIONS	
5.7. REFE	ERENCES	

CHAPTER 6 SUMMARY	19	2
	1/	-

APPENDIX I STRATIGRAPHIC CHARACTERISTICS AND FIELD NOTES	. 198
APPENDIX II QUANTITATIVE XRD-MINERALOGY	. 199
APPENDIX III CATION EXCHANGE CAPACITY AND EXCHANGED CATIONS	. 203
APPENDIX IV SPECIFIC SURFACE AREA	. 207
APPENDIX V SWELLING INDEX DATA	. 208
APPENDIX VI GREEN AND DRY COMPRESSIVE STRENGTHS	. 209
APPENDIX VII RHEOLOGICAL PROPERTIES	212
ARABIC SUMMARY	. 215

LIST OF FIGURES

Figure 1: Approximate locations of quarries (stars) in the northern part of the Western Desert of Egypt4
Figure 2: Geologic map of Fayoum9
Figure 3: (A) Location map of southwest Alamein and El Hammam provinces15
Figure 4: Columnar section of the Upper Pliocene Qaret El Muluk Formation18
Figure 5: (A) Massive and fissile clays at Deir El Moreir quarry. (B) Thickly bedded clays19
Figure 6: (A) Ochre yellow iron oxide encrustation developed along the bedding planes and fractures at Deir Abul Hegif; Q2. (B) Rip-up clasts
Figure 7: (A) Vertical joints dissecting the clay bed filled with iron oxides at Hammam area; Q4. (B) Cross-bedded sand
Figure 8: Columnar section of the Upper Eocene Qasr El Sagha (Q6), Fayoum23
Figure 9: (A) Columnar section of the Upper Eocene Birket Qarun Formation (Q6), Fayoum. (B) Field photograph of the studied vertical section
Figure 10: (A) Close-up view of the clay bed in (Figure 9) showing the limonite staining and red hematite concretion. (B) Horizontal burrows forming a network. (C) Rip-up clasts of clays enclosed in the sandstone. (D) Carolia-rich limestone. (E) The southern section of Birket Qarun. (F) Plant remains imprinted and enclosed in the intercalated sands
Figure 11: (A) Panoramic view for Etehad quarry at Girza area, Fayoum. (B) Close-up view for clays. (C) Anticlinal and synclinal folds. (D) Faults
Figure 12: (A) Columnar section of the Middle Eocene Gehannam Formation (Q9), Fayoum. (B) Field photograph of the studied vertical section
Figure 13: A panoramic view at El Tesaawy quarry
Figure 14: (A) Columnar section at Reigha quarry (Q12), south Fayoum. (B) Field photograph of the columnar section
Figure 15: Representative composite XRD pattern
Figure 16: XRD patterns for sample s015 indicating the changes produced by various treatments of oriented clay fraction sample
Figure 17: Pair plots of selected XRD variables (wt%)
Figure 18: Scatter plot of LD1 and LD2 (Linear discrimination function 2) results at the province level

Figure 19:	Boxplot of XRD predictor mineral abundances in each province55
Figure 20: (age) level	Scatter plot of LD1 and LD2 (Linear discrimination function 2) results at the Epoch
Figure 21:	Boxplot of XRD predictor mineral abundances in each Epoch (age)
Figure 22: level	Scatter plot of LD1 and LD2 (Linear discrimination function 2) results at the quarry
Figure 23:	Boxplot of XRD predictor mineral abundances in each quarry61
Figure 24:	Boxplot of smectite/kaolinite (S/K) abundance ratios in all 12 quarries66
Figure 25: Egyptian cl	Pie charts illustrate the median abundances of the XRD predictor minerals in ays from different epochs
Figure 26:	Electron micrographs of typical clay microfabrics
Figure 27:	Composite sections illustrating vertical variations in the abundances
Figure 28:	(A) Climate index. (B) Parent Rock index90
Figure 29:	Electron micrograph shows a leaflet, within nanophyll leaf size91
Figure 30:	Crossplots of 0.15 and 0.3 g results for exchangeable results
Figure 31:	SEM photomicrographs of trace mineral constituents in some of the clays 127
Figure 32: of calcite	Comparison of weight specific Ca results for samples containing variable quantities
Figure 33:	Crossplots of 0.15 and 0.3 g results
Figure 34: cations (TE	Stratigraphic variability of AgTU-CEC, base cations, and the total exchangeable base B)
Figure 35: variability of	Comparison of mineralogically determined climate index with stratigraphic of AgTU-CEC
Figure 36:	Comparison of results for samples with and without detectable halite
Figure 37: and purified	R2 of best fit relating selected computed and theoretical variables for the complete l dataset
Figure 38: TEB for the	Statistical summary of the computed exchangeable base cations, AgTU-CEC, and complete dataset, after applying the regression equations
Figure 39: between the	(A) Relationship between the theoretical and computed CEC. (B) Relationship e computed AgTU-CEC and TEB
Figure 40:	Swelling index of Na-activated s111
Figure 41:	Core specimens bonded by different bentonitic clay samples 157
Figure 42:	Equipment used during mud drilling measurements

Figure 43:	Measuring the filtrate volume	162
Figure 44:	Shewhart control chart for the Na-Wyoming samples	163
Figure 45:	SSA results	164
Figure 46:	Swelling index results	165
Figure 47:	Statistical summary of the compressive strength results	167
Figure 48:	Viscometer dial readings	168
Figure 49:	Percentage of improvement after Na-activation	169
Figure 50:	A correlation of SSA against mineralogical and exchangeable variables	170
Figure 51: exchangeab	A correlation of swelling index of raw samples against mineralogical and le variables	172
Figure 52: exchangeab	A correlation of swelling index of Na-activated samples against mineralogical and le variables	174
Figure 53:	Swelling index of Na-activated samples against theoretical CEC	175
Figure 54: Egyptian sa	Correlation of compressive strength against the physiochemical properties of the mples	177
Figure 55:	Box-plots of GCS and DCS	178
Figure 56:	GCS and DCS for mixtures of sand and 5% clay	179
Figure 57:	Compressive strengths of 8% and 10% clay	180
Figure 58:	Variations in the rheological parameters with clay%	181
Figure 59:	Correlation of rheological parameters against the physiochemical properties	182
Figure 60:	Electron micrograph shows iron oxides covered with halite	183
Figure 61:	Apparent viscosity values after Na-activation	184
Figure 62:	Viscometer dial reading at 600rpm	185
Figure 63:	Yield point to plastic viscosity ratio	186

LIST OF TABLES

Table 1. Source of patterns used in quantitative XRD matching routine
Table 2. Summary of mineral abundances (wt%) in all samples of Egyptian bentonite
Table 3. Summary statistics for predictor minerals at the province level
Table 4. Summary statistics for predictor minerals at the Epoch (age) level
Table 5. Summary statistics for predictor minerals at the quarry level
Table 6. Characteristics of "bentonitic" clay samples from sites in the Western Desert of Egypt
Table 7. Correlation parameters for regression equations relating 0.15 and 0.3 g results forAgTU-CEC, Exch Ca, Exch Na, Exch Si, and TEB137
Table 8. Intercepts and regression coefficients for equations predicting exchange values in thecomplete and purified data sets from mineralogical data139
Table 9. Summary statistics illustrating differences in measured and computed cation exchange variables for the complete and purified data-frames 141
Table 10. Standard compressive strength values of casing sand (Dieter, 1966)
Table 11. API and OCMA rheological specifications of bentonite

ABSTRACT

Sixty two side-by-side duplicates (124 total) of Paleogene and Neogene bentonitic clays were collected from 12 quarries in the North Western Desert of Egypt. Thicknesses of the bentonitic clays varied between 1m and 20m. The mineralogy, cation exchange capacity, origin, and physical properties were studied.

A discriminant function analysis (DFA) of quantitative mineralogical data provided an objective procedure for grouping the samples at three distinctly recognizable, but partially overlapping, levels of classification. These levels were province or geographic region, geologic age, and quarry. DFA was successful in identifying statistically significant differences amongst the groups.

Reconstructing the origin of bentonitic clays is a challenging and rather complicated undertaking, but the use of certain predictor clay minerals is provided an innovative, excellent method to simplify this process. The abundance changes of five Xray diffraction (XRD) predictor minerals was used to determine the relative contributions of weathering and parent-rock changes to the origin of clay minerals in Egyptian bentonitic clays. The minerals in the Egyptian bentonitic clays formed as weathering products of basic and/or acidic parent rocks and have been transported by north-flowing streams and rivers to the sites of accumulation under variable climate regimes.

A multiple sample AgTU ion exchange method was applied to the Egyptian bentonitic clays utilizing 0.15 and 0.3 g sample weights to characterize the exchange properties (AgTU-CEC, TEB, ECEC, Na, Ca, Mg, K, and Si). The method afforded a measure of sample repeatability and the ability to assess contributions from soluble minerals. Variability of cation exchange capacities could be used to supplement geologic history interpretations or serve as a tool to guide industrial exploitation. Cation exchange fingerprints provided clues to the pore fluid compositions in the environment of sedimentation. The presence of halite, calcite, and bischofite contributed to the overall sample fingerprint. Correlation analysis produced equations relating the independent XRD mineral variables to each dependent cation exchange variable (AgTU, ExchK, ExchNa, ExchCa, and ExchMg). Mineralogically calculated CECs for the Egyptian bentonitic clays could provide a predictive tool to estimate exchange cation contents without actual measurement.

These samples have a good potential for foundry sand and drilling mud applications as suggested by selected physical property tests. The specific surface area was greatly influenced by CEC, Exch Mg, expandable minerals, and finely crystalline kaolinite. Swelling index of raw samples showed poor relationships with mineralogy and exchangeable cations. After Na-activations, the relationships were more significant particularly with the grade of the samples. Some of the Egyptian bentonitic clays showed high compressive strengths and rheological properties that satisfied the international standards for their use.