

Name of Candidat : Mohammed Ragab Zaki Kenawy

Degree M.Sc Title of Thesis

ON SOME FRACTIONAL ORDER INTEGRALEQUATIONS

Supervisors:

1- Prof. Dr. Kamal Ahmed Dib Approval 6/5/2015

2- Prof. Dr. Ahmed Mohamed Ahmed El-Sayed **Department** Mathematics

ABSTRACT

Our aim here is to study the existence of solution of some coupled system of functional integral equations and coupled system of functional integral equations of fractional orders.

we study nonlinear coupled system of functional integral equations

$$x(t) = a_{1}(t) + \int_{0}^{t} f_{1}(t, s, y(\varphi_{1}(t))) ds \qquad t \in [0, T] \quad (1)$$

$$y(t) = a_2(t) + \int_0^t f_2(t, s, x(\varphi_2(t))) ds \quad t \in [0, T] \quad (2)$$

we study the integral equation

and we study the integral equation

$$x(t) = a_1(t) + \int_0^t f_1(t, s, x(\varphi_1(t))) ds \quad t \in [0, T] \quad (3)$$

and also

$$x(t) = a_1(t) + \int_0^t f_1(t, s, I^{\beta_1} y(\varphi_1(t))) ds \qquad t \in [0, T] \quad (6)$$

$$y(t) = a_2(t) + \int_0^t f_2(t, s, I^{\beta_2} x(\varphi_2(t))) ds \quad t \in [0, T] \quad (7)$$

and we study the coupled system of integro-differential equations

$$\frac{d}{dt}x(t) = a_1(t) + \int_0^t f_1(t, s, D^{\beta_1}y(\varphi_1(t))) ds \quad t \in [0, T] \quad (8)$$

$$\frac{d}{dt} y(t) = a_2(t) + \int_0^t f_2(t,s, D^{\beta_2} x(\varphi_2(t))) ds \quad t \in [0,T] \quad (9)$$
with the initial conditions

١

$$x(0) = x_0$$
 and $y(0) = y_0$

where I^{β_1} and I^{β_2} are fractional orders integral operators. And also we study

$$x(t) = a_1(t) + \int_0^1 f_1(t, s, I^{\beta_1} y(\varphi_1(t))) ds \quad t \in [0, 1] \quad (10)$$

$$y(t) = a_2(t) + \int_0^1 f_2(t, s, I^{\beta_2} x(\varphi_2(t))) ds \quad t \in [0, 1] \quad (11)$$

where I^{p_1} and I^{p_2} fractional orders integral operators The coupled system of integro-differential equations

$$\frac{d}{dt} x(t) = a_1(t) + \int_0^1 f_1(t, s, D^{\beta_1} y(\varphi_1(t))) ds \ t \in [0,1] \quad (12)$$

$$\frac{d}{dt} y(t) = a_2(t) + \int_0^1 f_2(t, s, D^{\beta_2} x(\varphi_2(t))) ds \ t \in [0,1] \quad (13)$$
with the boundary conditions

$$x(0) = \gamma_1 x(1)$$
 and $y(0) = \gamma_2 y(1)$, $\gamma_1, \gamma_2 \neq 1$.