

Time Allowed: One hour Allocated marks: 40

Fayoum University Faculty of Nursing

Physiology Exam for Nursing Students

January, 2016 (Model Answer)

A) Answer the following questions:

(5 marks each)

1- <u>Define the resting membrane potential (RMP)</u>. What are the causes of resting membrane <u>potential?</u>

* <u>Definition</u>: The potential difference between the outer & inner surfaces of the cell membrane during rest.

* <u>Causes</u>:

A) Selective permeability of the cell membrane. D) Na^+ , K^+ memory

B) $Na^+ - K^+ pump$.

2- Define erythropoeisis. Enumerate the factors affecting erythropoeisis?

* **Definition:** Formation of new RBCs.

* Factors affecting erythropoeisis:

The following factors are essential for Hb synthesis, and production & release of RBCs. from the bone marrow (erythropoeisis).

I- Hypoxia: O2 lack stimulates erythropoietin hormone secretion.

- II- Diet:
- 1. Protein.
- 2. Iron.
- 3. Vitamins: Vit. B12, folic acid and Vit. C.
- 4. Trace elements: Copper (Cu) and Cobalt (Co).
- III- Hormones: thyroxin, cortisol and testosterone,
- IV- Liver: for synthesis and storage.
- V- Kidney: that secretes erythropoeitin hormone.

VI- Bone marrow: The site of RBCs. formation.

3- Enumerate the properties of neuromuscular transmission.

* <u>Properties of neuromuscular transmission</u>:

1) <u>Unidirectional transmission</u>: from the nerve to the muscle & not the reverse.

2) Delay: of about 0.5 msec. which represents the time needed for the release of A.Ch. and the generation of the EPP to the firing level.

3) *Fatigue*: as repeated stimulation causes depletion of the chemical transmitter.

4) Effect of drugs on the MEP:

- A) Blocking drugs: These drugs block the nicotine like action of A.Ch. by:
 - Competitive inhibition: e.g. curare & flaxidel.
 - Persistent depolarization: e.g. succinyl choline.

B) Anticholinestrases: these drugs combine with choline estrase enzyme preventing its hydrolyzing effect on A.Ch.:

- Reversible combination: e.g. eserine, prostigmine and neostigmine.
- Irreversible combination: e.g. D.F.P. and parathion.

5) *Effect of ions on the MEP*:

a. Stimulants:	$- Ca^{2+}$	\rightarrow	stimulates A.Ch. release.
	- K ⁺	\rightarrow	anticurare action.
b. Inhibitors:	- Mg^{2+}	\rightarrow	prevents the release of A.Ch.

4- Enumerate the different organelles inside body cell, giving one function for each type?

Organelles	Functions				
Rough	1. Synthesis of proteins.				
endoplasmic reticulum	2. Degradation of worn out organelles.				
Smooth	1. Synthesis of lipids and steroids.				
endoplasmic	2. Storage and metabolism of calcium.				
reticulum	3. Degradation of toxic substances.				
Golgi apparatus	Processing, packaging, labeling & delivery of proteins and lipids				
Lysosomes	1. Degradation of macromolecules like bacteria.				
	2. Degradation of worn out organelles.				
	3. Secretory function.				
Peroxisomes	1. Degradation of toxic substances like hydrogen peroxide.				
	2. Oxygen utilization.				
	3. Breakdown of excess fatty acids.				
Centrosome	Movement of chromosomes during cell division.				
Mitochondria	1. Production of energy.				
	2. Synthesis of ATP.				
	3. Initiation of apoptosis.				
Ribosome	Synthesis of proteins.				
Cytoskeleton	1. Determination of shape of the cell.				
	2. Stability of cell shape.				
	3. Cellular movements.				

Nursing Exam, Jan. 2016

B) <u>Answer the following questions</u>:

(5 marks each)

<u>Put</u> true ($\sqrt{}$) or false (X) for each of the following sentences and <u>rewrite</u> it again:

1- About the functions of plasma proteins:			
a- Albumin is responsible for blood viscosity.)
b- Gamma globulins are essential for immunity.)
c- Fibringen is an important factor for blood clotting.)
d- Prothrombin is not a plasma protein.	(Х)
e- Buffering action is one of plasma proteins.	(\checkmark)
2- About transport across the cell membrane:			
a- Na^+ - K^+ pump is an example of secondary active transport.	(Х)
b- Phagocytosis is an example of exocytosis.	(Х)
c- Diffusion is indirectly proportional with thickness of the membrane.	()
d- Diffusion is directly proportional with concentration gradient of the substance a			
membrane.	()
e- Na^+ - Glucose is an example of secondary active transport.	(\checkmark)
3- About the skeletal muscle contraction:			
a- During isotonic muscle contraction, the muscle length is shortened.	(Х)
b- Isometric contraction can perform work.	(X)
c- The mechanical efficiency in isotonic contraction is about 30%.	()
d- During isometric contraction, the muscle consumes more energy.	(Х)
e- During isotonic contraction, there is much sliding of actin over myosin.	()
4- About white blood cells:			
a- The total leucocytic count ranges between 4000 and 11000 / cumm.	()
b- Eosinophils increase in allergic conditions.	()
c- Monocytes are granular and are highly phagocytic cells.)
d- Neutrophils are phagocytic cells and have defensive function.)
e- Lymphoctes are agranular cells and of three types.	(\checkmark)

Nursing Exam, Jan. 2016